当前位置:文档之家› 冷柜制冷系统设计分析

冷柜制冷系统设计分析

冷柜制冷系统设计分析
冷柜制冷系统设计分析

1、制冷系统原理介绍

一般制冷机的制冷原理压缩机的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流阀节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入压缩机的入口,从而完成制冷循环。压缩制冷系统循环见下图1-1。

单级蒸汽压缩制冷系统,是由制冷压缩机、冷凝器、蒸发器和节流阀四个基本部件组成。它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。

液体制冷剂在蒸发器中吸收被冷却的物体热量之后,汽化成低温低压的蒸汽、被压缩机吸入、压缩成高压高温的蒸汽后排入冷凝器、在冷凝器中向冷却介质(水或空气)放热,冷凝为高压液体、经节流阀节流为低压低温的制冷剂、再次进入

蒸发器吸热汽化,达到循环制冷的目的。这样,制冷剂在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。

在制冷系统中,蒸发器、冷凝器、压缩机和节流阀是制冷系统中必不可少的四大件,这当中蒸发器是输送冷量的设备。制冷剂在其中吸收被冷却物体的热量实现制冷。压缩机是心脏,起着吸入、压缩、输送制冷剂蒸汽的作用。冷凝器是放出热量的设备,将蒸发器中吸收的热量连同压缩机功所转化的热量一起传递给冷却介质带走。节流阀对制冷剂起节流降压作用、同时控制和调节流入蒸发器中制冷剂液体的数量,并将系统分为高压侧和低压侧两大部分。实际制冷系统中,除上述四大件之外,常常有一些辅助设备,如电磁阀、分配器、干燥器、集热器、易熔塞、压力控制器等部件组成,它们是为了提高运行的经济性,可靠性和安全性而设置的。

2、冷柜制冷系统设计

2.1、冷柜制冷系统设计的内容和流程

制冷系统设计的主要内容是落实一款产品的整个制冷系统,需明确压缩机、蒸发器、冷凝器等一系列制冷件,但也要考虑其它零件,如感温导管、连接管等。简单来说,就是制冷人员要将整个制冷系统考虑一遍,并在明细表中确定下来。需要考虑的大原则是零件尽量通用,产品设计零件数量少,零件规格通用化,加工设备(包括外协厂制作加工)尽量少,生产效率高。

针对冷柜系统焊点要尽可能少,简单产品不超过10个焊点,最多不超过15个。压缩机物料号需技术副总审批,通用化高的制冷件物料审批需部长级审批,

通用化较低的零件则需室主任审批,以便控制零件数量。

为达到减少零件目的,可采取一定措施尽可能不出装配图或集成更多的零件一起出装配图。可通过在零件上增加标示的方式达到装配的目的,比如在内藏式冷凝器的进出口端一定位置增加颜色标示,就可以省去出外箱部件图。还可以将蒸发器、回气管部件、感温导管、电气件与结构件一起出在箱体部件图中。

制冷设计的一般流程如下(以新产品为例):

了解产品的结构,如产品的外观、内箱尺寸、箱体泡层以及门体泡层和压缩机仓尺寸;

计算热负荷,选择合适的压缩机(需考虑压缩机的高度、安装尺寸,具体见压缩机的选择篇);

设计蒸发器、冷凝器和回气管部件,该过程需要考虑能否借用目前现有的零件;其它零件,如连接管、感温导管、干燥器和储液器、温控器等;

安排零件制作和样机制作,针对不是本地供应的零件,需要提前让采购部门采购,以免影响试制;

性能测试和整改,针对性能测试,针对不符合性能的,需要进行整改,具体需要根据试验表现出来的问题,进行单一整改或几个零件一起更改;采用注释。小批验证。小批主要验证产品的一致性,主导部门是工艺部,考虑更多的是产品的装配性和工艺性,会造成产品零件的更改;

批量上市后的生产或市场反馈整改。当一款产品上市后,有可能存在结构或性能上的不足,需要进行整改。

制冷系统设计的主要参数一般是要能体现零件的要点,防止某些方面不满足要求时会造成某些后果。因此,需要零件在进货检验或批量抽检中给予检查是否符

合设计要求。

2.2、冷柜制冷系统零部件设计

小型压缩式制冷产品的制冷系统由压缩机、冷凝器、蒸发器、干燥过滤器和回气管部件(含毛细管)组成。制冷系统在小型制冷装置中,制冷剂主要是在管道中流动,所以设计的工作对象在管道上。因此有必要了解下管道知识。

2.2.1、制冷管路概述

目前管道的材质主要有铜管(毛细管作为精密铜管,单独列出)、铁(钢)管和铝管,它们的牌号和规格和用途见表1。

管道加工要求:管道作为金属件,采用普通冷加工工艺对管道进行弯曲、扩口、缩口是有限度的,具体表2。缩口由于是内径减少过程,长度和缩口尺寸一般均可以满足。

表2 管道加工要求指标

如管道在弯管过程中外圈有保护或管道内部有软管防止变形,弯管半径可以做到更小。一般在丝管式冷凝器和翅片蒸发器的弯管中比较常见。如尺寸超过目前已有零件的加工范围,建议在该情况下咨询外协厂是否有能力加工。

2.2.2、压缩机设计

我司所用的压缩机制冷量较小,全部为全封闭制冷压缩机。

全封闭制冷压缩机(后续简称压缩机)的压缩机和电动机全部被封闭在一个钢制外壳内,电动机在气态制冷剂中运行,结构紧凑,体积小,重量轻,密闭性能好,振动小,噪声低,多用于家用制冷空调设备和小型商用制冷设备中。按结构型式可分为往复式、活动转子式和涡旋式三大类。

压缩机作为制冷循环的“心脏”,是重要外购件,到我司时已经是一个整体。我司选用压缩机需要考虑的是,制冷剂,电源、制冷量、COP,启动电容,压缩机高度、安装尺寸等等因素,表3已列出大致的性能参数。目前压缩机噪声已经比较低,但需留意个别压缩机的噪声值和振动值,避免安装到产品后噪声超标。另外设计人员还需要对压缩机的价格有一定的了解,有可能符合要求的压缩机有好几个厂家,需选择最优的压缩机。一般厂家每年都会推出压缩机的产品目录供制冷人员参考。制冷人员了解后对有疑问的可以咨询厂家相关人员。

表3 压缩机主要性能参数

压缩机选择需要考虑以上因素外,有时还需要考虑其它参数,特别是新增压缩机,还要知道压缩机排气管、回气管和工艺管的内外管径,压缩机附件是否会影响产品装配。

另外,压缩机考虑到上面因数外,还涉及到压缩机的可靠性,不能通过可靠性测试的压缩机不能投入批量使用,就需要另外选择压缩机。因此,我司对新匹配的压缩机原则是选择厂家已大批量生产过的成熟基型。

压缩机作为重要零件,除压缩机需满足国家标准外,还需满足我司的企业标准《冷柜压缩机验收标准》、《压缩机起停寿命试验》、《压缩机1000h加速寿命试验》、《压缩机保护器》。

2.2.3、蒸发器设计

冷柜目前使用的蒸发器型式主要有内藏式蒸发器、翅片式蒸发器和吹胀式蒸发器。见图2。但蒸发器的种类绝不是这三类,比如冰箱常用的层架式丝管蒸发器、板管蒸发器,制冰机用的盘管蒸发器,在不同情况下采用不同的蒸发器,这就需要我们在选择蒸发器类别时予以考虑。

图2 蒸发器(从左到右分别为内藏式蒸发器、吹胀式蒸发器和翅片式蒸发器)

2.2.4、冷凝器设计

卧柜冷凝器设计需要考虑产品的热负荷,一般容积在500升以下,采用4冷凝器。500升以上则用6。

冷凝器的型式主要有丝管式冷凝器、翅片冷凝器和内藏冷凝器,具体见图5。

图5 (从左到右分别是丝管式冷凝器、翅片冷凝器和内藏冷凝器)

在冷柜上使用的冷凝器除考虑本身的安装空间外,还需考虑是自然冷却还是强制风冷冷却。如产品是风冷,则冷凝器的尺寸会比自然冷却小得多(从传热系数可以看出差异)。当冷凝器的结构型式确定后,冷凝器的主要考虑因数在肋片的间距(内藏冷凝器的间距是将外箱作为肋)。不同的冷凝器参数见表4。

表4 不同冷凝器的参数比较

内藏式冷凝器:为提高冷凝器的生产效率,一款冷凝器只能使用一种半径,即半径40mm。通用管间距为80mm,其它间距则可以通过调整直线段长度来满足。通常管径为4mm,有时为增强换热效果,可采用更大管径的冷凝器,如Φ4.76mm或Φ6.0mm。

丝管式冷凝器:丝管式冷凝器可分为底部丝管式冷凝器和背挂式丝管式冷凝器。均可以采用自然冷却和风冷冷却。底部丝管式冷凝器由于安装空间有限,需

要采用卷曲方式并用固定板固定,因此,管径可以多种。背挂冷凝器则受安装夹限制,一般管径为4.76mm。但通用的钢丝间距为6mm,钢丝管径为Φ1.5mm 或Φ1.3mm。

翅片冷凝器:端板厚度目前小型号(500L以下)为0.7mm,大型号(500L 及以上)端板厚度为1.0mm,翅片间距为4.5或6.0mm。由于翅片冷凝器换热效率高,尤其需要留意灰尘对冷凝器的影响,高端产品需要增加防尘网,低端产品则需要客户定期清扫冷凝器。

微通道换热器:在汽车空调中已大量应用,目前家用空调和冷柜正在推广。由扁管加工成蛇管,为了提高其承压能力在蛇管内加肋。为了提高管内换热,目前还有把通道做成锯齿形,以增加管内换热面积和增加扰动。见图6。主要有几个优点:从传热和阻力观点看,扁管的水力半径小;从结构和工艺看,蛇管可大大减少焊接弯头,工艺简单,且减少可能的泄漏点,提高了可靠性。从材料看,为全铝材构成,重量轻,成本低。

图6 微通道换热器

2.2.5、回气管部件与毛细管设计

回气管部件作为最大的连接管,一般均缠绕有毛细管。原因是制冷系统采用了回热循环,回热循环的单位质量制冷量和理论比功均有增加,故回热循环的制冷系数是增大还是减小同制冷剂的种类有关,R134a、R290、R502采用回热循环时制冷系数提高,而R22采用回热循环时制冷系数无明显变化。

毛细管与回气管通用缠绕方式:卧柜采用铝箔(公司前期还采用过从回气管中间穿出方式,由于成本较高,没有采用),立柜则一般采用白色热缩套。但最有效的方式为将毛细管锡焊在回气管上,但存在加工效率低,成本高的缺点。

回气管部件因有两个零件,因此设计时需留意回气管连接蒸发器出口端和压缩机吸气管的管径,毛细管则与蒸发器入口管连接,另外一端则与干燥器连接,因此,需特别留意本身零件长度和配接零件的管径大小。

回气管材料的选择:由于回气管的温度较低,又暴露在空气中,需考虑材料的耐腐蚀。因此,柜外目前材料为铜管,柜内或泡层内可以为铝管或镀锌钢管,如为铝管还需要考虑与铜管的电化学腐蚀。目前解决电化学腐蚀的做法是用热缩套将铜铝焊接点包住。

回气管的管径:回气管的管径一般选择规则是与压缩机的吸气口内径大小相当。

卧柜回气管的铜铁焊接还是铜铝焊接,必须将焊点放在柜内,防止工人操作将管掰断;在柜内距离为50mm左右;

铜铝焊接要点:待焊接的铜管端部为锥形,铝管始终为圆柱形。焊接时,管子放入夹具内,铜管向铝管相对运动,当铜管运动到位时,铜管插入铝管并与铝管内壁充分接触,接通焊接回路,铜铝管间产生大电流,使两管发热,铝管温度

接近熔点,铜铝开始结合,焊接时间结束后,切断焊接回路,铜铝管结合牢固后,夹具松开,焊接过程全部结束。

铜铝焊接铜管长度最短长度为70mm,以保证铜管和其它管路焊接后不会出现铜铝焊接点熔化问题。铜铝焊接后为防止电化学腐蚀,需用热缩套将焊点包裹以便隔离水汽。

毛细管选择要点:毛细管作为制冷件中的重要部件,需考虑阻力值和长度,在此基础上还需要考虑内径,比如立柜的毛细管需选择内径较大的毛细管,以免造成毛细管堵塞。为提高通用化,毛细管建议按优选件方式执行。毛细管优选件见表5。立柜毛细管由于没有在发泡层内,容易甄别,加上阻力值比较接近,颜色也不易区分,所以没有阻力值标记。

毛细管的长度还需要满足工艺要求,如毛细管要考虑维修长度和毛细管缠绕在干燥器上防止运输振断毛细管问题等。

表5 毛细管优选表

2.2.6、温控器与感温导管设计

机械控制的产品用的温控器均为普通压力型机械温控器。

温控器需要考虑的因素有温控器的参数、毛细管的长度、轴的方向、安装孔的类型(通孔还是螺纹孔,螺纹孔是直接固定,通孔则是固定在其它零件上)和感温方式(毛细管或感温包)。温控器主要参数见表6。

表6 温控器主要参数表

与温控器相关的零件主要为感温导管,目前也已经是通用件。

卧柜产品目前感温部位为蒸发器的中部,结构为“7”字形,插入方式为将箱体倒装时,直接往下插入即可。后期随产品压缩机要求正装,则温控器导管需要进行配套更改成“一”字型。

目前卧柜的导管材料为铝管,规格只有一种Φ6.0*0.5。需要考虑的是温控器导管的安装位置以及如何避空蒸发器和出外箱底板的位置。为保证能正常控温,感温长度至少在200mm以上。

卧柜产品目前正在验证感温蒸发器尾部,即将感温导管改为水平插管,方便压缩机正装,同时将台阶底卧柜的感温导管统一成一种。感温导管主要参数见表7。

表7 感温导管主要参数表

立柜产品除考虑卧柜的因素外,还需要增加一点,温控器感温部分不同,会造成产品的开停和化霜等一系列问题。目前立柜感温部位主要有以下几种:1、感温蒸发器,在翅片式蒸发器中比较常用,典型产品为

SC-220/240/280/383WL;

2、感温内胆壁面温度(同卧柜),在内藏式蒸发器中比较常用,典型产品是SC-200/240/280/340L;

3、感温柜内空气,吹胀式蒸发器和翅片蒸发器中用,典型产品为SC-53WP。

立柜感温导管一般是焊接在蒸发器上,不会增加物料号,但需要考虑通用化,方便厂家制作。

2.2.7、储液器与干燥器设计

储液器、干燥器作为通用件,目前的种类已能满足绝大部分产品的使用。常见的储液器、干燥器见图7。

图7 储液器(左图)、干燥器(右图)

储液器的作用:由于产品的使用环境变化,在低温环境下,低压端很多制冷剂蒸发不完,如带回到压缩机中,就会造成压缩机液击现象。因此,一般制冷系统在低压端都安装有储液器,用于储存多余的液态制冷剂。目前,较小制冷系统产品由于制冷剂充注量不是很大,已取消了储液器。

储液器需要考虑的是零件材料、进口端内径、出口端内径和储液器本体的直径以及储液能力(内容积)。最常用的储液器见表8。

表8 冷柜常用的储液器

冰箱制冷系统设计说明书word版本

冰箱制冷系统设计说 明书

冰箱制冷系统设计说明书1.冰箱设计步骤

图1 BCD-348W/H电冰箱制冷系统图 2.冰箱的总体布置 2.1箱体设计要求及形式 电冰箱箱体设计的优劣,直接影响使用性能、外观、耐久性制造成本和市场销售。在进行设计时,要求造型别致、美观大方。除色调要与家庭家具协调外,还必须考虑占地面积小内容积大,宽度、深度与高度的比例合理,有稳定感等。冰箱箱体尺寸见表1。 表1箱体尺寸

2.2箱体外表面温度校核和绝热层厚度 设计箱体的绝热层时,可预先参照国内外冰箱的有关资料设定其厚度,并计算出箱体表面温度t w 。如果箱体外表面温度t w 低于露点温度t d ,则会在箱体表面发生凝露现象,因此箱体表面温度必须高于露点温度,一般t w > t d +0.2 )(i o o o W t t a K t t -- = (1) 国家标准GB8059.1规定,电冰箱在进行凝露实验时 亚温带SN 、温带N 气候条件下,露点温度为19±0.5℃ 亚热带ST 、热带T 气候条件下,露点温度为27±0.5℃ t o t i

在t w > t d 的前提下,计算箱体的漏热量Q 1,并用下面的公式校验绝热层的厚度 1 21) (Q t t A w w -= λδ (2) 1w t ----冰箱外壁温度,℃ 2w t ----冰箱内壁温度,℃ λ-----绝热层导热系数,w/(m.k) A -----传热面积,m 2 校验计算的厚度在设定厚度基础上进行修正,反复计算,直到合理为止。 3.冰箱热负荷计算 总热负荷Q=Q 1+Q 2+Q 3 Q 1---- 箱体的漏热量 Q 2---- 门封漏热量 Q 3---- 除露管漏热量 (1)箱体的漏热量Q 1 由于箱体外壳钢板很薄,而其导热系数很大,所以钢板热阻很小,可忽略不计。内胆多用塑料ABS 成型,热阻较大,可将其厚度一起计入隔热层,箱体的传热可以看做单层平壁的传热。 )(1i o t t KA Q -= (3) (4) 其中:K —— 传热系数,W/m 2·℃; A —— 传热面积,m 2 ; i o a a K 111 ++= λδ

螺杆制冷机的部件及流程图

螺杆制冷机的部件及流程图 螺杆式制冷压缩机组由螺杆压缩机、电动机、联轴器、气路系统(包括吸气止回式截止阀和吸气过滤器)、油路系统(包括油分离器、油冷却器、油过滤器、油泵、油压调节阀和油分配管路)、控制系统(包括操作仪表箱、控制器箱、电控柜等)和设备、系统间的连接管路等组成。 螺杆制冷机的工作原理 制冷循环 螺杆制冷机组的制冷循环在原理上与其他循环相同,同样包括压缩机、蒸发器、冷凝器、节流装置四大部件。 制冷剂循环过程如下图所示: 螺杆制冷压缩机结构特征 螺杆制冷压缩机主机是螺杆压缩机组最核心的部分,是压缩机输入功以及压缩输送气体的部位,是制冷系

统的心脏。主要有机体部件、转子部件、滑阀部件、轴封部件、联轴器部件、内容机比测定机构部件、吸气过滤器部件组成。(见下图) 压缩机 半封闭喷油螺杆式压缩机属于正位移压缩机,由三部分组成:电机、转子和一次油分离器。半封闭电机转速为3000RPM,由吸气冷却。 单机头制冷量为209~709kw,双机头制冷量为791~1419kw。双机头机组的两台压缩机可同可异。压缩机仅有三个运动部件:阴、阳转子和一个滑阀。 阳转子由电机直接驱动,并带动阴转子,转子两边各有各自的轴承。 调节滑阀位于阴、阳螺杆齿和部位上部,通过改变滑阀位置可以调节压缩机容量。油压驱动活塞带动滑阀,沿着螺杆顶部平行于螺杆转子移动。 滑阀完全盖住转子时,压缩机满载。滑阀向排气口侧运动,压缩机便卸载,这时压缩机螺杆的有效工作长度便减少,制冷量便随之下降。

螺杆式压缩机的工作原理 n螺杆式制冷压缩机属于容积型回转式制冷压缩机,它利用一对相互啮合的阴阳转子在机体内作回转运动,周期性地改变转子每对齿槽间的容积来完成吸气、压缩、排气过程。(如下图) 排气过程

氨制冷循环系统工艺流程

氨制冷循环系统工艺流程 1.单级制冷循环系统 单级制冷机是应用比较广泛的一类制冷机,它可以应用于制冰、空调、食品冷藏及工业生产过程等方面。单级制冷循环是指制冷剂在制冷系统内相继经过压缩、冷凝、节流、蒸发四个过程,便完成了单级制冷机的循环,即达到了制冷的目的。 制冷系统由蒸发器、单级压缩机、油分离器、冷凝器、贮氨器、氨液分离器、节流阀及其它附属设备等组成,相互间通过管子联接成一个封闭系统。其中,蒸发器是输送冷量的设备,液态制冷剂蒸发后吸收被冷却物体的热量实现制冷;压缩机是系统的心脏,起着吸入、压缩、输送制冷剂蒸汽的作用;油分离器用于沉降分离压缩后的制冷剂蒸汽中的油;冷凝器将压缩机排出的高温制冷剂蒸汽冷凝成为饱和液体;贮氨器用来贮存冷凝器里冷凝的制冷剂氨液,调节冷凝器和蒸发器之间制冷剂氨液的供需关系;氨液分离器是氨重力供液系统中的重要附属设备;节流阀对制冷剂起节流降压作用同时控制和调节流入蒸发器中制冷剂液体的流量,并将系统分为高压侧和低压侧两部分。 单级流程示意图 2.双级制冷循环系统 双级制冷循环是在单级制冷循环的基础上发展起来的,其压缩过程分两个阶段进行,来自蒸发器的制冷剂蒸汽先进入低压级汽缸压缩到中间压力,经过中间冷却后再进入高压级汽缸,压缩到冷凝压力进入冷凝器中。一般蒸发温度在-25℃~-50℃时,应采用双级压缩机进行制冷。制冷系统由蒸发器、双级压缩机、油分离器、冷凝器、中间冷却器、贮氨器、氨液分离器、节流阀及其它附属设备等组成,相互间通过管子联接成一个封闭系统。其中,中间冷却器利用少量液态制冷工质在中间压力下汽化吸热,使低压级排出的过热蒸汽得到冷却,降低高压级的吸气温度,同时还使高压液态制冷工质得到冷却。

电冰箱的组成

冰箱由哪几部分构成 (2010-02-23 19:50:22) 转载▼ 电冰箱主要由箱体、门体、制冷系统、电气系统及附件五部分组成。 一.箱体和门体 箱体、门体根据不同的温度要求组成若干间室,与外界空气隔绝并分别保持一定低温。箱体、门体由箱壳、箱胆、门壳、门胆等结构件和绝热材料组成。 1. 箱壳、门壳一般由0.4-0.8mm的冷轧钢板作成,表面经磷化与喷塑(或喷漆)处理。为了美观,门壳多用彩板,有的冰箱已经使用拉丝板。 2.箱胆、门胆一般用厚1.2-5mm的ABS板或HIPS板经真空成型作成。箱胆也有用铝板作成的,这种箱胆强度比塑料好,但耐腐蚀性不如塑料。 3.隔热层 过去冰箱的隔热层都用玻璃棉充填,现在冰箱隔热层都用聚氨酯发泡塑料。聚氨酯发泡塑料是在异氰酸酯、聚醚的聚合反应中,加入发泡剂发泡而成。 发泡剂过去都采用R11,这种发泡剂对大气层的臭氧层有较大的破坏作用。现在的发泡剂逐渐改为R141b或环戊烷,这两种发泡剂都是环保发泡剂。 4.门铰链 箱体和门体由门铰链联接在一起。单门电冰箱有上、下两个铰链,双门电冰箱有上、中、下三个铰链。门铰链上一般都加一个限位机构和一个自锁机构。 5.门封条 为防止冰箱内冷气外泄和外界热气侵入,在门体的内壁四周装有磁性门封条,依靠磁条的磁力,将门封与箱体铁皮紧紧吸住。门封条是用软质聚氯乙烯挤塑成条,将磁性胶条穿入塑料门封条的空心管里,四角热粘合而成。康佳冰箱的门封条基本都可以进行拆卸,方便清洗。 二.制冷系统 电冰箱的制冷系统由压缩机、冷凝器、干燥过滤器、毛细管、和蒸发器组成,制冷系统利用制冷剂的循环进行热交换,将冰箱内的热量转移到冰箱外的空气中去,达到使冰箱内降温的目的。 1.压缩机 家用电冰箱用压缩机一般为全封闭压缩机。它的全称为“电冰箱用全封闭型电动机-压缩机”,它实际是将压缩机与电动机全部密封在机壳内。 (1)压缩机的作用 压缩机是制冷循环系统的“心脏”,它的作用是在电动机的带动下,输送和压缩制冷剂蒸气,使制冷剂在系统中进行制冷循环。当压缩机电动机带动曲轴作旋转运动时,连杆将旋转运动转化为活塞的往复式运动。活塞在气缸中所作的往复运动,可分为吸气、压缩、排气和膨胀四

斯特林冰箱的关键技术分析

作者:admin 关键词:冰箱,自由活塞斯特林制冷机,环境保护,关键技术 摘要: 斯特林制冷技术具有“绿色”制冷剂﹑制冷温度低﹑节能﹑制冷量易 控等特点,在冰箱上的应用具有极大的优势。本文对斯特林冰箱的研制提出了初步的构思,并对斯特林冰箱的几个关键技术分别进行了介绍,最后展望了这种极具潜力的冰箱技术的发展前景。 关键词: 冰箱;自由活塞斯特林制冷机;环境保护;关键技术 0 前言 19世纪60年代A. Kirk利用逆向斯特林循环进行制冷,获得成功以来,斯特林制冷技术发展已有百多年历史【1】,然而由于技术水平的限制,在20世纪90 年代才有美国的Sunpower公司研制成功可用于冰箱系统的斯特林制冷机。目前国内还无斯特林冰箱产品。作为一种新型的冰箱制冷技术,相对于传统的蒸汽压缩节流冰箱系统,采用斯特林制冷循环的冰箱具有高效率﹑“绿色”制冷剂﹑制冷温区广﹑启动电流低﹑制冷量易控等特点,在环保及节能方面具有明显的优势。斯特林冰箱与传统的冰箱有极大的不同,斯特林冰箱采用整体式自由活塞斯特林制冷机作为冷源,其原理是氦气膨胀制冷,因而无节流系统和蒸发器。 斯特林冰箱的核心是斯特林制冷机,其技术和性能决定了斯特林冰箱的研究和发展。因此设计制造高效率﹑长寿命﹑大冷量的斯特林制冷机是研究的关键;斯特林制冷机冷头到冰箱冷空间的冷量传递是影响系统整体效率的重要因素,也有必要进行详细研究。 1 自由活塞斯特林制冷机 斯特林制冷机的结构有多种,按形状分有整体式和分体式;按结构分有型﹑型﹑型【2】。用于冰箱的斯特林制冷机宜采用整体式自由活塞结构。William Beale 在20世纪60年代早期首次在斯特林冷机中使用自由活塞技术,自由活塞型斯特林制冷机(FPSC)的特点是利用气动技术进行膨胀制冷的,即通过气体压力差和弹簧控制推移活塞的运动,而不在膨胀机部分使用电机。采用直线电机驱动压缩机,利用气体轴承和板弹簧支撑内部的运动部件。自由活塞斯特林制冷机具有结构紧凑、重量轻、无油、运动部件少、可靠性高、低噪音、低振动、不易磨损、寿命长、制冷量方便可调等优点【3,4】。整体式自由活塞斯特林制冷机(FPSC) 结构如图1所示。图一整体式自由活塞斯特林制冷机结构图

氨制冷循环系统工艺流程

氨制冷循环系统工艺流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

氨制冷循环系统工艺流程 1.单级制冷循环系统 单级制冷机是应用比较广泛的一类制冷机,它可以应用于制冰、空调、食品冷藏及工业生产过程等方面。单级制冷循环是指制冷剂在制冷系统内相继经过压缩、冷凝、节流、蒸发四个过程,便完成了单级制冷机的循环,即达到了制冷的目的。 制冷系统由蒸发器、单级压缩机、油分离器、冷凝器、贮氨器、氨液分离器、节流阀及其它附属设备等组成,相互间通过管子联接成一个封闭系统。其中,蒸发器是输送冷量的设备,液态制冷剂蒸发后吸收被冷却物体的热量实现制冷;压缩机是系统的心脏,起着吸入、压缩、输送制冷剂蒸汽的作用;油分离器用于沉降分离压缩后的制冷剂蒸汽中的油;冷凝器将压缩机排出的高温制冷剂蒸汽冷凝成为饱和液体;贮氨器用来贮存冷凝器里冷凝的制冷剂氨液,调节冷凝器和蒸发器之间制冷剂氨液的供需关系;氨液分离器是氨重力供液系统中的重要附属设备;节流阀对制冷剂起节流降压作用同时控制和调节流入蒸发器中制冷剂液体的流量,并将系统分为高压侧和低压侧两部分。 单级流程示意图 点击此处放大图片 2.双级制冷循环系统 双级制冷循环是在单级制冷循环的基础上发展起来的,其压缩过程分两个阶段进行,来自蒸发器的制冷剂蒸汽先进入低压级汽缸压缩到中间压力,经过中间冷却后再进入高压级汽缸,压缩到冷凝压力进入冷凝器中。一般蒸发温度在-25℃~-50℃时,应采用双级压缩机进行制冷。制冷系统由蒸发器、双级压缩机、油分离器、冷凝器、中间冷却器、贮氨器、氨液分离器、节流阀及其它附属设备等组成,相互间通过管子联接成一个封闭系统。其中,中间冷却器利用少量液态制冷工质在中间压力下汽化吸热,使低压级排出的过热蒸汽得到冷却,降低高压级的吸气温度,同时还使高压液态制冷工质得到冷却。

电冰箱制冷系统的组成、作用及种类

项目三 电冰箱制冷系统的组成、作用及种类 【课时安排】:8个课时 【学习目标】: 1、知识目标:了解电冰箱的种类、规格和型号。 2、能力目标:通过理论知识的学习和应用,培养综合运用能力。 3、情感目标:培养学生热爱科学,实事求是的学风和创新意识,创新精神【知识目标】: 1、电冰箱组成。 2、电冰箱制冷系统的组成、作用及种类。 【教学过程】: 知识点一:电冰箱的基本组成: 一、概述 它主要有箱体、制冷系统、电气控制系统和附件四部分组成。 二、电冰箱组成 1、箱体:电冰箱的躯体部分,且来隔热保温。箱体内空间分为冷藏和冷冻两部分。 2、制冷系统:利用制冷剂在循环过程中的吸热和放热作用,将箱内的热量转移 至箱外空气中去,使箱内温度降低,达到冷藏、冷冻食物的目的。 3、电气自动控制系统:用于保证制冷系统按照不同的使用要求自动而安全地工 作,将箱内温度控制在一定范围内以达到冷藏冷冻的目的。 4、附件:完善和适应冷藏、冷冻不同要求而设置的。 知识点二:制冷系统的组成 1)压缩机(2)冷凝器(3)干燥过滤器(4)毛细管(5)蒸发器

一、电冰箱制冷系统的制冷原理 冰箱制冷系统工作经历了四个过程:压缩、冷凝、节流和蒸发。 (1)压缩机吸入来自蒸发器中的气态制冷剂,在内部汽缸内进行压缩,形成高温高压的气态制冷剂;把压力提高到与冷凝温度相对应的冷凝压力,经高压阀门从高压排气管送入冷凝器中。 (2)进入冷凝器的高温高压气态制冷剂,沿盘管向大气环境散热,与大气环境交换热量,同时在内部由气态冷凝成液态。 (3)液态制冷剂经干燥过滤器吸收水分、滤除有形赃物,优化制冷环境,防止制冷系统冰堵和脏堵。 (4)液态制冷剂经毛细管节流,控制制冷剂的流量,控制对蒸发器的供液量; 把压力由冷凝压力降至蒸发压力,送至蒸发器内。 (5)进入蒸发器的液态制冷剂,剧烈地汽化转变成气态制冷剂,同时,沿盘管吸收大量的热量,达到制冷目的。制冷剂循环往复,以至无穷。 二、压缩机

冷柜制冷系统设计分析

冷柜制冷系统设计分析 Prepared on 22 November 2020

1、制冷系统原理介绍 一般制冷机的制冷原理的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入压缩机的入口,从而完成制冷循环。压缩制冷系统循环见下图1-1。 单级蒸汽压缩制冷系统,是由、、蒸发器和四个基本部件组成。它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。 液体制冷剂在蒸发器中吸收被冷却的物体热量之后,汽化成低温低压的蒸汽、被压缩机吸入、压缩成高压高温的蒸汽后排入冷凝器、在冷凝器中向冷却介质(水或空气)放热,冷凝为高压液体、经节流阀节流为低压低温的制冷剂、再次进入蒸发器吸热汽化,达到循环制冷的目的。这样,制冷剂在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。 在制冷系统中,蒸发器、冷凝器、压缩机和是制冷系统中必不可少的四大件,这当中蒸发器是输送冷量的设备。制冷剂在其中吸收被冷却物体的热量实现制冷。压缩机是心脏,起着吸入、压缩、输送制冷剂蒸汽的作用。冷凝器是放出热量的设备,将蒸发器中吸收的热量连同压缩机功所转化的热量一起传递给冷却介质带走。节流阀对制冷剂起节流降压作用、同时控制和调节流入蒸发器中制冷剂液体的数量,并将系统分为高压侧和低压侧两大部分。实际制冷系统中,除上述四大件之外,常常有一些辅助设备,如、分配器、、、易熔塞、等部件组成,它们是为了提高运行的经济性,可靠性和安全性而设置的。

冷柜制冷系统设计分析

1、制冷系统原理介绍 一般制冷机的制冷原理压缩机的作用是把压力较低的蒸汽压缩成压力较高的蒸汽,使蒸汽的体积减小,压力升高。压缩机吸入从蒸发器出来的较低压力的工质蒸汽,使之压力升高后送入冷凝器,在冷凝器中冷凝成压力较高的液体,经节流阀节流后,成为压力较低的液体后,送入蒸发器,在蒸发器中吸热蒸发而成为压力较低的蒸汽,再送入压缩机的入口,从而完成制冷循环。压缩制冷系统循环见下图1-1。 单级蒸汽压缩制冷系统,是由制冷压缩机、冷凝器、蒸发器和节流阀四个基本部件组成。它们之间用管道依次连接,形成一个密闭的系统,制冷剂在系统中不断地循环流动,发生状态变化,与外界进行热量交换。 液体制冷剂在蒸发器中吸收被冷却的物体热量之后,汽化成低温低压的蒸汽、被压缩机吸入、压缩成高压高温的蒸汽后排入冷凝器、在冷凝器中向冷却介质(水或空气)放热,冷凝为高压液体、经节流阀节流为低压低温的制冷剂、再次进入

蒸发器吸热汽化,达到循环制冷的目的。这样,制冷剂在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。 在制冷系统中,蒸发器、冷凝器、压缩机和节流阀是制冷系统中必不可少的四大件,这当中蒸发器是输送冷量的设备。制冷剂在其中吸收被冷却物体的热量实现制冷。压缩机是心脏,起着吸入、压缩、输送制冷剂蒸汽的作用。冷凝器是放出热量的设备,将蒸发器中吸收的热量连同压缩机功所转化的热量一起传递给冷却介质带走。节流阀对制冷剂起节流降压作用、同时控制和调节流入蒸发器中制冷剂液体的数量,并将系统分为高压侧和低压侧两大部分。实际制冷系统中,除上述四大件之外,常常有一些辅助设备,如电磁阀、分配器、干燥器、集热器、易熔塞、压力控制器等部件组成,它们是为了提高运行的经济性,可靠性和安全性而设置的。 2、冷柜制冷系统设计 2.1、冷柜制冷系统设计的内容和流程 制冷系统设计的主要内容是落实一款产品的整个制冷系统,需明确压缩机、蒸发器、冷凝器等一系列制冷件,但也要考虑其它零件,如感温导管、连接管等。简单来说,就是制冷人员要将整个制冷系统考虑一遍,并在明细表中确定下来。需要考虑的大原则是零件尽量通用,产品设计零件数量少,零件规格通用化,加工设备(包括外协厂制作加工)尽量少,生产效率高。 针对冷柜系统焊点要尽可能少,简单产品不超过10个焊点,最多不超过15个。压缩机物料号需技术副总审批,通用化高的制冷件物料审批需部长级审批,

电冰箱的制冷系统

§3.4 电冰箱的制冷系统(抽真空、充注制冷剂等) 一、教学目标 1、掌握电冰箱制冷系统各部件的结构及作用。 2、掌握电冰箱制冷系统维修工具(双表修理阀、真空泵)的使用方法。 3、掌握电冰箱制冷系统抽真空、充注制冷剂的方法和操作。 二、工具器材 1、制冷压缩机 2、双表修理阀 3、真空泵 4、电冰箱模型 5 、制冷剂R12 三、相关理论知识 1、制冷压缩机 (1 )制冷压缩机的分类 压缩机主要类型有:活塞式、旋转式和涡旋式三种。根据压缩机和电动机连接方式的不同,活塞式制冷压缩机可分为开启式、半封闭式和全封闭式三种。电冰箱制冷系统使用的压缩机属于全封闭式压缩机。其中比较典型的是往复活塞式压缩机。往复活塞式压缩机又可分为连杆式、滑管式、电磁式三种。 (2 )全封闭式压缩机的特点压缩机与电动机共用一主轴,安装在利用弹簧悬吊的钢制机壳内,机壳采用焊接密封。从其外形看,封闭的外壳有三根铜管(即吸气管、排气管、工艺管)和一个电动机的电源接线盒(如图3.4-1 所示)。 全封闭式压缩机与开启式、半封闭式压缩机相比,结构更紧凑,重量更轻,噪音更小,制冷剂不易泄漏,日常维护工作量很小,特别适用于家庭小型制冷装置。

图3.4-1全封闭式压缩机外形图 (3 )往复活塞式压缩机的内部结构简介 1)机械部分 用专用工具打开压缩机顶盖,看见压缩机内部的机械部分,如图 3.4-2所示。 图3.4-2压缩机内部的机械部分 2)压缩机的电动机 小型压缩机的电动机大多是单相电动机,其绕组由启动绕组和运转绕组两部分构成, 常启动绕组较细、运转绕组较粗。共有3个引出线端子:R、S、C,如图3.4-3所示。

冰箱制冷原理

家用电冰箱制冷原理 从低于环境温度的物体中吸取热量,并将其转移给环境介质的过程,称为制冷。 由于热量只能自动地从高温物体传给低温物体,因此实现制冷必须包括消耗能量(如电能,机械能等)的补偿过程。 借助制冷系统消耗一定的电能,利用物态变化过程中的吸热(液态→气态),放热(气态→液态)物理过程,强制热量由低温物体(冷柜内的食物)转至高温物体(室内空气)从而达到制冷的目的。 冰箱的制冷是一个热泵的原理,就是利用机械能,在冰箱保温的条件下,将热量从冰箱里面移出,这些热量在冰箱外面散去。 家用电冰箱制冷系统循环过程,压缩机将低温低压的制冷剂(R-600a或HFC-134a)气体吸入气缸,经过压缩机压缩,变成高温高压的气态R-600a或HFC-134a,并排到冷凝器内,在冷凝器内,高温高压的R600a或HFC-134a气体与温度较低的环境进行交换,温度降低并冷凝为液体;液体R-600a或HFC-134a通过毛细管节流,降低压力后进人蒸发器,在蒸发器内吸热汽化,(未汽化的暂留在储液管里),汽化后被吸回压缩机,重新压缩。如此周而复始,不断循环,使柜内温度降低。 整个制冷循环过程可分为4个阶段: (1)绝热压缩:压缩机将蒸发后的低温低压制冷剂吸入,这时气体的理想状态是充分汽化,无液滴,稍微过热,经压缩机活塞的急剧压缩,对气体所做的机械功转换为热,使之变成高温高压气体,此压缩过程很短,被升温气体的热量几乎没有传到外部,故此过程称为绝热压缩过程。 (2)等温压缩:压缩机将高温高压气态制冷剂送至冷凝器中冷却到其完全液化,这段时间放出冷凝潜热,在此过程中,因制冷剂温度不变,仅发生气一液状态变化,故称为等温压缩。在冷凝器末端,制冷剂全部液化后,温度有所下降,即为过冷。 在这一过程中,制冷剂通过蒸发器吸收的热量和压缩机活塞做功转换的热量已全部放出,这时已完成了将低温物体的热量送到高温的外界空气中的任务。 (3)绝热膨胀:液态制冷剂在毛细管中受到节流作用,使液体压力急剧降到蒸发压力,制冷剂在此过程中温度虽剧降,但因时间极为短暂,未能吸收外界的热量,故称绝热膨胀。 (4)等温膨胀:进入蒸发器的制冷剂迅速蒸发,不断从冷柜(冰箱)内吸收热量(蒸发潜热),直到液体完全汽化为止,在此过程中,制冷剂的温度恒定,故称为等温膨胀。 海尔变频冰箱的制冷原理 普通家用冰箱中的电机起动频繁、噪声大、寿命短、温度稳定性差、能耗高。变频冰箱带来功能的增加、性能的改善,而且具有明显的节能效果和降噪效果,同时整机寿命有明显提高。近年来国内家电厂商都在竞相开发。 2000年4月,科龙首推BCD-348WA/HP变频冰箱,具有助动开门、制冰功能等,被业内人士誉为“最成熟、最稳定”的冰箱。随后,海尔推出007系列衍生239DVC系列变频冰箱具有控温精确、制冷分立、多循环技术结合变频技术的独立控温、节能高效等优点。以海尔BCD-239DVC为例,介绍变频冰箱的制冷原理。 变频冰箱制冷系统组成: 图1是海尔变频冰箱制冷系统原理图。全系统由变频压缩机、冷凝器、过滤器、电磁阀、毛细管、蒸发器及控制器等构成。管路系统中,在能够反映制冷剂状态的关键部位设置了温度传感器,用以检测其温度。在制冷工作状态,制冷剂的工作流向如图2。

电冰箱的制冷系统(抽真空、充注制冷剂等)

§3.4电冰箱的制冷系统(抽真空、充注制冷剂等) 一、教学目标 1、掌握电冰箱制冷系统各部件的结构及作用。 2、掌握电冰箱制冷系统维修工具(双表修理阀、真空泵)的使用方法。 3、掌握电冰箱制冷系统抽真空、充注制冷剂的方法和操作。 二、工具器材 1、制冷压缩机 2、双表修理阀 3、真空泵 4、电冰箱模型 5、制冷剂R12 三、相关理论知识 1、制冷压缩机 (1)制冷压缩机的分类 压缩机主要类型有:活塞式、旋转式和涡旋式三种。根据压缩机和电动机连接方式的不同,活塞式制冷压缩机可分为开启式、半封闭式和全封闭式三种。电冰箱制冷系统使用的压缩机属于全封闭式压缩机。其中比较典型的是往复活塞式压缩机。往复活塞式压缩机又可分为连杆式、滑管式、电磁式三种。 (2)全封闭式压缩机的特点 压缩机与电动机共用一主轴,安装在利用弹簧悬吊的钢制机壳内,机壳采用焊接密封。从其外形看,封闭的外壳有三根铜管(即吸气管、排气管、工艺管)和一个电动机的电源接线盒(如图3.4-1所示)。 全封闭式压缩机与开启式、半封闭式压缩机相比,结构更紧凑,重量更轻,噪音更小,制冷剂不易泄漏,日常维护工作量很小,特别适用于家庭小型制冷装置。

图3.4-1全封闭式压缩机外形图(3)往复活塞式压缩机的内部结构简介 1) 机械部分 用专用工具打开压缩机顶盖,看见压缩机内部的机械部分,如图3.4-2所示。 图3.4-2压缩机内部的机械部分 2) 压缩机的电动机 小型压缩机的电动机大多是单相电动机,其绕组由启动绕组和运转绕组两部分构成,通常启动绕组较细、运转绕组较粗。共有3个引出线端子:R、S、C,如图3.4-3所示。

吸收式冰箱工作原理、特点

吸收式冰箱工作原理、特点 第一部分吸收式冰箱工作原理 第二部分吸收式冰箱与压缩机冰箱、半导体冰箱的比较优劣势、市场前景 吸收式冰箱采用先进的扩散吸收式技术,无压缩机,无氟利昂,绿色环保,无机械传动,使用寿命长;工作时无震动,无噪音;方便运输,不怕倾斜、倒置;全封闭设计,无须添加制冷剂;系统工作年限至少十年;外观精美、实用,其具有无氟、无噪音、无机械磨损、使用寿命长、多能源等特点。 吸收式冰箱与压缩式冰箱类似的地方在于都使用制冷剂循环系统,都使用到冷凝器-热交换管,把高温高压的制冷剂蒸汽冷凝成为高压常温的液体,并放出大量的热量;都使用到蒸发器,把液态制冷剂蒸发汽化为气体,吸收大量热量,实现冰箱内降温。两者最大的两个不同在于:压缩式冰箱通过压缩机利用机械能量把低温低压的制冷剂压缩成为高温高压的热蒸汽,而吸收式冰箱通常利用热源来蒸发制冷剂(扩散过程);另外吸收式冰箱除使用制冷剂之外还必须使用吸收剂(吸收过程);由于这两个基本不同产生诸多的特点不同。 第一部分吸收式冰箱制冷基本原理 1、吸收式冰箱制冷循环的基本组成: 吸收式制冷系统是由发生器、吸收器、冷凝器、蒸发器、溶液泵和节流器等组成。它的工质通常是由高沸点的吸收剂和低沸点的制冷剂混合组成的工质对。 2、吸收式制冷循环的工作过程 (1)利用工作热源(如水蒸气、热水及燃气等)在发生器中加热由溶液泵从吸收器输送来的具有一定浓度吸收剂与制冷剂的溶液,并使溶液中的大部分低沸点制 冷剂蒸发出来。 (2)制冷剂蒸气进入冷凝器中,又被冷却介质冷凝成制冷剂液体(释放热量),再经节流器降压到蒸发压力。 (3)制冷剂经节流进入蒸发器中,吸收被冷却系统(吸收式冰箱箱体内部)中的热量而激化成蒸发压力下的制冷剂蒸气。 (4)在发生器中经发生过程剩余的溶液(高沸点的吸收剂以及少量未蒸发的制冷剂)经吸收剂节流器降到蒸发压力进入吸收器中,与从蒸发器出来的低压制冷剂蒸 气相混合,并吸收低压制冷剂蒸气并恢复到原来的浓度。 (5)吸收过程往往是一个放热过程,故需在吸收器中用冷却水来冷却混合溶液。 在吸收器中恢复了浓度的溶液又经溶液泵升压后送入发生器中继续循环。

电冰箱的材料分析

电冰箱的材料分析 摘要:材料是设计的物质基础,任何产品功能目标的实现是通过可感知的材料等体现出来,设计的重要原则之一就是正确的掌握材料,赋予材料以生命。电冰箱是个完美的发明。在冰箱出现以前,我们一直在为食品存放时间一久就会变得不再新鲜甚至腐败而烦恼。20年代初期发明出来的电冰箱为人类解决了如何让视频储存的时间更久一点。电冰箱利用蒸发致冷或气化吸热的作用而达到制冷的目的。对于冰箱的作用人们充满了好奇,并对它所采用的材料作了分析与研究。进一步去发现如何正确的掌握材料,赋予材料以生命。 关键词:电冰箱材料设计生活高分子材料正文: 一、电冰箱的发展史20世纪以前,用冰箱保存食物是不可想象的,20世纪没有冰箱的生活是不可想象的。电冰箱与我们的生活息息相关。据了解,真正的电冰箱发明于20年代,1920年,纽约布鲁克林一家平板印刷厂的一位名叫威利斯·H.卡里尔的工程师,设计出一种能控制温度和湿度的系统。大约在第一次世界大战期间,出现了一些体积更小的家用冰箱,这是一种噪音大,易泄漏的新发明,实际上它只是在旧式“冰盒”壳内安装上电机和转动皮带,这使它的外貌看起来就像一种试验品。1923年,当弗雷基代尔还是美国通用汽车公司的分厂的时候,它引进了一种新的机械冰箱组件,并组装成电冰箱。弗雷基代尔电冰箱的设计是把储存易腐烂食品的“冰盒”和制冷机械部分装进一个特制的柜子。这种装置安静、方便,且结构紧凑。 至此,一种新的冰箱式样随着到处可见的商标名诞生了。 此后,随着生产数量剧增,冰箱价格暴跌。到1944年,约85%的美国家庭都有了机械冰箱。“冰盒”仅作为一个词汇流传下来。 电冰箱是中国最早实现国产化的制冷电器之一。特别是在我国90年代的无氟环保和90年代末至今的多元化新技术阶段是依靠无氟环保定位诉求和广告方面的重金投入来迅速扩大市场。例如,新飞冰箱。日耗电0.29度的新飞节能王冰箱成为市场新宠,刚一上市就受到各地消费者的追捧。它采用目前世界高效的、能效比COP值高达2.0的恩布拉科国际名牌压缩机;冰箱后背板采用航天材料真空绝热板,隔热效果较同等厚度的发泡层提高10倍;而其两侧面则采用达到95mm 的超厚发泡层、使隔热效果更佳;另外其独特的专利双门封结构,能够有效隔绝内外热交换,从而达到节能保鲜的目的;毛细管及制冷剂冲注量的优化保证了制冷系统的优化。这五大节能科技的应用使得“节能王”冰箱达到国际领先节能水平。 所以,新飞冰箱作为电冰箱的代表。我们针对于特性对它的部分材料展开了分析与研究。 二、电冰箱的材料分析电冰箱的原理是电冰箱利用蒸发致冷或气化吸热的作用而达到制冷的目的。 电冰箱的喉管内,装有一种商业上称为氟利昂,俗称雪种的致冷剂。常用的一种为二氟二氯甲烷(CCL2F2),是一种无色无臭无毒的气体,沸点为29℃。氟利昂在气体状态时,被压缩器加压。加压后,经喉管流到电冰箱背部的冷凝器,借散热片散热(物质被压缩后,温度就会升高)后,冷凝而成液体。液体的氟里昂进入蒸发器的活门之后,由于脱离了压缩器的压力,就立即化为蒸汽,同时向电冰箱内的空气和食物等吸取汽化潜热,引致冰箱内部冷却。汽化后的氟里昂又被压缩器压回箱外的冷凝器散热,再变为液体,如此循环不息,把冰箱内的热能泵到箱外。

冰箱制冷系统设计说明书

冰箱制冷系统设计说明书1.冰箱设计步骤

图1 BCD-348W/H电冰箱制冷系统图 2.冰箱的总体布置 2.1箱体设计要求及形式 电冰箱箱体设计的优劣,直接影响使用性能、外观、耐久性制造成本和市场销售。在进行设计时,要求造型别致、美观大方。除色调要与家庭家具协调外,还必须考虑占地面积小容积大,宽度、深度与高度的比例合理,有稳定感等。冰箱箱体尺寸见表1。 表1箱体尺寸 2.2箱体外表面温度校核和绝热层厚度 设计箱体的绝热层时,可预先参照国外冰箱的有关资料设定其厚度,并计算出箱体表面温度t w。如果箱体外表面温度t w低于露点温度t d,则会在箱体表面发生凝露现象,因此箱体表面温度必须高于露点温度,一般t w > t d+0.2 t o t i

)(i o o o W t t a K t t --= (1) 国家标准GB8059.1规定,电冰箱在进行凝露实验时 亚温带SN 、温带N 气候条件下,露点温度为19±0.5℃ 亚热带ST 、热带T 气候条件下,露点温度为27±0.5℃ 在t w > t d 的前提下,计算箱体的漏热量Q 1,并用下面的公式校验绝热层的厚度 121)(Q t t A w w -= λδ (2) 1w t ----冰箱外壁温度,℃ 2w t ----冰箱壁温度,℃ λ-----绝热层导热系数,w/(m.k) A -----传热面积,m 2 校验计算的厚度在设定厚度基础上进行修正,反复计算,直到合理为止。 3.冰箱热负荷计算 总热负荷Q=Q 1+Q 2+Q 3 Q 1---- 箱体的漏热量 Q 2---- 门封漏热量 Q 3---- 除露管漏热量 (1)箱体的漏热量Q 1 由于箱体外壳钢板很薄,而其导热系数很大,所以钢板热阻很小,可忽略不计。胆多用塑料ABS 成型,热阻较大,可将其厚度一起计入隔热层,箱体的传热可以看做单层平壁的传热。 )(1i o t t KA Q -= (3) (4) 其中:K —— 传热系数,W/m 2·℃; A —— 传热面积,m 2 ; t o ——箱体外空气温度,℃; t i ——箱体空气温度,℃ αo ——箱外空气对箱体外表面的表面换热系数,W/m 2·℃; αi ——箱体表面对箱空气的表面换热系数,W/m 2·℃; i o a a K 111++=λδ

冰箱空调制冷基本原理.

冰箱工作原理 我们知道任何物质在液化后都要放出热量,在气化时都要吸收热量,这是最普遍的物理现象。空调冰箱就是利用了这个道理,将制冷剂液化放出热量,然后再让他蒸发吸收热量。液化放出热量的位置和蒸发吸收热量的位置不能在一处,否则没有任何效果。因此空调就有了室外机,目的是散热和其它主要功能,冰箱则散热器在冰箱外部。 那么怎么能实现制冷剂液化-气化呢?我们知道,气体物质在它的临界温度下,当压力达到一定值的时候,就会液化。所谓的临界温度就是在这个温度之上,无论采用多高的压力都不能使他液化。当温度高于气体物质在某个压力下的沸点之上时就会发生气化,气化时吸收热量,吸收的热量从环境中获得,从而实现制冷。 用于上述实现制冷的气体物质就是制冷剂。作为制冷剂的物质通常常温下为气体,便于蒸发,而且临界温度不能太低,否则压缩时液化不容易。还要要求无毒,无异味儿。常见的制冷剂为氨、氟(这个字念服笨蛋才念佛呢里昂。 氟里昂实际上很多种物质的总称,是一种系列产品。那么他是什么物质呢?实际上就是卤代烷,常见的是卤代甲烷。例如一氟三氯甲烷、三氟一氯甲烷、二氟二氯甲烷等等。也就是甲烷的分子中的氢原子被氯和氟原子所取代,你可以自己组合出不同的物质。当然了,这种卤代烷一定要有氯原子和氟原子存在,不能全是氯也不能全是氟,而且烷烃中的氢原子全部被取代。倒不是说不存在这种物质,而是满足不了作为制冷剂的要求,例如四氯甲烷,常温下为液体,也就是四氯化碳,不能做制冷剂的。但是四氯化碳中的一个氯被氟取代,就可以做制冷剂。 制冷的过程是这样的: 首先压缩机将蒸发器来的气体制冷剂进行压缩,由于室温低于制冷剂的临界温度,当达到所需的压力后液化,液化时放出大量的热,这些热量通过散热管、散热片散发到空气中,也就是冰箱后面的散热管、空调室外机的风扇吹着的散热片。

3-电冰箱系统设计

3 冰箱制冷系统设计 冰箱制冷系统的设计基本思路和顺序是:先根据要求确定箱体尺寸,然后根据箱体尺寸确定热负荷,根据热负荷和其他发热元件可以确定冰箱的基本能耗,并依次确定压缩机,同时可以确定蒸发器和冷凝器两大主要传热设备,最后才是确定节流元件和制冷剂充注量。当然,计算设计不可能是很准确的,最后还需要通过试验和不断的调试来使系统运行达到最优化。 保温层设计 3.1.1 保温层设计方法 冰箱保温层厚度是设计的重点,关键是产品的成本与性能,而保温层的设计需要考虑的因素包括: ①不同的市场和不同的能耗要求; ②产品的不同风格和设计特点; . ③市场对发泡料的限制条件; ④产品成本的综合对比选择; ⑤产品的市场要求:全球性、区域性、特殊客户; ⑥产品的未来发展考虑。 冰箱保温层厚度是设计的重点,在设计中总会与不同部门发生冲突,当然要求的厚度越薄越好,这样成本低,容积大,但由于技术的能力有限制的,在能耗达到一定的水平时,厚度也不是可以薄到想要的程度,因此在厚度的设计方面存在选择是否合理的问题。 目前冰箱箱体都采用硬质聚氨脂整体发泡作绝热层,其绝热性能好,适于流水线大批量生产,发泡后的箱体内外壳被粘接成刚性整体,结构坚固,内外壳厚度可以适当降低,无须对箱体做防潮处理,年久也不会吸湿而使热导率增大。 电冰箱绝大多数为立式结构。箱体结构的发展过程,大致分为四个阶段:5 0年代以前主要是厚壁箱体(厚度为60~65mm);60年代是薄壁箱体(厚度30~3 5mm);70年代是薄壁双温双门;80年代以后世界上趋于采用中等壁厚箱体(厚度为40~45mm),并以箱背式冷凝器的三门三温或双门双温自然对流冷却(即直冷

冰箱的作用、部件及工作原理讲解

冰箱的作用、部件及工作原理讲解 超低温冰箱又称超低温保存箱、超低温冰柜、超低温保存箱等。比较常见的-60度上海亿倍低温冰箱可适用金枪鱼的保存、电子器件、特殊材料的低温试验及保存血浆、生物材料、疫苗、试剂等。还有-40度、-60度、-86度、-120度、-136度以及-160度、-192度的极度冷冻冰箱。 冰箱工作原理 在美国,几乎每家每户的厨房中都配有冰箱。每隔15分钟左右,您就会听到电机启动,它神奇地使所有物品保持低温。如果没有冰箱,我们只能丢弃剩菜,而无法将它们留到下顿吃。 冰箱是深刻改变了人类生活的现代奇迹之一。在人们发明冰箱之前,保存肉类的唯一方法是腌制,而在夏季喝到冰镇饮料更是一种奢望。 本文将说明冰箱如何实现这一奇迹。另外,我们还要了解休闲车中常见的冷包装、电子冷却器和丙烷冰箱。 冰箱的作用 冰箱的基本作用是使食物保持低温。低温有助于延长食品的保鲜时间。冷藏的基本原理是减少细菌(所有食品都含细菌)的活动,使细菌需要用更长的时间才能使食品变质。 比如,如果您把牛奶放在厨房的台面上,在室温下过两到三个小时后,牛奶会因细菌作用而变质。不过,如果降低牛奶的温度,可以保鲜一到两个星期。冰箱内的低温可减少细菌的活动,达到此保鲜效果。将牛奶冰冻可完全停止细菌活动,牛奶可保存几个月(直到冻灼等作用以非细菌方式使牛奶变质)。 冷藏和冰冻是如今最常用的两种食品保鲜方式。有关其他食品保鲜方法的更多信息,请参见食品保鲜的奥秘。 冰箱的部件 冰箱的基本原理很简单:冰箱利用液体蒸发吸收热量。您可能注意到皮肤沾上水会感觉凉爽。水在蒸发时,会吸收热量,使您感到清凉。擦拭酒精会感觉更凉爽,因为酒精的蒸发温度较低。冰箱中使用的液体(即制冷剂)会在极低的温度蒸发,使冰箱内部保持冰冻温度。如果您把冰箱的制冷剂放在皮肤上(这绝对不是个好主意),它在蒸发时会使皮肤冻伤。 所有冰箱(或空调系统)都由五个基本部件组成:

冰箱冷藏室温度智能控制系统

- . - 目录 摘要 (1) 1 引言 (1) 2 设计思路 (2) 2.1 设计任务 (2) 2.2 设计的理论基础 (2) 2.3 冰箱的系统组成 (2) 2.3.1 蒸汽式压缩机电冰箱 (2) 2.3.2 直冷式电冰箱 (3) 2.4 总体设计方案选择 (3) 2.5 方案总体介绍 (4) 3 硬件系统设计 (4) 3.1 系统总体结构 (4) 3.2 温度采集模块 (5) 3.2.1 温度采集模块的选择 (5) 3.2.2 DS18B20测温电路 (6) 3.2.3 测量数据的比较 (7) 3.3 单片机系统及液晶模块 (7) 3.3.1 微处理器(单片机) (7) 3.3.2 显示电路的设计 (8) 3.4 输出控制模块 (9) 4 软件设计 (9) 4.1 主程序流程框图 (10) 4.2 DS18B20工作的流程图 (12) 5 调试与实验 (12) 5.1 使用说明 (12) 5.1.1 Keil单片机模拟仿真 (12) 5.2 功能测试 (14) 5.2.1 温度测量分辨率 (14) 5.3 晶振的选择 (14) 附录1 硬件原理图 (15)

冰箱冷藏室温度智能控制系统 摘要:本智能温度控制主要由温度采集模块、液晶显示模块、单片机智能控制模块和输出控制模块组成。此次设计相比于传统的冰箱温度控制器,温度信号更加精确,利用单片机控制冷藏室温度在1℃~5℃之间,当温度低于1℃,继电器不工作;当温度高于5℃,继电器开始工作,并且利用液晶显示冷藏室温度的变化。 关键词:温度采集;液晶显示;温度控制 1 引言 随着集成电路的发展,单片机的功能也越发的多样。单片机因为他本是的诸多优点,比如功能强、体积小、可靠性高、开发的周期短,成为各种检测控制方面被广泛应用的元器件,在电子工业生产中变为不可缺少的存在,特别是在我们日常的生活生产中也发挥了很多的作用[1]。而在日常生活中,冰箱已经成了家庭生活中不可缺少的一部分,就此对于冰箱的性能要求也越来越高。在这其中冰箱的智能温度控制是现今市场上冰箱重要选择。 现在市面上的冰箱大多都包含着两部分,分别是冷藏室和冷冻室。其中冷藏室用于冷藏食物,要求有一定的保鲜作用,不可冻伤食物;冷冻室一般用于对食物的冷冻作用。 现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通用技术)和信息处理(计算机技术)。目前信息技术中前端的产品就是传感器,而其中被广泛应用在工业生产、科学研究方面的传感器就是温度传感器,在这些领域中温度传感器的应用是位于各种传感器的第一位[2]。 智能温度传感器最早是出现在20世纪90年代的中期,在其内部就应用了A/D转换器,但他测量的温度X围比较低,而且也只有1℃的分辨率。到了21世纪以后,智能温度传感器正在迅速的朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向发展[3]。 传统电冰箱的温度一般是由冷藏室控制。冷藏室、冷冻室之间不同的温度是通过调节蒸发器在两室的面积大小来实现的,温度的调节完全是依靠压缩机的开停来控制。但是影响冰箱内部温度的因素有很多种:如放到冰箱内的食物

制冷循环压焓图分析和制冷剂流程图

第二章制冷循环压焓图分析和制冷剂流程图 Copy Right By: Thomas T.S. Wan ( ) Sept. 3, 2009 All Rights Reserved 工业冷冻系统设计从制冷循环压焓(P-H)图分析和制冷剂流程图开始: (1)制冷循环P-H图分析 (P-H Diagram Refrigeration Cycle Analysis)。 使用PH图计算制冷系统的热力学物性可以分析制冷循环的可行性。通过PH图分析,可以很清楚的确定系统设计点的制冷剂流量和运行工况。 (2)制冷剂流程图 (Refrigerant Flow Diagram) 制冷剂流程图给出了系统所用设备,设备间管道走向和尺寸,保温要求;还确定了压降、吸气过热度等等。制冷剂流程图可能非常简易,如果有必要也可以推广到工艺仪表流程图中(P&I D)。 制冷剂流程图是要与P-H图一起阅读。从制冷剂流程图和PH图中可以获悉完整的系统信息。P-H (Pressure-Enthalpy)图分析: R22典型PH(压焓)图如图2-1所示。利用P-H 图可以表达理论制冷循环,如图2-2所示。图2-3为制冷循环图2- 2简化版,但是只体现了与理论制冷循环相关的数据,省略了纵坐标(压力)和横坐标(比焓)。与循环相关的压力和比焓值如PH图所示。 蒸发器- A-B-C对应蒸发温度,B点与C点比焓差为单位质量制冷量。 压缩机- C-D为等熵压缩过程。压缩过程比焓差为H D-H C。压缩过程(绝热过程)也可以用英尺表示为(H D- H C)×778。对于实际压缩,不再遵循绝热过程,而是多变过程,如图2-3中C-D’所示。 冷凝- 冷凝(放热)过程为D-E(实际过程为D’-E)。冷凝器总放热量等于蒸发器吸热量与系统输入功率之和。

相关主题
文本预览
相关文档 最新文档