高中数学空间几何体的表面积与体积知识总结材料+练习
- 格式:doc
- 大小:2.02 MB
- 文档页数:18
第八章 8.3 第2课时A级——基础过关练1.(2021年长春月考)高为1的圆锥内接于半径为1的球,则该圆锥的体积为( ) A. B.C. D.π【答案】B 【解析】根据题意,高为1的圆锥内接于半径为1的球,则圆锥底面圆的半径r=1,则该圆锥的体积为×πr2×h=,故选B.2.已知球的表面积为16π,则它的内接正方体的表面积S的值是( )A.4π B.32C.24 D.12π【答案】B 【解析】设球的内接正方体的棱长为a,由题意知球的半径为2,则3a2=16,所以a2=,正方体的表面积S=6a2=6×=32.故选B.3.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为( ) A. B.C.8π D.【答案】C 【解析】设球的半径为R,则截面圆的半径为,∴截面圆的面积为S=π=(R2-1)π=π.∴R2=2.∴球的表面积S=4πR2=8π.4.把一个铁制的底面半径为r,高为h的实心圆锥熔化后铸成一个铁球,则这个铁球的半径为( )A. B.C. D.【答案】C 【解析】设铁球的半径为R,因为πr2h=πR3,所以R=.故选C.5.(2021年成都模拟)将直径为2的半圆绕直径所在的直线旋转半周而形成的曲面所围成的几何体的表面积为( )A.2π B.3πC.4π D.6π【答案】B 【解析】由题意知,该几何体为半球,表面积为大圆面积加上半个球面积,S=π×12+×4×π×12=3π.6.若一个球的表面积与其体积在数值上相等,则此球的半径为________.【答案】3 【解析】设此球的半径为R,则4πR2=πR3,R=3.7.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为________.【答案】16π 【解析】设正四棱锥的高为h,底面边长为a.由V=a2h=a2=6,得a=.由题意知球心在正四棱锥的高上,设球的半径为r,则(3-r)2+()2=r2,解得r=2,则S球=4πr2=16π.8.已知两个正四棱锥有公共底面,且底面边长为4,两棱锥的所有顶点都在同一个球面上,若这两个正四棱锥的体积之比为1∶2,则该球的表面积为________.【答案】36π 【解析】∵两正四棱锥有公共底,且体积比为1∶2,∴它们的高之比为1∶2,设高分别为h,2h,球的半径为R,则h+2h=3h=2R,∴R=h.又∵底面边长为4,∴R2==+(2)2,解得h=2,∴R=3,∴S球=4πR2=36π.9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l=3,试求该组合体的表面积和体积.解:该组合体的表面积S=4πr2+2πrl=4π×12+2π×1×3=10π.该组合体的体积V=πr3+πr2l=π×13+π×12×3=.10.已知过球面上A,B,C三点的截面到球心的距离等于球半径的一半,且AB=18,BC=24,AC=30,求球的表面积和体积.解:因为AB∶BC∶AC=18∶24∶30=3∶4∶5,所以△ABC是直角三角形,∠B=90°.又球心O到截面△ABC的投影O′为截面圆的圆心,也即是Rt△ABC的外接圆的圆心,所以斜边AC为截面圆O′的直径(如图所示).设O′C=r,OC=R,则球半径为R,截面圆半径为r.在Rt△O′CO中,由题设知sin ∠O′CO==,所以∠O′CO=30°,所以=cos 30°=,即R=r,(*)又2r=AC=30⇒r=15,代入(*)得R=10.所以球的表面积为S=4πR2=4π×(10)2=1 200π.球的体积为V=πR3=π×(10)3=4 000π.B级——能力提升练11.已知长方体共顶点的三条棱长分别是3,4,x,且它的8个顶点都在同一个球面上.若这个球的表面积为125π,则x的值为( )A.5 B.6 C.8 D.10【答案】D 【解析】设球的半径为r,则4πr2=125π,∴r2=.又32+42+x2=(2r)2,∴9+16+x2=125,∴x2=100,即x=10.故选D.12.已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的表面积为( )A.153π B.160πC.169π D.360π【答案】C 【解析】由于直三棱柱的底面是直角三角形,所以可以把此三棱柱补成长方体,其体对角线就是外接球的直径,所以球O的半径R==,所以球O的表面积S=4π×=169π,故选C.13.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面积S1和球的表面积S2之比为( )A.4∶3 B.3∶1C.3∶2 D.9∶4【答案】C 【解析】画出轴截面如图所示,设球的半径为r,则OD=r,PO=2r,∠PDO=90°,∴∠CPB=30°.又∠PCB=90°,∴CB=PC=r,PB=2r,∴圆锥的侧面积S1=π×r×2r=6πr2,球的表面积S2=4πr2,∴S1∶S2=3∶2.14.若等边圆柱(轴截面是正方形)、球、正方体的体积相等,则它们的表面积的大小关系是( )A.S球<S圆柱<S正方体 B.S正方体<S球<S圆柱C.S圆柱<S球<S正方体 D.S球<S正方体<S圆柱【答案】A 【解析】设等边圆柱底面圆半径为r,球半径为R,正方体棱长为a,则πr2·2r=πR3=a3,=,=2π.S圆柱=6πr2,S球=4πR2,S正方体=6a2,==·=<1,==·=>1.故选A.15.在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是________.【答案】 【解析】当球的半径最大时,球的体积最大.在直三棱柱内,当球和三个侧面都相切时,因为AB⊥BC,AB=6,BC=8,所以AC=10,底面的内切圆的半径即为此时球的半径r ==2,直径为4>侧棱.所以球的最大直径为3,半径为,此时体积V=.16.(2021年沈阳月考)已知体积为的正三棱锥V-ABC的外接球的球心为O,满足OA+OB+OC=0,则该三棱锥外接球的体积为________.【答案】π 【解析】由题意知,OA+OB=CO,说明正三角形ABC的顶点在球O的大圆上.设球的半径为R,则该三棱锥的底面正三角形ABC的高为,△ABC的边长为R,所以正三棱锥V-ABC的体积为××(R)2×R=,解得R3=4,则该三棱锥外接球的体积为πR3=π.17.已知盛有水的圆柱形容器的内壁底面半径为5 cm,两个直径为5 cm的玻璃小球都浸没于水中.若取出这两个小球,则水面将下降多少厘米?解:设取出小球后,容器中的水面下降了h cm,两个小球的体积为V球=2=(cm3).该体积等于它们在容器中排开水的体积V=52×π·h,所以=π×52×h,解得h=.故取出这两个小球,水面将下降 cm.18.已知一倒置圆锥的母线长为10 cm,底面半径为6 cm.(1)求该圆锥的高;(2)若有一球刚好放进该圆锥(球与圆锥的底面相切)中,求这个球的半径以及此时圆锥剩余空间的体积.解:(1)设圆锥的高为h cm,底面半径为R cm,母线长为l cm,则h===8,所以圆锥的高为8 cm.(2)球放入圆锥后的轴截面如图所示,设球的半径为r cm.易得△OCD∽△ACO1,则=,即=,解得r=3.圆锥剩余空间的体积为圆锥的体积减去球的体积,即V圆锥-V球=×π×62×8-π×33=96π-36π=60π(cm3),故此时圆锥剩余空间的体积为60π cm3.C级——探索创新练19.有三个球,第一个球可内切于正方体,第二个球可与这个正方体的各条棱相切,第三个球可过这个正方体的各个顶点,这三个球的表面积之比为( )A.1∶∶ B.1∶4∶9C.1∶1∶1 D.1∶2∶3【答案】D 【解析】设正方体的棱长为2,则内切球的半径为1,与棱相切的球的半径就是正方体中相对棱的距离的一半,也就是面对角线长的一半为=,外接球的半径为=.∵球的表面积S=4πR2,∴这三个球的表面积之比为4π×1∶4π×2∶4π×3=1∶2∶3.故选D.。
高中数学空间几何体知识点总结一、空间几何体的基本概念1、空间几何体的定义:在空间中,由一些平面和曲面所围成的封闭图形称为空间几何体。
2、空间几何体的分类:空间几何体可分为多面体和旋转体两大类。
多面体是由平面多边形围成的立体图形,而旋转体则是由平面图形绕其中一边旋转形成的。
二、空间几何体的表面积和体积1、空间几何体的表面积:表面积是指空间几何体的所有外露平面的面积之和。
对于一些规则的空间几何体,如长方体、圆柱体、球体等,表面积的计算公式相对简单。
对于不规则的空间几何体,一般需要通过拆分和组合的方法,将它们分解成简单的几何体来计算表面积。
2、空间几何体的体积:体积是指空间几何体所占空间的大小。
对于一些规则的空间几何体,如长方体、圆柱体、球体等,体积的计算公式相对简单。
对于不规则的空间几何体,一般需要通过拆分和组合的方法,将它们分解成简单的几何体来计算体积。
三、空间几何体的视图和直观图1、空间几何体的视图:视图是指从空间几何体的某一个方向看过去所得到的图形。
常见的视图包括主视图、俯视图、左视图等。
在求解空间几何体的体积或表面积时,通过视图可以帮助我们更好地理解空间几何体的形状和结构。
2、空间几何体的直观图:直观图是指用平行投影的方法将空间几何体投影到一个平面上所得到的图形。
直观图可以反映空间几何体的整体结构和相互关系,是求解空间几何问题的重要工具。
四、空间几何体的常见问题1、空间几何体的形状识别:在解决空间几何问题时,首先需要识别空间几何体的形状。
这可以通过观察空间几何体的特征、测量其边长和角度等方法来实现。
2、空间几何体的表面积和体积计算:表面积和体积是空间几何体的两个重要属性。
对于一些规则的空间几何体,其表面积和体积的计算公式相对简单。
对于不规则的空间几何体,需要采用拆分和组合的方法,将它们分解成简单的几何体来计算表面积和体积。
3、空间几何体的相交问题:当两个或多个空间几何体相交时,会产生交线或交面的问题。
第一章1.3空间几何体的表面积与体积1.3.2球的体积和表面积课时分层训练‖层级一‖……………………|学业水平达标|1.用与球心距离为1的平面去截球,所得截面圆的面积为π,则球的表面积为()A.8π3 B.32π3C.8π D.82π3解析:选C设球的半径为R,则截面圆的半径为R2-1,∴截面圆的面积为S=π(R2-1)2=(R2-1)π=π,∴R2=2,∴球的表面积S=4πR2=8π.2.已知各顶点都在一个球面上的正四棱锥的高为3,体积为6,则这个球的表面积为()A.16π B.20πC.24π D.32π解析:选A设正四棱锥的高为h,底面边长为a,由V=13a2h=a2=6,得a= 6.由题意,知球心在正四棱锥的高上,设球的半径为r,则(3-r)2+(3)2=r2,解得r=2,则S球=4πr2=16π.故选A.3.某几何体的三视图如图所示,它的体积为()A.72π B.48πC.30π D.24π解析:选C 由三视图可知几何体由一个半球和倒立的圆锥组成的组合体.V =13π×32×4+12×43π×33=30π.4.等体积的球和正方体的表面积S 球与S 正方体的大小关系是( )A .S 正方体>S 球B .S 正方体<S 球C .S 正方体=S 球D .无法确定解析:选A 设正方体的棱长为a ,球的半径为R ,由题意,得V =43πR 3=a 3,∴a =3V ,R =33V 4π,∴S 正方体=6a 2=63V 2=3216V 2,S 球=4πR 2=336πV 2 < 3216V 2.5.球的表面积S 1与它的内接正方体的表面积S 2的比值是( )A.π3B.π4C.π2 D .π解析:选C 设球的内接正方体的棱长为a ,球的半径为R ,则3a 2=4R 2,所以a 2=43R 2,球的表面积S 1=4πR 2,正方体的表面积S 2=6a 2=6×43R 2=8R 2,所以S 1S 2=π2. 6.已知正方体的棱长为2,则与正方体的各棱都相切的球的表面积是________.解析:过正方体的对角面作截面如图.故球的半径r =2,∴其表面积S =4π×(2)2=8π.答案:8π7.球内切于正方体的六个面,正方体的棱长为a ,则球的表面积为________. 解析:正方体的内切球球心是正方体的中心,切点是六个面(正方形)的中心,经过四个切点及球心作截面,如图,所以有2r 1=a ,r 1=a 2,所以球的表面积S 1=4πr 21=πa 2.答案:πa 28.圆柱形容器的内壁底半径是10 cm ,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了53cm ,则这个铁球的表面积为________cm 2. 解析:设该铁球的半径为r ,则由题意得43πr 3=π×102×53,解得r 3=53,∴r=5,∴这个铁球的表面积S =4π×52=100π(cm 2).答案:100π9.若三个球的表面积之比为1∶4∶9,求这三个球的体积之比.解:设三个球的半径分别为R 1,R 2,R 3,∵三个球的表面积之比为1∶4∶9,∴4πR 21∶4πR 22∶4πR 23=1∶4∶9,即R 21∶R 22∶R 23=1∶4∶9,∴R 1∶R 2∶R 3=1∶2∶3,得R 31∶R 32∶R 33=1∶8∶27,∴V 1∶V 2∶V 3=43πR 31∶43πR 32∶43πR 33=R 31∶R 32∶R 33=1∶8∶27.10.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:该组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π,该组合体的体积V =43πr 3+πr 2l =43π×13+π×12×3=13π3.‖层级二‖………………|应试能力达标|1.(2019·吉林白城四中二模)如图是一个空间几何体的三视图,则该几何体的外接球的表面积是( )A.24π B.36πC.48π D.60π解析:选C由三视图可知:该几何体为直三棱柱,并且为棱长是4的正方体的一半.可得该几何体的外接球的半径r=23,其外接球的表面积S=4π×()232=48π,故选C.2.一平面截一球得到直径是6 cm的圆面,球心到这个圆面的距离是4 cm,则该球的体积是()A.100π3cm3 B.208π3cm3C.500π3cm3 D.41613π3cm3解析:选C根据球的截面的性质,得球的半径R=32+42=5(cm),所以V球=43πR3=500π3(cm3).3.一个几何体的三视图如图所示,则此几何体的表面积S=()A.32+π B.32+2πC.28+2π D.28+π解析:选A由三视图可知此几何体的上半部分为半个球,下半部分是一个长方体,故其表面积S=4π×12+4×2×3+2×2+2×2-π=32+π.4.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =()A.1 B.2C.4 D.8解析:选B如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r,圆柱的底面半径为r,高为2r,则表面积S=12×4πr2+πr2+4r2+πr·2r=(5π+4)r2.又S=16+20π,∴(5π+4)r2=16+20π,∴r2=4,r=2,故选B.5.已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析:依题意得,该几何体是球的一个内接正方体,且该正方体的棱长为2.设该球的直径为2R,则2R=22+22+22=23,所以该几何体的表面积为4πR2=4π(3)2=12π.答案:12π6.已知一个球与一个正三棱柱的三个侧面和两个底面都相切,且这个球的体积是323π,那么这个三棱柱的体积是________. 解析:设球的半径为r ,则43πr 3=323π,得r =2,三棱柱的高为2r =4.又正三棱柱的底面三角形的内切圆半径与球的半径相等,所以底面正三角形的边长为43,所以正三棱柱的体积V =34×(43)2×4=48 3.答案:48 37.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________ cm.解析:设球的半径为r ,则圆柱形容器的高为6r ,容积为πr 2×6r=6πr 3,高度为8 cm 的水的体积为8πr 2,3个球的体积和为3×43πr 3=4πr 3,由题意得6πr 3-8πr 2=4πr 3,解得r =4(cm).答案:48.轴截面是正三角形的圆锥内有一个内切球,若圆锥的底面半径为1 cm ,求球的体积.解:如图所示,作出轴截面,O 是球心,与边BC ,AC相切于点D ,E .连接AD ,OE ,∵△ABC 是正三角形,∴CD=12AC .∵Rt △AOE ∽Rt △ACD ,∴OE AO =CD AC .∵CD =1 cm ,∴AC =2 cm ,AD = 3 cm ,设OE =r ,则AO =(3-r ),∴r 3-r=12,∴r =33 cm ,V球=43π⎝⎛⎭⎪⎫333=4327π(cm3),即球的体积等于4327π cm3.。
- 1 - 空间几何体的表面积一.《棱柱》问题1. 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为2,2,3,则此球的表面积为______________【答】:17π二.《棱锥》问题1.棱长都是1的三棱锥的表面积为--------------------------------------------------------------------------------(A ) A. B. C. D.三.《棱台》问题1.已知正六棱台的上、下底面边长分别为2和4,高为2,则这个棱台的侧面积等于___________【答】:2. 过棱锥各侧棱中点的截面把棱锥分成一个棱锥和一个棱台,则小棱锥和棱台的侧面积之比为--(C ) A .1:1 B .1:2 C .1:3 D .1:4四.《圆柱,圆锥,圆台》问题1. 圆锥的底面半径为1--------------------------------------------------------(C ) A .π B .2π C .3π D .4π2. 圆柱的轴截面是边长为S 的正方形,那么该圆柱的侧面积为----------------------------------------------(B ) A .12S π B .S π C .2S π D .4S π 3. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是----------------------------(A ) A .1+22ππ B .1+44ππ C .1+2ππ D .1+42ππ4.圆柱的侧面展开图是一个边长为6π和4π的矩形,则圆柱的全面积为----------------------------------(C )A .64+3ππ() B .83+1ππ() C .64+3ππ()或83+1ππ() D .64+1ππ()或83+2ππ() 五.《球》问题1. 两个球的半径之比为1:3,那么它们的表面积之比为------------------------------------------------------(A ) A .1:9 B .1:27 C .1:3 D .1:12.用与球心距离为1的平面去截球,所得的截面面积为π,则球的表面积为--------------------------(C ) A .2π B .6π C .8π D.33. 两个球的表面积之差为48π,它们的大圆之差为12π,则这两个球的半径之差为-----------------(C ) A .4 B .3 C .2 D .14. 一个球的内接正方体的表面积为54,则该球的表面积是______________ 【答】:275. 一个正四棱柱的各个顶点在一个直径为2cm 的球面上,如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为___________2cm 【答】:2+6. 设球内切于圆柱的侧面及两底面,则此圆柱的全面积与球表面积之比为------------------------------(C ) A .1:1 B .2:1 C .3:2 D .4:3。
8.2 空间几何体的表面积和体积五年高考考点1 表面积1.(2011安徽,6,5分)一个空间几何体的三视图如图所示,则该几何体的表面积为 ( )48.A 17832.+B 17848.+C 80.D2.(2010课标全国.10)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为 ( )2.a A π 237.a B π 2311.a C π 25.a D π 3.(2010福建.12)若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于4.(2013福建.19,13分)如图,在四棱柱1111D C B A ABCD -中,侧棱⊥1AA 底面,//,DC AB ABCDBC k AD k AB AA ,4,3,11===⋅>==)0(6,5k k DC k(1)求证:CD ⊥平面;11A ADD(2)若直线1AA 与平面C AB 1所成角的正弦值为,76求k 的值; (3)现将与四棱柱1111D C B A ABCD -形状和大小完全相同的两个四棱柱拼接成一个新的四棱柱,规定:若拼接成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问:共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f (k)写出f (k )的解析式.(直接写出答案,不必说明理由)考点2 体积1.(2013湖北.8,5分)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为,,21V V ,,43V V 上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有 ( )3421.V V V V A <<< 4231.V V V V B <⋅<<4312.V V V V C <<< 4132.V V V V D <<<2.(2012课标全国.11,5分)已知三棱锥.S-ABC 的所有顶点都在球0的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为 ( )62.A 63.B 32.C 22.D 3.(2012广东,6,5分)某几何体的三视图如图所示,它的体积为 ( )π12.A π45.B π57.C π81.D4.(2011辽宁,12,5分)已知球的直径SC =4,A .B 是该球球面上的两点,,30,3 =∠=∠=BSC ASC AB 则棱锥S -ABC 的体积为( )33.A 32.B 3.C 1.D5.(2013江苏,8,5分)如图,在三棱柱ABC C B A -111中,D ,E ,F 分别是1,,AA AC AB 的中点,设三棱锥F -ADE 的体积为,1V 棱柱ABC C B A -111的体积为,2V 则=21:V V智力背景《孙子算经》 《孙子算经》共分上、中、下三卷卷上叙述筹算乘除法,卷中叙述筹算的分数算法和开平方法,是了解中国古代 筹算的很好的资料,可以补充《九章算术》的不足,卷下则是收集了一些算术难题的问题集.如已知头数和足数的“鸡兔同笼”问题,在今天的算术教科书中仍然是常见的问题.在《孙子算经》中,最有名的当然是卷下第赫题,就是通常所称的“孙子问题”,也是现称为“中国剩余定理”的出处.6.(2012山东,14,4分)如图,正方体1111D C B A ABCD -的棱长为l ,E ,F 分别为线段C B AA 11,上的点,则三棱锥EDF D -1的体积为7.(2012上海,14,4分)如图,AD 与BC 是四面体ABCD 中互相垂直的棱.BC =2.若AD =2c ,且AB +BD =AC+ CD =2a ,其中a 、c 为常数,则四面体ABCD 的体积的最大值是8.(2011福建,12,4分)三棱锥_P - ABC 中,PA ⊥底面ABC ,PA=3,底面ABC 是边长为2的正三角形,则三棱锥P- ABC 的体积等于 .9.(2012湖南.18,12分)如图,在四棱锥P- ABCD 中,PA ⊥平面,5,3,4,===AD BC AB ABCD090=∠=∠ABC DAB ,E 是CD 的中点.(1)证明:CD ⊥平面PAE ;(2)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P - ABCD 的体积.10.(2011安徽.17,12分)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点0在线段AD 上,OA=1,OD=2.△OAB,△OAC,△ODE,△ODF 都是正三角形.(1)证明直线BC//EF ;(2)求棱锥 F - OBED 的体积.解读探究智力背景六十进制的由来六十进制最早起源于巴比伦,至于巴比伦人为什么要用60 进制,说法不一,有人把巴比伧人最初认为一年为360天.太阳每天走一‘步’(即一度)及巴比伦人已经熟悉六等分圆周相结合而得60进位;也有人认为60有2、3、4、5、6、10、12等因子,使运算简化等.60进制至今仍在很多领域内应用,如一小时等于鳓分,角度制等,天干、地支的记法也是一种60进制.知识清单1.旋转体的表面积2.几何体的体积公式(1)棱(圆)柱的底面积为S ,高为h ,则体积v=⑧ .(2)棱(圆)锥的底面积为S ,高为h ,则体积v=⑨ .(3)棱(圆)台的上、下底面面积分别为S ’、S ,高为h ,则体积.)(31//h s S S S V ++= (4)球的半径为R ,则球的体积v=⑩【知识拓展】立体几何中的“截、展、拆、拼”(1)“截”指的是截面,平行于柱、锥底面的截面以及旋转体的轴截面,它们集中反映了几何体的主要元素的数量关系,是能帮助解题的重要工具.(2)“展”指的是侧面和某些面的展开图,在有关沿表面的最短路径问题中,就是求侧面或某些面的展开图上两点间的距离.(3)“拆”指的是将一个不规则的几何体拆成几个简单的几何体,便于计算.(4)“拼”指的是将小几何体嵌入一个大几何体中,如有时将一个三棱锥复原成一个三棱柱,有时将一个三棱柱复原成一个四棱柱,还台为锥,这些都是拼补的方法.·知识清单答案突破方法方法1几何体的表面积例1 (2012北京,7,5分)某三棱锥的三视图如图所示,该三棱锥的表面积是 ( )5628.+A 5630.+B 51256.+C 51260.+D解题思路解析 由三棱锥的三视图可得三棱锥的直观图如图(1)所示.过D 作DM ⊥ AC ,连结BM..10452121=⨯⨯=⨯⨯=∆DM AC s ACD .10452121=⨯⨯=⨯⨯=∆BC AC s ABC 在△CMB 中,.5||,90=∴=∠BM C由三视图知DM ⊥面,90,=∠∴DMB ABC ,4154||=+=∴DB∴ △BCD 为直角三角形,,900=∠DCB 智力背景戏说日常生活中的说学名词——必要条件 2009年11月10日,武汉综合新闻网发表了“十年买房’之必要条件”的署名文章,讲的是能在十年内买房的必不可少的条件,必要条件,是数学名词,在高中数学中大量使用,设A ,B 是两个命题,若A 则B ,就把B 称为A 的必要条件.有了条件B ,不一定能得到结 论A ,可是,如果连条件B 都不具备,结论A 一定不成立.可见,此文使用“必要条件”一词,既符合 数学含义,又言简意赅..104521=⨯⨯=∴∆BCD S在△ABD 中,如图(2),,5665221=⨯⨯=∆ABD S .563056101010+=+++=∴表S 故选B .答案 B【方法点拨】 几何体表面积的求解方法:(1)表面积是各个面的面积之和,求多面体的表面积时,只需将它们沿着棱剪开后展成平面图形,可利用求平面图形的面积的方法,求多面体的表面积.求旋转体的表面积时,可从旋转体的生成过程及其几何特征人手,将其展开,求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系.(2)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱、锥、台体,先求出这些基本的柱、锥、台体的表面积,再通过求和或作差,从而获得几何体的表面积. (3)正棱锥、正棱台、正棱柱的侧面积公式间的联系:0/=c 时,棱锥可以看作上底面周长为0的棱台.(4)设球的半径为R ,则球的表面积.42R S π= 方法2 几何体的体积例2 (2012江苏.7,5分)如图,在长方体-ABCD 1111D C B A 中,,3cm AD AB ==,21cm AA =则四棱锥D D BB A 11-的体积为 .3cm解题思路解析 解法一:),(323321313111cm V D B A A =⨯⨯⨯⨯=- ),(9233213111cm V D B A hBD =⨯⨯⨯=-⋅=-=∴---)(6311111111cm V V V D B A A D B A ABD D D BB A解法二:连结AC 交BD 于点0,则AC BB AC BD AC ∴⊥⊥,,1⊥平面AO D D BB ∴,11即为四棱锥 D D BB A 11-的高.⋅=⨯⨯⨯=∴-)(622322331311cm V D D BB A 答案6【方法点拨】 锥体体积的求解方法: 求锥体的体积,要选择适当的底面和高,然后应用公式=V Sh 31进行计算即可.常用方法有:割补法和等积变换法.(1)割补法:求一个几何体的体积可以将这个几何体分割成几个柱体、锥体,分别求出锥体和柱体的体积,从而得出几何体的体积.(2)等积变换法:利用三棱锥的任一个面可作为三棱锥的底面,①求体积时,可选择容易计算的方式来求解;②利用“等积性”可求“点到面的距离”.三年模拟A 组 2011-2013年模拟探究专项基础测试时间.30分钟 分值.40分一、选择题(每题5分,共30分)1.(2013北京海淀月考)已知一个几何体是由上下两部分构成的组合体,其三视图如图,若图中圆的半径为1,等腰三角形的腰长为,5则该几何体的体积是( )34.πA π2.B 38.πC 310.πD 智力背景三角学发展简史 传统的三角学以研究平面三角形和球面三角形的边角关系为基础,达到测量上的应用目的.17世纪,函数概念的引入为三角函数成为三角学的基本概念奠定了基础.三角在中国早期比较通行的名称是“八线”和“三角”,“八线”是指在单位圆上的八种三角函数线:正弦线、余弦线、正切 线、余切线、正割线、余割线、正矢线、余矢线,作为独立的数学分科的三角学已渐渤消失,但作为刻画周期性现象的三角函数,仍然发挥着巨大的作用,2.(2013北京丰台高三上学期期末考试)如图,某三棱锥的三视图都是直角边长为2的等腰直角三角形,则该三棱锥的四个面的面积中最大的是 ( )3.A 32.B 1.C 2.D3.(2013北京朝阳高三上学期期末考试)已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为 ( )43.A 23.B 43.C 1.D 4.(2013河南郑州3月.6)一个几何体的三视图如图所示,其中的长度单位为cm ,则该几何体的体积 为 3cm18.A 48.B 45.C 54.D5.(2013北京西城一模.8)如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为 ( )π18.A π30.B π33.C π40.D6.(2012浙江杭州二模.9)一个空间几何体的三视图及其相关数据如图所示,则这个空间几何体的表面积是 ( )211.πA 6211.+⋅πB π11.C 33211.+πD二、填空题(每题5分,共10分)7.(2013湖南株洲二模.6)圆柱形容器的内壁底面半径是10 cm ,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了,35cm 则这个铁球的表面积为 .2cm 8.(2011浙江金华十校模拟.13)一个几何体的三视图(单位:cm)如图所示,则该几何体的表面积 是 .2cmB 组 2011-2013年模拟探究专项提升测试时间:45分钟 分值:55分一、选择题(每题5分,共15分)1.(2013吉林长春5月.7)一个棱长都为a 的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为 ( )237.a A π 22.a B π 2411.a C π 234.a D π 2.(2013宁夏银川二模.6)侧棱长为2的正三棱锥,若其底面周长为9,则该正三棱锥的体积是 ( )239.A 433.B 233.C 439.D 3.(2013北京昌平二模.6)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是 ( )智力背景《海岛算经》 《海岛算经》本来不是一部独立的著作,是刘徽为了解释“重差术”而附在《九章算术》中《勾股》后的一些问题.所谓“重差术”是计算极高和极低的方法,是透过对对象的反复观测,在不引入三角函数的情况下,运用了相似三角形的对应边成比例的原理采计算出精确的结果,所以《海岛算经》标志着中国古代测量数学的成就,唐代初年,这一部分被人从《九章算术》抽出来独立成书,因第一题是测量有关海岛的高度及距离的问题,故把它命名为《海岛算经》,3.A 3.B 3.C 8.D 二、填空题(每题5分,共15分)4.(2013吉林四平一模.14)已知矩形ABCD 的顶点都在半径为4的球D 的球面上,且,32,6==BC AB则棱锥0 - ABCD 的体积为5.(2012北京西城二模,13)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为l 的两个全等的等腰直角三角形,则该几何体的体积是 ;若该几何体的所有顶点在同一球面上,则球的表面积是.6.(2012云南昆明二模.15)如图是一个几何体的三视图(单位:m),则几何体的体积为____三、解答题(共25分)7.(2013浙江杭州一模.20)已知一个三棱台的上、下底面分别是边长为20 cm 和30 cm 的正三角形,侧面是全等的等腰梯形,且侧面面积等于两底面面积之和,求棱台的体积.8.(2013江苏南京二模,18)养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m ,高为4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?。
高中数学必修2知识点总结立体几何初步特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)chS =直棱柱侧面积'21ch S =正棱锥侧面积 ')(2121h c c S +=正棱台侧面积rhS π2=圆柱侧()l r r S +=π2圆柱表 rlSπ=圆锥侧面积()l r r S +=π圆锥表l R r S π)(+=圆台侧面积()22R Rl rl r S +++=π圆台表柱体、锥体、台体的体积公式V Sh=柱 13V Sh =锥'1()3V S S h =台2V Sh r h π==圆柱 h r V 231π=圆锥'2211()()33V S S h r rR R hπ=+=++圆台(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 12 三个公理:(1符号表示为A ∈LB ∈L => L α A ∈α B ∈α公理1作用:判断直线是否在平面内.(2符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,使A ∈α、B ∈α、C ∈α。
公理2作用:确定一个平面的依据。
(3公理1 异面直线: 不同在任何一个平面内,没有公共点。
符号表示为:设a 、b 、c 是三条直线a ∥bc ∥bLA ²α C ²B²A ² α =>a ∥c强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
4 注意点:① a'与b'所成的角的大小只由a 、b 的相互位置来确定,与O 的选择无关,为了简便,点O 一般取在两直线中的一条上; ② 两条异面直线所成的角θ∈(0, );③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a ⊥b ; ④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
空间几何体的表面积和体积(填空题:较易)1、过长方体的一个顶点的三条棱长分别是1、2、2,且它的八个顶点都在同一球面上,则这个球的表面积是__________.2、有一个几何体的三视图及其尺寸如下(单位:),则该几何体的表面积为.3、已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为_________ .4、在平行四边形中,,,若将其沿折成直二面角,则三棱锥的外接球的表面积为.5、半径为的球内接正方形的表面积为 __________;体积为__________ .6、已知正方体棱长为,则正方体外接球的体积为__________.7、已知球的大圆周长为,则球的表面积为__________.8、已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为,则这个球的表面积为________.9、已知圆柱的侧面展开圆矩形面积为,底面周长为,它的体积是__________.10、在矩形ABCD中,AC=2,现将△ABC沿对角线AC折起,使点B到达点B'的位置,得到三棱锥B'-ACD,则三棱锥B'-ACD的外接球的表面积是_________11、如图所示的多面体,它的正视图是斜边长为的直角三角形,左视图为边长是的正方形,俯视图为有一个内角为的直角梯形,则该多面体的体积为__________.12、中,,,,将三角形绕直角边旋转一周所成的几何体的表面积为__________.13、如果棱长为的正方体的八个顶角都在同一个球面上,那么球的表面积是__________.14、一个正方体的顶点都在球面上,若正方体的棱长为,则球的表面积是__________.15、底面直径是,高是的圆柱的侧面积为__________.16、已知两个球的表面积之比为,则这两个球的半径之比为__________.17、正方体的表面积与其外接球表面积的比为______.18、正四棱锥底面边长为4,高为1,则其侧面积为_________.19、将边长为2的正方形绕其一边旋转一周,所得几何体的体积为__________.20、母线长为的圆锥体,其侧面展开图的面积为,则该圆锥的体积为________________.21、—个几何体的主视图、左视图、俯视图都是以为半径的圆,则该几何体的体积是__________.22、如图所示,从棱长为6 的正方体铁皮箱中分离出来由三个正方形面板组成的几何图形.如果用图示中这样一个装置来盛水,那么最多能盛的水的体积为________.23、一个几何体的三视图如图所示,则该几何体的体积为____.24、一个四棱锥的三视图和直观图如图所示,其中分别是的中点,是上的一点,平面,则三棱锥的体积为__________.25、若正四棱柱的底面边长为与底面所成的角为,则三棱锥的表面积为__________.26、《九章算术》卷《商功》记载一个问题“今有圆堡壔(),周四丈八尺,高一丈一尺.问积几何?”意思是:今有圆柱形土筑小城堡,底面周长为丈尺,高丈尺,则它的体积是__________立方尺.(取,丈尺)27、长、宽、高分别为2,1,2的长方体的每个顶点都在同一个球面上,则该球的表面积为__________.28、已知正六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,当球的体积最小时,正六棱柱底面边长为_________.29、某几何体的三视图如图所示,则该几何体的体积为__________.30、长方体的长、宽、高分别为,其顶点都在球的球面上,则球的表面积为__________.31、一个多面体从前面、后面、左侧、右侧、上方看到的图形分别如图所示(其中每个正方形边长都为1),则几何体的表面积为__________.32、某四棱锥的三视图如图所示(单位:),则该几何体的体积是_________ ,侧面积是_________ .33、某三棱锥的三视图如图所示,则该三棱锥的4个面中,直角三角形的个数是__________个,它的表面积是__________.34、半径为的球的体积与一个长、宽分别为6、4的长方体的体积相等,则长方体的表面积为_____.35、已知圆锥的母线长是10,侧面展开图是半圆,则该圆锥的侧面积为36、一个圆台上、下底面的半径分别为和,若两底面圆心的连线长为,则这个圆台的表面积为__________.37、半径为的半圆卷成一个圆锥,则圆锥的体积为_______.38、某三棱锥的三视图如图所示,则该三棱锥的体积是______39、已知正方体的棱长为1,则正方体的外接球的体积为.40、正方体的全面积是,它的顶点都在一个球面上,则这个球的表面积是_________。
1.3.1 柱体、锥体、台体的表面积与体积[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.如图所示,圆锥的底面半径为1,高为错误!,则该圆锥的表面积为( )A.πB.2πC.3π D.4π解析:设圆锥的母线长为l,则l=错误!=2,所以圆锥的表面积为S=π×1×(1+2)=3π.答案:C2.若棱台的上、下底面面积分别为4,16,高为3,则该棱台的体积为()A.26 B.28C.30 D.32解析:所求棱台的体积V=错误!×(4+16+错误!)×3=28.答案:B3.若圆柱的底面半径为1,其侧面展开图是一个正方形,则这个圆柱的侧面积是( )A.4π2B.3π2C.2π2D.π2解析:依题意,圆柱的母线长l=2πr,故S侧=2πrl=4π2r2=4π2。
答案:A4.正方体ABCD-A1B1C1D1中,以顶点A、C、B1、D1为顶点的正三棱锥的全面积为4错误!,则该正方体的棱长为( )A.错误!B.2C.4 D.2错误!解析:设正方体棱长为a,侧面的对角线长为错误!a,所以正三棱锥A-CB1D1的棱长为错误!a,其表面积为4×错误!×(错误!a)2=4错误!,可得a2=2,即a=错误!.答案:A5.在△ABC中,AB=2,BC=错误!,∠ABC=120°,将△ABC绕直线BC旋转一周,所形成的几何体的体积是( )A 。
92π B。
错误!π C.错误!π D.错误!π解析:如图,△ABC 绕直线BC 旋转一周,所形成的几何体是以△ACD 为轴截面的圆锥中挖去一个以△ABD 为轴截面的圆锥后剩余的部分.因为AB =2,BC =32,∠ABC =120°, 所以AE =AB sin60°=3,BE =AB ·cos60°=1,CE =错误!。
V 1=13π·AE 2·CE =错误!,V 2=错误!π·AE 2·BE =π, 所以V =V 1-V 2=错误!π.故选D 。
空间几何体的表面积和体积【学习目标】1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法;2.能运用公式求解柱体、锥体和台体的体积,并且熟悉台体与柱体和锥体之间的转换关系;3.了解球的表面积和体积公式推导的基本思想,掌握球的表面积和体积的计算公式,并会求球的表面积和体积;4.会用柱、锥、台体和球的表面积和体积公式求简单几何体的表面积和体积. 【要点梳理】要点一、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台是多面体,它们的各个面均是平面多边形,它们的表面积就是各个面的面积之和.计算时要分清面的形状,准确算出每个面的面积再求和.棱柱、棱锥、棱台底面与侧面的形状如下表:求多面体的表面积时,只需将它们沿着若干条棱剪开后展开成平面图形,利用平面图形求多面体的表面积.要点二、圆柱、圆锥、圆台的表面积圆柱、圆锥、圆台是旋转体,它们的底面是圆面,易求面积,而它们的侧面是曲面,应把它们的侧面展开为平面图形,再去求其面积.1.圆柱的表面积(1)圆柱的侧面积:圆柱的侧面展开图是一个矩形,如下图,圆柱的底面半径为r ,母线长l ,那么这个矩形的长等于圆柱底面周长C=2πr ,宽等于圆柱侧面的母线长l (也是高),由此可得S 圆柱侧=C l =2πr l .(2)圆柱的表面积:2222()S r rl r r l πππ=+=+圆柱表.2.圆锥的表面积(1)圆锥的侧面积:如下图(1)所示,圆锥的侧面展开图是一个扇形,如果圆锥的底面半径为r ,母线长为l ,那么这个扇形的弧长等于圆锥底面周长C=πr ,半径等于圆锥侧面的母线长为l ,由此可得它的侧面积是12S Cl rl π==圆锥侧. (2)圆锥的表面积:S 圆锥表=πr 2+πr l .3.圆台的表面积(1)圆台的侧面积:如上图(2)所示,圆台的侧面展开图是一个扇环.如果圆台的上、下底面半径分别为r '、r ,母线长为l ,那么这个扇形的面积为π(r '+r)l ,即圆台的侧面积为S 圆台侧=π(r '+r)l .(2)圆台的表面积:22('')S r r r l rl π=+++圆台表.要点诠释:求旋转体的表面积时,可从旋转体的生成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系.4.圆柱、圆锥、圆台的侧面积公式之间的关系如下图所示.要点三、柱体、锥体、台体的体积 1.柱体的体积公式棱柱的体积:棱柱的体积等于它的底面积S 和高h 的乘积,即V 棱柱=Sh . 圆柱的体积:底面半径是r ,高是h 的圆柱的体积是V 圆柱=Sh=πr 2h . 综上,柱体的体积公式为V=Sh . 2.锥体的体积公式棱锥的体积:如果任意棱锥的底面积是S ,高是h ,那么它的体积13V Sh =棱锥. 圆锥的体积:如果圆锥的底面积是S ,高是h ,那么它的体积13V Sh =圆锥;如果底面积半径是r ,用πr 2表示S ,则213V r h π=圆锥. 综上,锥体的体积公式为13V Sh =. 3.台体的体积公式棱台的体积:如果棱台的上、下底面的面积分别为S '、S ,高是h ,那么它的体积是1(')3V h S S =棱台.圆台的体积:如果圆台的上、下底面半径分别是r '、r ,高是h ,那么它的体积是2211(')('')33V h S S h r rr r π=+=++圆台.综上,台体的体积公式为1(')3V h S S =. 4.柱体、锥体、台体的体积公式之间的关系如下图所示.要点四、球的表面积和体积 1.球的表面积(1)球面不能展开成平面,要用其他方法求它的面积. (2)球的表面积设球的半径为R ,则球的表面积公式 S 球=4πR 2. 即球面面积等于它的大圆面积的四倍. 2.球的体积设球的半径为R ,它的体积只与半径R 有关,是以R 为自变量的函数. 球的体积公式为343V R π=球. 要点五、侧面积与体积的计算 1.多面体的侧面积与体积的计算在掌握直棱柱、正棱锥、正棱台侧面积公式及其推导过程的基础上,对于一些较简单的几何组合体的表面积与体积,能够将其分解成柱、锥、台、球,再进一步分解为平面图形(正多边形、三角形、梯形等),以求得其表面积与体积.要注意对各几何体相重叠部分的面积的处理,并要注意一些性质的灵活运用.(1)棱锥平行于底的截面的性质:在棱锥与平行于底的截面所构成的小棱锥中,有如下比例关系:S S S S S S ===小锥底小锥全小锥侧大锥底大锥全大锥侧对应线段(如高、斜高、底面边长等)的平方之比.要点诠释:这个比例关系很重要,在求锥体的侧面积、底面积比时,会大大简化计算过程.在求台体的侧面积、底面积比时,将台体补成锥体,也可应用这个关系式.(2)有关棱柱直截面的补充知识.在棱柱中,与各侧棱均垂直的截面叫做棱柱的直截面,正棱柱的直截面是其上下底面及与底面平行的截面.棱柱的侧面积与直截面周长有如下关系式:S 棱柱侧=C 直截l (其中C 直截、l 分别为棱柱的直截面周长与侧棱长), V 棱柱=S 直截l (其中S 直截、l 分别为棱柱的直截面面积与侧棱长). 2.旋转体的侧面积和体积的计算(1)圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形式及侧面展开图中各线段与原旋转体的关系,是掌握它们的侧面积公式及解决有关问题的关键.(2)计算柱体、锥体和台体的体积,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关问题的关键.【典型例题】类型一、简单几何体的表面积例1.如右图,有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为345(0)a a a a >、、.用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a 的取值范围是 .【答案】03a <<. 【解析】底面积为26a ,侧面面积分别为6、8、10,拼成四棱柱时,有三种情况:221(86)2462428s a a =+⨯+⨯=+222242(108)2436,s a a =++=+ 223242(106)2432,s a a =++=+拼成三棱柱时也有三种情况:表面积为22262(1086)1248a a ⨯+++=+,24a 2+36, 24a 2+32由题意得2224281248a a +<+,解得03a <<. 【总结升华】(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.举一反三:【变式1】一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( )A .4S πB .2S πC .S πD S 【答案】A【解析】由圆柱的底面面积是S ,求出圆柱的半径为r =4S π.例2.在底面半径为R ,高为h 的圆锥内有一内接圆柱,求内接圆柱的侧面积最大时圆柱的高,并求此时侧面积的最大值.【思路点拨】一般要画出其轴截面来分析,利用相似三角形求解。
空间中点、线、面间的位置关系点 共线的条件 线共点的条件确定平面的条件空间几何体的体积 棱柱圆柱的体积 棱台圆台的体积球的体积棱锥圆锥的体积 空间几何体的表面积 直棱柱的表面积 正棱锥的表面积 球的表面积正棱台的表面积空间几何体与平面的基本性质空间几何体的表面积与体积要求层次重难点球、棱柱、棱锥的表面积和体积A了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(一) 知识容1.直棱柱与圆柱的侧面积等于它的底面周长和高(母线)的乘积.()S S ch =直棱柱侧圆柱,其中c 为底面的周长,h 为直棱柱(圆柱)的高,也即侧棱(母线)长; 2.正棱锥(圆锥)的侧面积等于它的底面周长和斜高(母线)乘积的一半.11''22S ch nah ==正棱锥侧,其中a 为底面边长,'h 为斜高;1π2S cl rl ==圆锥侧,其中c 为底面周长,r 为圆锥的底面半径,l 为母线长;3.正棱台(圆台)的侧面积等于它的上下底面周长之和与斜高(母线)乘积的一半.知识框架例题精讲高考要求板块一:空间几何体的表面积空间几何体的表面积与体积1(')'(')'22nS c c h a a h =+=+正棱台侧,其中,'a a 分别是正棱台上下底面的边长,'h 为斜高;1(')π(')2S c c l r r l =+=+正圆台侧,其中,'r r 分别是圆台上下底面的半径,l 为母线长;4.球面面积等于它的大圆面积的四倍,24πS R =球,R 为球的半径.1.除了球面,这里提到的其它几何体的表面都可以展开,侧面积公式和表面积公式可以直接推导出来.2.要提醒学生注意空间与平面问题的转化,对这几种几何体的侧面展开图,轴截面的图等有个比较清晰的印象,在计算时能灵活转化.5.柱体(棱柱,圆柱)体积公式:V Sh =柱体,其中S 为底面积,h 为高;6.棱体(棱锥,圆锥)的体积公式:13V Sh =棱体,其中S 为底面积,h 为高;7.台体(棱台,圆台)的体积公式:1(')3V h S S =台体,其中',S S 分别是台体上,下底面的面积,h 为台体的高;8.球的体积:34π3V R =球,R 为球的半径.对柱体与锥体体积公式的推导,课本上是以长方体的体积公式为基础的,根据祖暅原理得到的.祖暅原理:幂势相同,则积不容异.即夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体体积相等.祖暅提出的“幂势既同,则积不容异”,及“体积之比等于对应截面积之比”,在这里是当作公理使用.提法“幂势既同,则积不容异”,在西方通常叫做“卡瓦列利原理”.卡瓦列利在他的名著《连续不可分几何》中提出这一原理,这本书出版于1635年. 课本对柱体和锥体体积公式的推导过程: ⑴长方体的体积V Sh =;⑵利用祖暅原理可以说明:等底面积等高的长方体与柱体的体积相等, 故柱体的体积为:V Sh =;⑶利用祖暅原理可以说明:等底面积等高的锥体的体积均相等;⑷三棱柱可以分割成三个体积相等的锥,故锥体的体积为13V Sh =;321C 1CB 1A 1A 1B 1CBA 1ABCA 1B 1C 1CBA⑸利用两个锥体做差可得台体的体积公式1(')3V S S h =.(二)典例分析:【例1】轴截面是正方形的圆柱叫等边圆柱.已知:等边圆柱的底面半径为r,求全面积.【例2】轴截面是正三角形的圆锥叫等边圆锥.已知:等边圆锥底面半径为r,求全面积.【例3】已知圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.【例4】底面是菱形的直棱柱,它的对角线的长分别是9和15,高是5,求这个棱柱的侧面积.【例5】侧面都是直角三角形的正三棱锥,若底面边长为2,则三棱锥的全面积是多少?【例6】侧面都是直角三角形的正三棱锥,若底面边长为a,则三棱锥的全面积是多少?【例7】平面截球得到半径是3的圆面,球心到这个平面的距离是4,则该球的表面积是()A.20πB C.100πD.500π3【例8】正方体全面积为24,求它的外接球和切球的表面积.【例9】将一个边长为4和8的矩形纸片卷成一个圆柱,则圆柱的底面半径为.【例10】正四棱台的斜高为4,侧棱长为5,侧面积为64,求棱台上、下底的边长.【例11】正四棱台的斜高为12,侧棱长为13,侧面积为720,求棱台上、下底的边长.【例12】 正三棱台111ABC A B C -中,已知10AB =,棱台的侧面积为,1O O ,分别为上、下底面正三角形的中心,1D D 为棱台的斜高,160D DA ∠=︒,求上底面的边长.【例13】 过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为( )A .316B .916C .38D .932【例14】 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )A B .1 C .1+ D【例15】 如图所示,半径为R 的半圆的阴影部分以直径AB 所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中30BAC ∠=︒).【例16】 圆锥的侧面展开图是半径为a 的半圆面,求圆锥的母线与轴的夹角的大小,轴截面的面积.【例17】 圆台的上下底面半径分别是2、5,且侧面面积等于两底面面积之和,求该圆台的母线长.【例18】 圆台的切球半径为R ,且圆台的全面积和球面积之比为218,求圆台的上,下底面半径12,r r (12r r <).【例19】 已.求圆锥的表面积.【例20】 有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为3a 、4a 、5a ()0a >. 用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a 的取值围是 .【例21】 若,则其外接球的表面积是 .【例22】 正四面体棱长为a ,求其外接球和切球的表面积.【例23】 一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .【例24】 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120°BAC ∠=,则此球的表面积等于 .【例25】 若A ,B 两点在半径为2的球面上,且以线段AB 为直径的小圆周长为2π,则此球的表面积为___________,A ,B 两点间的球面距离为__________.【例26】 已知球的表面积为20π,球面上有A 、B 、C 三点.如果2AB AC ==,BC =,则球心到平面ABC 的距离为( )A .1BCD .2【例27】 球面上有三点A ,B ,C 组成这个球的一个截面的接三角形三个顶点,已知球的半径为R ,且A ,C 两点的球面距离为π2R ,A ,B 两点及B ,C 两点的球面距离均为π3R ,球心到这个截面的距离为6,求球的表面积.【例28】 设圆锥的底面半径为2,高为3,求:⑴接正方体的棱长; ⑵切球的表面积.【例29】 如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的表面积是( ) A .4πB .8πC .12πD .16π【例30】 一间民房的屋顶有如下图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为1P 、2P 、3P .若屋顶斜面与水平面所成的角都是a ,则( )A .321P P P =>B .321P P P >=C .321P P P >>D .321P P P ==【例31】 右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .9πB .10πC .11πD .12π【例32】 已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH的表面积为T ,则TS等于( )A .19B .49C .14D .13【例33】 已知球的表面积为20π,球面上有A 、B 、C三点.如果AB AC BC ===,则球心到平面ABC 的距离为( ) A .1BCD .2【例34】 已知球的表面积为20π,球面上有A 、B 、C三点.如果AB AC BC ===,则球心到平面ABC 的距离为( )A .1 BCD .2【例35】 棱长为1的正方体1111ABCD A B C D -被以A 为球心,AB 为半径的球相截,则被截形体的表面积为( )A .5π4B .7π8C .πD .7π4【例36】 棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______.【例37】 已知一个几何体的主视图及左视图均是边长为2的正三角形,俯视图是直径为2的圆,如图,则此几何体的外接球的表面积为 .俯视图左视图主视图【例38】 右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是________.俯视图侧(左)视图正(主)视图左视图主视图俯视图424【例39】 若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为( )A .183B .153C .2483+D .24163+【例40】 一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球的表面积为 .【例41】 如图,在四面体ABCD 中,截面AEF 经过四面体的切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A BEFD -与三棱锥A EFC -的表面积分别是1S ,2S ,则必有( )A .12S S <B .12S S >C .12S S =D .12S S ,的大小关系不能确定【例42】 如图,在四面体ABCD 中,截面AEF 经过四面体的切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A BEFD -与三棱锥A EFC -的表面积分别是1S ,2S ,则必有( )A .12S S <B .12S S >C .12S S =D .1S ,2S 的大小关系不能确定(一) 知识容1.柱体(棱柱,圆柱)体积公式:V Sh =柱体,其中S 为底面积,h 为高;2.棱体(棱锥,圆锥)的体积公式:13V Sh =棱体,其中S 为底面积,h 为高;3.台体(棱台,圆台)的体积公式: 1('')3V h S SS S =台体,其中',S S 分别是台体上,下底面的面积,h 为台体的高;4.球的体积:34π3V R =球,R 为球的半径.对柱体与锥体体积公式的推导,课本上是以长方体的体积公式为基础的,根据祖暅原理得到的.左视图俯视图主视图232板块二:空间几何体的体积OFED A祖暅原理:幂势相同,则积不容异.即夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体体积相等.祖暅提出的“幂势既同,则积不容异”,及“体积之比等于对应截面积之比”,在这里是当作公理使用.提法“幂势既同,则积不容异”,在西方通常叫做“卡瓦列利原理”.卡瓦列利在他的名著《连续不可分几何》中提出这一原理,这本书出版于1635年. 课本对柱体和锥体体积公式的推导过程: ⑴长方体的体积V Sh =;⑵利用祖暅原理可以说明:等底面积等高的长方体与柱体的体积相等, 故柱体的体积为:V Sh =;⑶利用祖暅原理可以说明:等底面积等高的锥体的体积均相等;⑷三棱柱可以分割成三个体积相等的锥,故锥体的体积为13V Sh =;321C 1CB 1A 1A 1B 1CBA 1ABCA 1B 1C 1CBA⑸利用两个锥体做差可得台体的体积公式1(')3V S S h =.(二)典例分析:【例1】 侧棱长与底面边长相等的正三棱锥称为正四面体,则棱长为1的正四面体的体积是________; 【例2】 已知正六棱台的上,下底面边长分别为2和4,高为2,则其体积为_______.【例3】,则球的表面积和体积的比为______.【例4】 直三棱柱111ABC A B C -各侧棱和底面边长均为a ,点D 是1CC 上任意一点,连结1A B ,BD ,1A D ,AD ,则三棱锥1A A BD -的体积( )A .316aB3 C3 D .3112a【例5】,则该正四棱柱的体积等于 .【例6】 已知三棱台111ABC A B C -中25ABC S ∆=,111A B C S ∆9=,高6h =.⑴求三棱锥1A ABC -的体积1A ABC V -⑵求三棱锥111B A B C -的体积111B A BC V -⑶求三棱锥11A BCC -的体积11A BCC V -【例7】 正三棱柱侧面的一条对角线长为2,且与底边的夹角为45︒角,则此三棱柱的体积为( )A B .C D .【例8】 在体积为15的斜三棱柱111ABC A B C -中,S 是1C C 上的一点,S ABC -的体积为3,则三棱锥111S A B C -的体积为( )A .1B .32C .2D .3 【例9】 直三棱柱111ABC A B C -各侧棱和底面边长均为a ,点D 是1CC 上任意一点,连结1A B ,BD ,1A D ,AD ,则三棱锥1A A BD -的体积( )A .316aB 3C 3D .3112a【例10】 正三棱柱111ABC A B C -接于半径为2的球,若,A B 两点的球面距离为π,则正三棱柱的体积为 .【例11】 在体积为的球的表面上有A B C ,,三点,1AB =,BC A ,C 两点的球面距离为,则球心到平面ABC 的距离为 .【例12】 若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个角为60︒的菱形,则该棱柱的体积等于( )A B . C . D .【例13】 平行六面体1111ABCD A B C D -中,在从B 点出发的三条棱上分别取其中点,,E F G ,则棱锥B EFG -的体积与平行六面体体积的比值为________.【例14】 一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为( ) ABCD.【例15】 如图,在三棱柱111ABC A B C -中,若E ,F 分别为AB ,AC 的中点,平面11EB C F 将三棱柱分成体积为1V ,2V 的两部分,那么12:V V = .【例16】 求球与它的外切圆柱、外切等边圆锥的体积之比.(等边圆锥是指轴截面是等边三角形的圆锥)【例17】 如图,在四边形ABCD 中,90DAB ∠=︒,135ADC ∠=︒,5AB =,CD =,2AD =,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.【例18】 如图所示,已知等腰梯形ABCD 的上底2cm AD =,下底10cm BC =,底角60ABC ∠=︒,现绕腰AB 旋转一周,求所得的旋转体的体积.【例19】 在ABC ∆中,2AB =,32BC =,120ABC ∠=︒(如图所示),若将ABC ∆绕直线BC 旋转一周,则所形成的旋转体的体积是( )A .9π2B .7π2C .5π2D .3π2【例20】 在体积为的球的表面上有A ,B ,C 三点,1AB =,BC =A ,C 两点的球面距离,则球心到平面ABC 的距离为 .【例21】 图中所示的圆及其外切正方形绕图中由虚线表示的对称轴旋转一周生成的几何体称为圆柱V 2V 1A 1B 1C 1FEC BA容球,求证:在圆柱容球中,球的体积是圆柱体积的23,球的表面积也是圆柱全面积的23.【例22】 正四棱锥S ABCD -S 、A 、B 、C 、D 都在同一球面上,则该球的体积为_______.【例23】 如图,圆锥形封闭容器,高为h ,圆锥水面高为11,3h h h =,若将圆锥倒置后,圆锥水面高为22.h h ,求C【例24】 一个倒圆锥形容器,它的轴截面是正三角形,在容器注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥取出后,圆锥水平面的高是多少?【例25】 如图,在四面体ABCD 中,截面AEF 经过四面体的切球(与四个面都相切的球)球心O ,且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A BEFD -与三棱锥A EFC -的表面积分别是1S ,2S ,则必有( ) A .12S S < B .12S S > C .12S S =D .12S S ,的大小关系不能确定O'O HDCBAS【例26】 如图,在长方体1111ABCD A B C D -中,6AB =,4AD =,13AA =,分别过BC ,11A D 的两个平行截面将长方体分成三部分,其体积分别记为111AEA DFD V V -=,11112EBE A FCF D V V -=,11113B E B C F C V V -=,若123::V V V 1:4:1=,则截面11A EFD 的面积为 .【例27】 已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.⑴求该几何体的体积V ; ⑵求该几何体的侧面积S .【例28】 一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,那么这个球的体积为 ______.【例29】 如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器(如图). 当这个正六棱柱容器的底面边长为 时,其容积最大.【例30】 设A 、B 、C 、D 是球面上的四个点,且在同一平面,3AB BC CD DA ====,球心到该平面的距离是球半径的一半,则球的体积是( )A. B. C. D.【例31】 如图所示,正四面体ABCD的外接球的体积为,求四面体的体积.【例32】 已知正三棱锥S ABC -,一个正三棱柱的上底面三顶点在棱锥的三条侧棱上,下底面在正三棱锥的底面上,若正三棱锥的高为15,底面边长为12,接正三棱柱的侧面积为120.⑴求正三棱柱的高; ⑵求正三棱柱的体积;⑶求棱柱上底面所截棱锥与原棱锥的侧面积之比.【例33】一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,那么这个球的体积为_________.【例34】将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()AB.2C.4D【例35】如图1,一个正四棱柱形的密闭容器底部镶嵌了同底的正四棱锥形实心装饰块,容器盛有a升水时,水面恰好经过正四棱锥的顶点P.如果将容器倒置,水面也恰好过点P(图2).有下列四个命题:A.正四棱锥的高等于正四棱柱高的一半B.将容器侧面水平放置时,水面也恰好过点PC.任意摆放该容器,当水面静止时,水面都恰好经过点PD.若往容器再注入a升水,则容器恰好能装满其中真命题的代号是:(写出所有真命题的代号).【例36】⑴给出两块相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明;⑵试比较你剪拼的正三棱锥与正三棱柱的体积的大小;⑶如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱,使它的全面积与给出的三角形的面积相等.请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.图3图2图1【例37】两相同的正四棱锥组成如图所示的几何体,可放棱长为1的正方体,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有()A.1个B.2个C.3个D.无穷多个【例38】已知一个全面积为24的正方体,有一个与每条棱都相切的球,此球的体积为.【例39】已知正方体外接球的体积是32π3,那么正方体的棱长等于()图12图A. BCD【例40】 球的体积与其表面积的数值相等,则球的半径等于( )A .12B .1C .2D .3【例41】 将一个边长为a 的正方体,切成27个全等的小正方体,则表面积增加了 ( )A .26aB .12a 2C .18a 2D .24a 2【例42】 直径为10cm 的一个大金属球,熔化后铸成若干个直径为2cm 的小球,如果不计损耗,可铸成这样的小球的个数为( ) A .5B .15C .25D .125【例43】 一平面截一球得到直径是6的圆面,球心到这个平面的距离4,求该球的表面积与体积.【例44】 已知一个球的直径为d ,一个正方体的棱长为a ,如果它们的表面积相等,则( )A . d a >且V >球V 正方体B . d a >且V <球V 正方体C . d a <且V >球V 正方体D . d a <且V <球V 正方体【例45】 已知某个几何体的三视图如下,根据图中标出的尺寸,201010202020主视图左视图俯视图可得这个几何体的体积是_______.【例46】 一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为1,2,3则此球的表面积__________.【例47】 已知正三棱锥的侧面积为cm 2,高为3cm . 求它的体积.【例48】 如图,在等腰梯形ABCD 中,22,60AB DC DAB ︒==∠=,E 为AB 的中点,将ADE ∆ 与BEC∆分别沿,ED EC 向上折起,使,A B 重合于点P ,则三棱锥P DCE -的外接球的体积( )D ECBAA B C D【例49】 已知正四棱锥底面正方形的边长为4,高与斜高的夹角为30︒,求正四棱锥的全面积与体积.【例50】 将圆心角为120︒,面积为3π的扇形,作为圆锥的侧面,求圆锥的表面积和体积.【例51】 正三棱柱侧面的一条对角线长为2,且与底面成45角,求此三棱柱的体积.【例52】 一平面截一球得到直径是6的圆面,球心到这个平面的距离4,求该球的表面积与体积.【例53】 如图,在等腰梯形ABCD 中,22,60AB DC DAB ︒==∠=,E 为AB 的中点,将ADE ∆ 与BEC∆分别沿,ED EC 向上折起,使,A B 重合于点P ,则三棱锥P DCE -的外接球的体积( )DECBAA B C D【例54】 正六棱锥-P ABCDEF 中,G 为PB 的中点,则三棱锥-D GAC 与三棱锥-P GAC 体积之比为( )A .11∶B .12∶C .21∶D .32∶【例55】 如图,体积为V 的大球有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.1V 为小球相交部分(图中阴影部分)的体积,2V 为大球、小球外的图中黑色部分的体积,则下列关系中正确的是( ) A .12VV >B .22VV <C .12V V >D .12V V <【例56】 一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,那么这个球的体积为_________.【例57】 若 )A B C D .23【例58】 养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m ,高4m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4m (高不变);二是高度增加4m (底面直径不变).⑴分别计算按这两种方案所建的仓库的体积; ⑵分别计算按这两种方案所建的仓库的表面积; ⑶哪个方案更经济些?【例59】 已知正四棱锥底面正方形的边长为4,高与斜高的夹角为30︒,求正四棱锥的全面积与体积.【例60】 有一个轴截面是边长为4的正方形的圆柱,将它的部挖去一个与它同底等高的圆锥,求余下来的几何体的表面积与体积.【例61】正三棱柱侧面的一条对角线长为2,且与底面成45角,求此三棱柱的体积.【例62】将半径都为1的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()AB.2C.4D【例63】如图,已知球O的球面上四点A、B、C、D,DA⊥平面ABC,AB BC⊥,DA AB BC===则球O点体积等于__________DC BA 【例64】用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为()A.8π3BC.D.32π3【例65】一个正方体的各顶点均在同一球的球面上,若该球的体积为,则该正方体的表面积为.【例66】一个底面半径为R的圆柱形量杯中装有适量的水.若放入一个半径为r的实心铁球,水面高度恰好升高r,则Rr=.【例67】如图,在等腰梯形ABCD中,22,60AB DC DAB︒==∠=,E为AB的中点,将ADE∆与BEC∆分别沿,ED EC向上折起,使,A B重合于点P,则三棱锥P DCE-的外接球的体积()ABCDDECBA【例68】 正棱锥的高增为原来的n 倍,底面边长缩为原来的1n,那么体积( ) A .缩为原来的1nB .增为原来的n 倍C .没有变化D .以上结论都不对【例69】 (08年9)如图,体积为V 的大球有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.1V 为小球相交部分(图中阴影部分)的体积,2V 为大球、小球外的图中黑色部分的体积,则下列关系中正确的是( )A .12VV >B . 22VV <C .12V V >D .12V V <【例70】 若一个正三棱柱的三视图如图所示,则这个正三棱柱的体积为_______.左视图俯视图主视图232。