高考化学二轮复习 专题十九 化学平衡及其计算(含解析)
- 格式:doc
- 大小:522.00 KB
- 文档页数:15
【知识精讲】1.化学平衡常数(1)平衡常数只与温度有关,与反应物或生成物的浓度、反应速率无关,但与转化率有关。
反应物或生成物中有固体或纯液体时,由于其浓度可看作“1”而不代入平衡常数公式。
(2)化学平衡常数是指在一定温度下,某一具体的可逆反应的平衡常数。
若反应方向改变,则平衡常数也改变;若化学方程式中各物质的化学计量数等倍扩大或缩小,尽管是同一反应,平衡常数也改变。
(3)平衡常数越大,反应向右进行的程度越大。
化学平衡常数与转化率紧密相联。
定性来讲,K值越大,反应物的转化率越大,反应进行的程度越大;定量来讲,转化率的计算离不开化学平衡常数,可以通过平衡常数表达式求得平衡时物质的物质的量浓度,从而求得转化率。
(4)浓度商Q与平衡常数K的关系:①Q>K,反应向逆反应方向进行;②Q=K,反应处于平衡状态;③Q<K,反应向正反应方向进行。
2.有关化学反应速率及平衡的计算,如果不能一步得出答案,一般可用“三部曲”(始态、反应、终态)进行求解,但应该注意:(1)参加反应消耗或生成的各物质的浓度比一定等于化学方程式中对应物质的化学计量数之比,由于始态时,是人为控制的,故不同物质的始态、终态各物质的量的比值不一定等于化学方程式中的化学计量数之比;若反应物始态时各反应物的浓度成计量数比,则各反应物的转化率相等,且终态时,反应物的浓度也成计量数比。
(2)始态、反应、终态中的物理量要统一,要么都用物质的量,要么都用物质的量浓度,要么都用气体的体积。
(3)计算化学平衡常数时,一定要运用各物质的“平衡浓度”来计算,且勿利用各物质的“物质的量”或“非平衡时的浓度”进行计算。
(4)平衡常数的表达式与方程式的书写形式有关,对于同一个反应,当化学方程式中的计量数发生变化时,平衡常数的数值及单位均发生变化,当方程式逆写时,平衡常数是原平衡常数的倒数。
【经典例析】例1. (1) 在一定体积的密闭容器中,进行如下化学反应:CO2(g)+H2(g) CO(g)+H2O(g)其化学平衡常数K和温度T的关系如下表:T/℃ 700 800 830 1000 1200K 0.6 0.9 1.0 1.7 2.6①该反应的化学平衡常数表达式为K= 。
高三化学化学平衡试题答案及解析1. 在温度和容积不变的密闭容器中,A 气体与B 气体反应生成C 气体。
反应过程中,反应物与生成物的浓度随时间变化的曲线如下图,则下列叙述正确的是A .该反应的化学方程式为A+3B 2C B .在t l s 时,v (A )正=0C .(t 1+l0)s 时再充入0.4 molA 和0.25 mol B ,反应物A 的转化率增大D .若该反应在绝热容器中进行,也在t l 时刻达到平衡 【答案】C【解析】 A.根据反应方程式可知在相同的时间内,A 减少0.6mol/L ;B 减少0.2mol/L;C 增加0.4mol/L ,最终各种物质都存在处于平衡状态,因此该反应的化学方程式为3A+B 2C ,错误;B .在t l s 时,反应处于平衡状态,各种物质的正反应速率与逆反应速率相等但是都大于0,错误;C .(t 1+l0)s 时再充入0.4 molA 和0.25 mol B ,即增大了压强,平衡正向移动,所以反应物A 的转化率增大,正确;D .任何反应都伴随着能量变化,因此若该反应在绝热容器中进行,该反应在达到平衡的时间可能比t l 时刻早,也可能晚,错误。
【考点】考查化学反应方程式的书写及外界条件对化学反应速率、物质的转化率及平衡的影响的知识。
2. 已知NO 2与N 2O 4相互转化:2NO 2(g )N 2O 4(g );△H=-24.4kJ/mol 在恒温下,将一定量NO 2和N 2O 4(g )的混合气体充入体积为2L 的密闭容器中,其中物质的量浓度随时间变化的关系如下图。
下列推理分析合理的是( )A .前10min 内,用v (NO 2)表示的该反应速率为0.02mol/(L·min )B .反应进行到10min 时,体系吸收的热量为9.76kJC .a ,b ,c ,d 四点中v 正与v 逆均相等D .25min 时,导致平衡移动的原因是升温【答案】B【解析】A 、由图可知相同时间内,b 物质的浓度变化是a 物质浓度变化的2倍,所以b 是二氧化氮,a 是四氧化二氮,前10min 内,用v (NO 2)表示的该反应速率为(0.6-0.2)mol/L/10min=0.04mol/(L·min ),错误;B 、该反应是N 2O 4(g )2NO 2(g )△H=+24.4kJ/mol ,反应进行到10min 时,消耗的四氧化二氮的物质的量是(0.6-0.4)mol/L×2L=0.4mol ,所以体系吸收的热量是24.4kJ/mol×0.4mol=9.76kJ ,正确; C 、a 点时反应未达平衡,所以v 正>v 逆,c 点时v 正<v 逆,只有b 、d 两点表示平衡状态,正逆反应速率相等,错误;D 、25min 时,四氧化二氮的速率为改变,而二氧化氮的速率增大,所以导致平衡逆向移动的原因是增大二氧化氮的浓度,不是升温,错误,答案选B 。
高中化学化学平衡知识点及例题一、化学平衡的概念在一定条件下的可逆反应里,正反应和逆反应的速率相等,反应混合物中各组分的浓度保持不变的状态,叫做化学平衡状态。
要理解化学平衡,需要注意以下几点:1、前提是“一定条件下的可逆反应”,如果反应不可逆,就不存在化学平衡。
2、正反应和逆反应速率相等,这是化学平衡的实质。
3、各组分的浓度保持不变,而不是浓度相等。
二、化学平衡的特征1、逆:研究的对象是可逆反应。
2、等:正反应速率等于逆反应速率。
3、动:化学平衡是动态平衡,反应仍在进行,只是正、逆反应速率相等。
4、定:平衡混合物中各组分的浓度保持一定。
5、变:当外界条件改变时,化学平衡可能会被破坏,在新的条件下建立新的平衡。
三、化学平衡状态的判断判断一个可逆反应是否达到化学平衡状态,可以从以下几个方面入手:1、正逆反应速率相等(1)同一物质:消耗速率等于生成速率。
(2)不同物质:速率之比等于化学计量数之比,且方向相反。
例如,对于反应 2A + B ⇌ 3C,若 v(A)正= 2v(B)逆,则达到平衡状态。
2、各组分的浓度保持不变(1)物质的量、物质的量浓度、质量分数、体积分数等不再变化。
(2)对于有颜色的物质,颜色不再改变。
3、其他间接判断依据(1)体系的压强不再改变(对于反应前后气体体积变化的反应)。
(2)体系的温度不再改变(绝热容器中)。
(3)气体的平均相对分子质量不再改变(对于反应前后气体物质的量变化的反应)。
四、影响化学平衡的因素1、浓度(1)增大反应物浓度或减小生成物浓度,平衡向正反应方向移动。
(2)减小反应物浓度或增大生成物浓度,平衡向逆反应方向移动。
例如,对于反应 A + B ⇌ C,增大 A 的浓度,平衡正向移动,B 的转化率增大,A 的转化率减小。
2、压强(1)对于有气体参加且反应前后气体体积发生变化的反应:增大压强,平衡向气体体积减小的方向移动。
减小压强,平衡向气体体积增大的方向移动。
(2)对于反应前后气体体积不变的反应,改变压强平衡不移动。
目夺市安危阳光实验学校课时跟踪检测(二十九)化学平衡状态化学平衡移动1.在1 L定容的密闭容器中,可以证明可逆反应N2+3H 22NH3已达到平衡状态的是( )A.c(N2)∶c(H2)∶c(NH3)=1∶3∶2B.1个N≡N断裂的同时,有3个H—H生成C.其他条件不变时,混合气体的密度不再改变D.v正(N2)=2v逆(NH3)解析:选B c(N2)∶c(H2)∶c(NH3)=1∶3∶2,等于化学方程式中各物质的计量数之比,但不能说明各物质的浓度不变,不一定为平衡状态,A错误;1个N≡N断裂的同时,有3个H—H生成,说明正、逆反应速率相等,反应达到了平衡,B正确;混合气体的密度ρ=mV,质量在反应前后是守恒的,体积不变,密度始终不变,所以密度不变的状态不一定是平衡状态,C错误;v正(N2)=2v逆(NH3)时,正、逆反应速率不相等,未达到平衡状态,D错误。
2.对于可逆反应:A(g)+B(s)C(s)+D(g) ΔH>0。
如图所示为正、逆反应速率(v)与时间(t)关系的示意图,如果在t1时刻改变条件:①加入A;②加入催化剂;③加压;④升温;⑤减少C,符合图示条件的是( )A.②③B.①②C.③④ D.④⑤解析:选A 加入A,因为A为气体,因此加入A平衡向正反应方向移动,v正>v逆,故①错误;催化剂对化学平衡无影响,只加快反应速率,故②正确;反应前后气体分子数相等,因此加压平衡不移动,化学反应速率增大,故③正确;升高温度,反应速率加快,平衡向正反应方向移动,故④错误;C为固体,浓度视为常数,对化学平衡移动无影响,对化学反应速率无影响,故⑤错误。
3.(2020·黑龙江四校联考)将等物质的量的X、Y气体充入一个密闭容器中,在一定条件下发生如下反应并达到平衡:X(g)+Y(g)2Z(g) ΔH<0。
当改变某个条件并达到新平衡后,下列叙述正确的是( )A.升高温度,X的体积分数减小B.增大压强(缩小容器容积),Z的浓度不变C.保持容器的容积不变,充入一定量的氦气,Y的浓度不变D.保持容器的容积不变,充入一定量的Z,X的体积分数增大解析:选C 该反应的ΔH<0,升高温度,平衡逆向移动,X的体积分数增大,A错误;该反应的正反应是反应前后气体总分子数不变的反应,增大压强,平衡不移动,由于容器的容积缩小,故Z的浓度增大,B错误;保持容器的容积不变,充入一定量的氦气,反应混合物的浓度不变,平衡不移动,C正确;保持容器的容积不变,充入一定量的Z,相当于保持其物质的量不变,缩小容器的容积,而缩小容积,平衡不移动,X的体积分数不变,D错误。
高三化学二轮-----------化学反应速率化学平衡考点内容:1、了解化学反应速度的概念,反应速度的表示方法,外界条件(浓度、温度、压强、催化剂等)对反应速度的影响。
2、了解化学反应的可逆性,理解化平学平衡的涵义。
掌握化学平衡与反应速度之间的内在联系。
3、理解勒沙特原理的涵义,掌握浓度、温度、压强等条件对化学平衡移动的影响。
4、本章命题以上述知识的综合应用和解决生产生活中的实际问题为主,考查学生运用知识的能力。
考点一:化学反应速率与化学反应速率的影响因素. 化学反应速率的概念及表示方法:通过计算式:v =Δc /Δt来理解其概念:①在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的。
但这些数值所表示的都是同一个反应速率。
因此,表示反应速率时,必须说明用哪种物质作为标准。
用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比。
②一般来说,化学反应速率随反应进行而逐渐减慢。
因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率。
⑵. 影响化学反应速率的因素:I. 决定因素(内因):反应物本身的性质。
Ⅱ. 条件因素(外因)(也是我们研究的对象):①浓度:其他条件不变时,增大反应物的浓度,可以增大活化分子总数,从而加快化学反应速率。
值得注意的是,固态物质和纯液态物质的浓度可视为常数;②压强:对于气体而言,压缩气体体积,可以增大浓度,从而使化学反应速率加快。
值得注意的是,如果增大气体压强时,不能改变反应气体的浓度,则不影响化学反应速率。
③温度:其他条件不变时,升高温度,能提高反应分子的能量,增加活化分子百分数,从而加快化学反应速率。
④催化剂:使用催化剂能等同地改变可逆反应的正、逆化学反应速率。
⑤其他因素。
如固体反应物的表面积(颗粒大小)、光、不同溶剂、超声波等。
【例1】可逆反应A(g)+ 4B(g)C(g)+ D(g),在四种不同情况下的反应速率如下,其中反应进行得最快的是()A. v A==0.15mol/(L·min)B. v B==0.6 mol/(L·min)C. v C==0.4 mol/(L·min)D.v D==0.01 mol/(L·s)[例2]某温度时,在2 L容器中X、Y、Z三种物质的量随时间的变化曲线如图所示。
化学反应速率和化学平衡1.某化工厂生产硝酸的流程如图l所示;其他条件相同时,装置③中催化剂铂网的成分、温度与氧化率的关系如图2所示。
下列说法不正确的是A.该流程中,装置①③④中发生了氧化还原反应B.装置②中利用氨易液化的性质实现反应物和生成物的分离C.装置③中最佳反应条件是铂网成分为纯铂、温度为900℃D.装置④中通入过量空气可以提高硝酸的产率2.将浓度均为0.01 mol/L的H2O2、H2SO4、KI、Na2S2O3溶液及淀粉混合,一定时间后溶液变为蓝色。
该实验是一种“碘钟实验”。
某小组同学在室温下对该“碘钟实验”的原理进行探究。
(资料)该“碘钟实验”的总反应:H2O2+2S2O32-+2H+=S4O62-+2H2O反应分两步进行:反应A:H2O2+2I-+2H+=I2+2H2O反应B:……(1)反应B的离子方程式是______。
对于总反应,I-的作用相当于_____。
(2)为证明反应A、B的存在,进行实验Ⅰ。
A.向酸化的H2O2溶液中加入试剂X的水溶液,溶液变为蓝色B.再向得到的蓝色溶液中加入Na2S2O3溶液,溶液的蓝色褪去。
试剂X是_____。
(3)为探究溶液变蓝快慢的影响因素,进行实验Ⅱ、实验Ⅲ。
(溶液浓度均为0.01 mol/L)溶液从混合时的无色变为蓝色的时间:实验Ⅱ是30 min、实验Ⅲ是40 min。
①实验Ⅲ中,x、y、z所对应的数值分别是_____、_____、_____。
②对比实验Ⅱ、实验Ⅲ,可得出的实验结论是_____。
(4)为探究其他因素对该“碘钟实验”的影响,进行实验Ⅳ。
(溶液浓度均为0.01 mol/L)实验过程中,溶液始终无明显颜色变化。
试结合该“碘钟实验”总反应方程式及反应A与反应B速率的相对快慢关系,解释实验Ⅳ未产生颜色变化的原因:______。
3.氮、磷及其化合物在生产、生活中有重要的用途。
回答下列问题:Ⅰ.(1)氮的固定是几百年来科学家一直研究的课题。
下表列举了不同温度下大气固氮和工业固氮的部分K值。
高考化学化学平衡知识点总结与题型练习2024一、化学平衡概述化学平衡是指在封闭系统中,各物质的摩尔数处于动态平衡的状态。
在这种状态下,正向反应和逆向反应的速率相等,且各物质的浓度保持不变。
二、化学平衡的条件1. 封闭系统:化学反应发生在封闭的反应容器中,不受外界影响。
2. 反应物浓度:反应物的浓度要足够高,以保证反应能够进行。
当反应物浓度过低时,反应会偏向生成物的一侧。
3. 反应温度:温度的变化会影响反应的平衡位置。
根据Le Chatelier 原理,提高反应温度会使平衡位置偏向反应物的一侧,降低反应温度则使平衡位置偏向生成物的一侧。
4. 压力:对于气相反应而言,压力变化也可以影响平衡位置。
增加压力会偏向摩尔数较少的一侧,减小压力则会偏向摩尔数较多的一侧。
三、化学平衡的表达式化学反应达到平衡时,可以根据反应物与生成物的摩尔比例,得到化学平衡的表达式。
一般形式为:aA + bB ↔ cC + dD,其中a、b、c、d分别表示反应物与生成物的摩尔系数。
四、平衡常数1. 平衡常数的定义:对于化学平衡表达式aA + bB ↔ c C + dD,定义平衡常数Kc为平衡时各物质摩尔浓度的乘积商的比值,即Kc =[C]^c[D]^d / [A]^a[B]^b,方括号表示浓度。
2. 平衡常数的大小:平衡常数表示正向反应与逆向反应在平衡状态下的相对强度。
当Kc > 1时,平衡偏向生成物的一侧;当Kc < 1时,平衡偏向反应物的一侧;当Kc = 1时,反应物和生成物的浓度相等。
3. 改变平衡常数:平衡常数受温度的影响,温度升高或降低都会改变平衡常数的值。
五、平衡常数与反应系数的关系平衡常数与反应系数之间存在着一定的关系。
对于化学平衡表达式aA + bB ↔ cC + dD,平衡常数Kc = ([C]^c[D]^d) / ([A]^a[B]^b)。
当反应方程式中的系数发生改变时,平衡常数也会相应发生变化。
化学反应速率和化学平衡1.近日,北京航空航天大学教授团队与中科院高能物理研究所合作,合成了Y、Sc(Y1/NC,Sc1/NC)单原子催化剂,用于常温常压下的电化学催化氢气还原氮气的反应。
反应历程与相对能量模拟计算结果如图所示(*表示稀土单原子催化剂)。
下列说法正确的是( )A.相同条件下,两种催化反应的焓变不同B.实际生产中将催化剂的尺寸处理成纳米级颗粒可提高氨气的平衡转化率C.使用Sc1/NC单原子催化剂的反应历程中,最大能垒的反应过程可表示为*N2+H→*NNHD.升高温度一定可以提高氨气单位时间内的产率〖〖答案〗〗C〖〖解析〗〗A项,根据盖斯定律,焓变只与反应物的总能量和生成物的总能量的相对大小,与反应途径无关,催化剂只改变反应历程,不改变反应的焓变,相同条件下,两种催化反应的焓变相同,A错误;B项,催化剂只能改变反应速率,不能影响化学平衡移动,故实际生产中将催化剂的尺寸处理成纳米级颗粒不能提高氨气的平衡转化率,B错误;C项,从图中可以看出,使用Sc1/NC单原子催化剂的反应历程中,最大能垒的反应过程可表示为*N2+H→*NNH,C 正确;D项,从图中可知,合成氨的反应为放热反应,升高温度平衡逆向移动,且温度越高,催化剂吸附N2更困难,故升高温度虽然可以加快反应速率,但不一定可以提高氨气单位时间内的产率,D错误;故选C。
2.我国有世界储量第一的天然石膏(主要成分CaSO4),同时也有大量磷酸工业副产品石膏,可用于硫酸及水泥的联合生产。
硫酸钙在高温下被CO还原,发生的反应有:I.CaSO4(s)+4CO(g) CaS(s)+4CO2(g) K1II.CaSO4(s)+CO(g) CaO(s)+SO2(g)+CO2(g) K2III.3CaSO4(s)+CaS(s) 4CaO(s)+4SO2(g) K3上述反应的平衡常数的对数值(lg K)与温度(T)的关系如图所示。
下列说法错误的是( )A.反应II的ΔH>0B.lg K3=4lg K2−lg K1C.使用适当的催化剂能够加快反应速率,提高原料的平衡转化率D.调控适当的温度可以抑制反应I促进反应III而得到较纯净的CaO〖〖答案〗〗C〖〖解析〗〗A项,lg K越大,K越大,根据图像显示,反应II升高温度lg K 增大,反应II的K值增大,说明平衡正向移动,则正反应吸热反应,ΔH>0,故A正确;B项,利用盖斯定律,将反应Ⅱ×4−反应Ⅰ得反应Ⅲ,以此可得焓变ΔH 3=4ΔH 2−ΔH 1,由反应转化平衡常数时,化学计量数扩大n 倍,新平衡常数是原来的n 次方幂,两方程式相减,新平衡常数为两者之商,两方程式相加则为两者之积,则平衡常数K 3=421K K ,则lg K 3= lg 421K K =4lg K 2−lg K 1,故B 正确;C 项,使用适当的催化剂能够加快反应速率,但不影响平衡移动,则不能提高原料的平衡转化率,故C 错误;D 项,lg K 越大,K 越大,根据图像,反应I 升高温度,lg K 减小,说明平衡逆向移动,反应I 被抑制,反应III 升高温度,lg K 增大,说明平衡正向移动,反应III 被促进,则调控适当的温度可以抑制反应I 促进反应III 而得到较纯净的CaO ,故D 正确;故选C 。
高考化学真题详解化学平衡化学平衡是高考化学中的一个重要知识点,也是一个相对复杂的概念。
在高考中,化学平衡相关的题目也是出现频率较高的题型。
本文将详细解析高考化学真题中关于化学平衡的问题,并提供解题思路与方法,帮助考生们更好地理解和掌握这一知识点。
1. 题目一:(这里插入真题题目)首先,我们需要明确化学平衡的基本概念。
化学平衡是指在封闭系统中,化学反应达到一个动态平衡的状态,反应物和生成物的浓度保持不变。
在化学平衡下,正向反应和逆向反应同时进行,且速率相等,而并非完全停止。
接下来,我们可以分析这道题目的具体要求和信息。
首先,题目中可能会给出反应方程式,我们需要根据反应方程式来确定反应物和生成物的物质以及物质的状态。
同时,我们还需要关注题目中给出的其他条件,例如温度、压力、浓度等。
这些条件对于反应的平衡位置、平衡常数等都有一定的影响。
在解析题目时,我们可以根据化学平衡的几个基本原则进行思考。
首先是Le Chatelier原理,该原理指出当外界条件发生改变时,平衡系统会通过调整反应物和生成物的物质浓度来维持平衡。
其次是平衡常数的计算与判断,平衡常数描述了化学反应达到平衡时反应物和生成物浓度之间的关系。
根据平衡常数的值大小,我们可以判断反应到哪一个方向更倾向于进行。
对于解题方法,我们可以采用逐步推导的方式。
首先,根据反应方程式和已知条件,列出平衡式。
然后,根据平衡常数和已知条件,进行反应的定量计算。
最后,根据Le Chatelier原理,分析如何改变外界条件以使反应偏向某一方向。
解析完一道题目后,我们可以总结其中的考点和解题技巧,并进行思考和讨论。
这样有助于加深对化学平衡知识点的理解,并提高解题能力。
2. 题目二:(这里插入真题题目)针对不同类型的题目,我们需要注意考点和解题技巧的差异。
例如,在涉及酸碱中和反应的化学平衡题目中,需要特别关注酸碱反应的特点以及酸碱性质对平衡的影响。
在涉及气体反应的平衡题目中,需要注意气体的分压与活度的计算,以及压力对平衡常数的影响等。
化学实验基础主要考查化学基础实验仪器的使用方法和操作注意事项及化学实验装置、原理、现象等知识。
1.【2019年上海卷】用镁带和稀硫酸反应产生氢气来测定氢气的气体摩尔体积,所用的步骤有①冷却至室温,②调节使水准管和量气管液面持平,③读数。
正确的顺序是()A .①②③B .①③②C .③①②D .③②①2.【2019年海南卷】实验室通过称量42MgSO xH O 样品受热脱水前后的质量来测定x 值,下列情况会导致测定值偏低的是()A .实验前试样未经干燥B .试样中含有少量碳酸氢铵C .试样中含有少量氯化钠D .加热过程中有试样迸溅出来3.【2019年江苏卷】下列实验操作能达到实验目的的是()A .用经水湿润的pH 试纸测量溶液的pHB .将4.0g NaOH 固体置于100mL 容量瓶中,加水至刻度,配制1.000mol·L −1NaOH 溶液C .用装置甲蒸干AlCl 3溶液制无水AlCl 3固体D .用装置乙除去实验室所制乙烯中的少量SO 24.【2019年北京卷】探究草酸(H 2C 2O 4)性质,进行如下实验。
(已知:室温下,0.1mol·L −1 H 2C 2O 4的pH=1.3)考点说明考点透视由上述实验所得草酸性质所对应的方程式不正确的是()A.H2C2O4有酸性,Ca(OH)2+H2C2O4=CaC2O4↓+2H2OB.酸性:H2C2O4> H2CO3,NaHCO3+H2C2O4=NaHC2O4+CO2↑+H2OC.H2C2O4具有还原性,24MnO-+5224C O-+16H+=2Mn2++10CO2↑+8H2OD.H2C2O4可发生酯化反应,HOOCCOOH+2C2H5OH C2H5OOCCOOC2H5+2H2O5.【2019年天津卷】下列实验操作或装置能达到目的的是()6.【2019年全国卷1】实验室制备溴苯的反应装置如下图所示,关于实验操作或叙述错误的是()A.向圆底烧瓶中滴加苯和溴的混合液前需先打开KB.实验中装置b中的液体逐渐变为浅红色C.装置c中的碳酸钠溶液的作用是吸收溴化氢D.反应后的混合液经稀碱溶液洗涤、结晶,得到溴苯考点突破1.明代《造强水法》记载“绿钒五斤,硝五斤,将矾炒去,约折五分之一,将二味同研细,锅下起火,取气冷定,开坛则药化为水。
化学平衡常数及计算、等效平衡知识归纳化学平衡常数1、概念:在一定温度下,一个可逆反应达到化学平衡时,生成物浓度幂之积与生成物浓度幂之积的比值是一个常数,用符号K表示。
2、表达式:对于一般的可逆反应:mA(g)+nB(g)pC(g)+qD(g),在一定温度下达到平衡时:3、意义(1)(2)化学平衡常数是指某一具体反应方程式的平衡常数。
①若反应方向改变,则平衡常数改变。
②若方程式中各物质的计量数等倍扩大或缩小,尽管是同一反应,平衡常数也会改变。
等效平衡及其应用在相同条件下(定温、定容或定温、定压),同一可逆反应体系,不管是从正反应开始,还是从逆反应开始,只要按化学计量数之比投入反应物或生成物,在达到化学平衡状态时,所建立起来的化学平衡状态都是相同的,这样的化学平衡互称为等效平衡。
1、等效平衡的标志我们所说的“等效平衡”与“完全相同的平衡状态”不同;“完全相同的平衡状态”在达到平衡状态时,任何组分的物质的量分数(或体积分数)对应相等,并且反应的速率等也相同;而“等效平衡”只要求平衡混合物中各组分的物质的量分数(或体积分数)对应相同,反应的速率、压强等可以不同。
2、等效平衡的分类在等效平衡中比较常见并且重要的类型主要有以下几种:(1)定温、定容条件下的等效平衡:①化学反应前后气体分子数改变的等效平衡。
②化学反应前后气体分子数不变的等效平衡。
(2)定温、定压条件下的等效平衡。
化学平衡相关的计算1、分析三个量:即起始量、变化量、平衡量。
2、明确三个关系:(1)对于同一反应物,起始量-变化量=平衡量。
(2)对于同一生成物,起始量+变化量=平衡量。
(3)各转化量之比等于各反应物的化学计量数之比。
3、计算方法:三段式法化学平衡计算模式:对以下反应:m A(g)+n B(g) p C(g)+q D(g),令A、B起始物质的量(mol)分别为a、b,达到平衡后,A的消耗量为mx,容器容积为V L。
m A(g) +n B(g) p C(g)+q D(g)起始(mol) a b0 0变化(mol) mx nx px qx平衡(mol) a-mx b-nx px qx化学平衡常数的理解和应用1、化学平衡常数表达式(1)能代入平衡常数表达式的气体、溶液中的溶质,固体与纯液体浓度可看为常数,不能代入。
高考化学复习 化学平衡常数及其计算1.随着汽车数量的逐年增多,汽车尾气污染已成为突出的环境问题之一。
反应:2NO(g)+2CO(g)2CO 2(g)+N 2(g)可用于净化汽车尾气,已知该反应速率极慢,570 K 时平衡常数为1×1059。
下列说法正确的是( )A .提高尾气净化效率的最佳途径是研制高效催化剂B .提高尾气净化效率的常用方法是升高温度C .装有尾气净化装置的汽车排出的气体中不再含有NO 或COD .570 K 时,及时抽走CO 2、N 2,平衡常数将会增大,尾气净化效率更佳解析:提高尾气净化效率的最佳途径是研制高效催化剂,加快反应速率,A 正确,B 错误;题中反应为可逆反应,装有尾气净化装置的汽车排出的气体中仍然含有NO 或CO ,C 错误;改变浓度对平衡常数无影响,平衡常数只与温度有关,D 错误。
答案:A2.在淀粉KI 溶液中存在下列平衡:I 2(aq)+I -(aq)I -3(aq)。
测得不同温度下该反应的平衡常数K 如表所示。
下列说法正确的是( )t /℃ 5 15 25 35 50 K1 100841689533409A.反应I 2(aq)+I -(aq)I -3(aq)的ΔH >0B .其他条件不变,升高温度,溶液中c (I -3)减小C .该反应的平衡常数表达式为K =c (I 2)·c (I -)c (I -3)D .25 ℃时,向溶液中加入少量KI 固体,平衡常数K 小于689解析:A 项,温度升高,平衡常数减小,因此该反应是放热反应,ΔH <0,错误;B 项,温度升高,平衡逆向移动,c (I -3)减小,正确;C 项,K =c (I -3)c (I 2)· c (I -),错误;D 项,平衡常数仅与温度有关,25 ℃时,向溶液中加入少量KI 固体,平衡正向移动,但平衡常数不变,仍然是689,错误。
答案:B3.(2019·深圳质检)对反应:a A(g)+b B(g)c C(g)+d D(g) ΔH ,反应特点与对应的图象的说法不正确的是( )A.图①中,若P1>P2,则该反应在较低温度下有利于自发进行B.图②中,若T2>T1,则ΔH<0 且a+b=c+dC.图③中t1时刻改变的条件一定是使用了催化剂D.图④中,若ΔH<0,则纵坐标不可能表示的是反应物的转化率解析:A项,由分析图①可知,温度升高,A%增大,说明平衡逆移动,则正反应为放热反应,若P1>P2,P1时A%低于P2,压强增大,平衡正向移动,则反应前气体分子数小于反应后气体分子数,ΔS<0,则该反应在较低温度下有利于自发进行,正确;B项,图②中,压强增大,A的转化率不变,平衡不移动,则a+b=c+d,若T2>T1,A的转化率降低,平衡逆移动,则正反应为放热反应,ΔH<0,正确;C项,图③中t1时刻改变的条件可能是使用了催化剂,也可能是增大压强(当a+b=c+d时),错误;D项,图④中,T1>T2,若ΔH<0,升高温度平衡逆向移动,转化率减小,则纵坐标不可能表示的是反应物的转化率,D正确。
化学平衡状态及化学平衡移动1.(2020·北京海淀·101中学高三月考)在3个体积均为2.0 L的恒容密闭容器中,反应CO2(g)+C(s)2CO(g)ΔH>0,分别在一定温度下达到化学平衡状态。
下列说法正确的是A.977K,该反应的化学平衡常数值为2B.达到平衡时,向容器I中增加C的量,平衡正向移动C.达到平衡时,容器Ⅰ中CO2的转化率比容器Ⅱ中的大D.达到平衡时,容器Ⅲ中的CO的转化率大于28.6%【答案】C【解析】A. 977K,根据容器I中的反应数据,该反应的化学平衡常数值为0.20.2= 0.041/ 332 / 331,故A 错误;B. C 是固体,达到平衡时,向容器I 中增加C 的量,平衡不移动,故B 错误;C. 容器Ⅱ与容器Ⅰ相比,相当于加压,达到平衡时,容器Ⅰ中CO 2的转化率比容器Ⅱ中的大,故C 正确;D. 若容器Ⅲ的温度是977K ,则容器Ⅲ与容器I 是等效平衡,平衡时CO 的浓度是0.2mol/L ,CO 的转化率是0.28-0.2100%=28.6%0.28⨯,升高温度,正向移动,CO 浓度增大,容器Ⅲ中的CO 的转化率小于28.6%,故D 错误。
2.(2021·黑龙江大庆中学高三期中)根据下列图示所得出的结论不正确的是( )A .图甲表示()()()2232SO g O g 2SO g 0H +∆<速率与时间关系曲线,说明t 1改变的条件是增大体系的压强 B .图乙表示镁条放入盐酸中生成氢气速率随时间的变化,0~ t 1反应速率加快原因可能是该反应为放热反应C .图丙表示22CO(g)Cl (g)COCl (g)+的反应速率随时间的变化,t 1时改变的条件是加入催化剂D.图丁表示酶催化反应的反应速率随反应温度的变化【答案】A【解析】A.根据图象,t1时刻v逆瞬间不变,v正瞬间增大,则是增大反应物浓度,故A错误;B.随着反应的进行,氢离子浓度减小,速率应该减小,但是实际上速率增大,可能是该反应为放热反应,导致溶液温度升高,而使速率增大,故B正确;C.t1时正、逆反应速率同等程度增大,且反应为体积减小的反应,则t1时改变的条件是加入催化剂,故C正确;D.酶为蛋白质,温度过高,蛋白质发生变性,则酶催化能力降低,甚至失去催化活性,图中能表示酶催化反应的反应速率随反应温度的变化,故D正确;故选A。
高考化学真题化学平衡计算化学平衡是化学反应达到动态平衡时的状态,它可以通过化学平衡常数K来描述。
在高考化学考题中,化学平衡的计算题目非常常见,需要根据已知的条件进行计算。
本文将通过几个例子,详细介绍高考化学真题中的平衡计算问题。
例一:已知氮氧化合物N2O4与NO2在400K时达到平衡,试计算该温度下N2O4与NO2的平衡常数K。
解析:在400K时,N2O4与NO2达到平衡,可以写出平衡反应式:N2O4(g) ⇌2NO2(g)首先,根据平衡反应式可以确定平衡常数表达式为:K = [NO2]^2/[N2O4]其中,[NO2]表示NO2的浓度,[N2O4]表示N2O4的浓度。
根据题目已知条件,可以设定NO2和N2O4的浓度为x和y。
根据反应式中物质的摩尔之比,可以得到:x = 2y在400K时,根据热力学第一定律,平衡时物质的化学势相等,可以得到方程:ΔG = ΔH - TΔS = 0其中,ΔH是反应的焓变,T是温度,ΔS是反应的熵变。
根据题目已知条件,可以得到ΔH = 60 kJ/mol,T = 400K。
而熵变ΔS可以通过标准摩尔熵值来计算,已知N2O4与NO2的标准摩尔熵值分别为100 J/K·mol和150 J/K·mol,可以得到熵变ΔS = (2×150)-100 - 2×(100)= 100 J/K·mol。
将以上已知数据代入方程,可以得到:60 - 400×100×10^-3 = 0可以解得ΔG = -40 kJ/mol根据ΔG与K之间的关系,可以得到:ΔG = -RT lnK其中,R为气体常数,T为温度。
代入已知数据,可以解得:-40×10^3 = -8.314×400×lnK可以解得lnK = 12.037最后,求得K = e^12.037 ≈ 166701.6因此,在400K时,N2O4与NO2的平衡常数K约等于166701.6。
高中化学化学平衡题型详解化学平衡是高中化学中一个重要的概念,也是考试中常出现的题型之一。
掌握化学平衡的原理和解题技巧对于学生来说至关重要。
本文将详细介绍化学平衡题型,并提供一些解题技巧和例题分析,帮助读者更好地理解和应用化学平衡知识。
一、化学平衡的基本概念化学平衡是指在封闭系统中,反应物与生成物之间的浓度或压力达到一定比例时,反应速率前后保持不变的状态。
在化学平衡中,反应物与生成物的浓度或压力之间存在一种动态平衡,反应物转化为生成物的速率与生成物转化为反应物的速率相等。
化学平衡的表达式通常以化学方程式的形式表示,例如A + B ⇌C + D。
其中,反应物A和B生成生成物C和D,反应物与生成物之间以双箭头表示反应的双向性。
二、化学平衡的计算方法在化学平衡题中,常常需要计算反应物或生成物的浓度、压力或摩尔数等。
下面将介绍几种常见的计算方法。
1. 浓度计算在给定反应物和生成物的初始浓度以及反应方程式的情况下,可以通过化学平衡常数Kc来计算反应物和生成物的浓度。
化学平衡常数Kc表示反应物和生成物浓度的比例关系,可以通过实验测定得到。
例如,对于反应A + B ⇌ C + D,化学平衡常数Kc的表达式为Kc =[C][D]/[A][B],其中[]表示物质的浓度。
如果已知反应物A和B的初始浓度,可以通过Kc的值计算生成物C和D的浓度。
2. 压力计算在一些气体反应中,常常需要计算反应物或生成物的压力。
根据理想气体状态方程PV = nRT,可以将压力与物质的摩尔数联系起来。
例如,对于反应A(g) + B(g) ⇌ C(g) + D(g),可以通过给定的初始压力和摩尔数,利用理想气体状态方程计算反应物和生成物的压力。
3. 摩尔数计算在一些题目中,可能需要计算反应物或生成物的摩尔数。
摩尔数可以通过给定的质量和摩尔质量计算得到。
例如,对于反应A + B ⇌ C + D,如果已知反应物A和B的质量,可以通过摩尔质量计算出反应物A和B的摩尔数。
常考点高考题——化学平衡计算掌握可逆反应中各种物质的初始量、变化量及平衡量,以及它们间的关系,就能解答一般化学平衡的计算题。
只不过对于特殊的平衡有其特殊的规律,可进行特殊解法或技巧解题。
一般化学平衡问题的计算1.某体积可变的密闭容器,盛有适量的A 和B 的混合气体,在一定条件下发生反应:A +3B 2C 若维持温度和压强不变,当达到平衡时,容器的体积为V L ,其中C 气体的体积占有10%,下列推断正确的是 ( )① 原混合气体的体积为1.2V L ② 原混合气体的体积为1.1V L③ 反应达平衡时气体A 消耗掉0.05V L ④ 反应达平衡时气体B 消耗掉0.05V LA. ②③B. ②④C. ①③D. ①④2.在5 L 的密闭容器中充入2 mol A 气体和1 mol B 气体,在一定条件下发生反应:2A (g )+B (g )2C (g ),达平衡时,在相同温度下测得容器内混合气体的压强是反应前的65,则A 的转化率为 ( ) A . 67% B . 50% C . 25% D . 5%(99广东)3.在一密闭溶器中,用等物质的量的A 和B 发生如下反应:A(g)+2B(g) 2C(g)反应达到平衡时,若混合气体中A 和B 的物质的量之和与C 的物质的量相等,则这时A 的转化率为 ( )A. 40%B. 50%C. 60%D. 70%4.在373K 时,把0.5 mol N 2O 4气通入体积为5 L 的真空密闭容器中,立即出现棕色。
反应进行至2 s 时,NO 2的浓度为0.02 mol / L 。
在60 s 时,体系已达平衡,此时容器内压强为开始时的1.6倍。
下列说法正确的是 ( )A . 前2 s ,以N 2O 4的浓度变化表示的平均反应速率为0.01 mol / (L ·s )B . 在2 s 时体系内的压强为开始时的1.1倍C . 在平衡时体系内含N 2O 40.25 molD . 平衡时,如果压缩容器体积,则可提高N 2O 4的转化率(90MCE )5.m mol C 2H 2跟n mol H 2在密闭容器中反应,当其达到平衡时,生成p mol C 2H 4,将平衡混和气体完全燃烧生成CO 2和H 2O ,所需氧气的物质的量是 ( )A. 3m +n molB.52m +12n -3p mol C. 3m +n +2p mol D.52m +12n mol6.X 、Y 、Z 为三种气体,把a mol X 与b mol Y 充入一密闭容器中,发生反应X +2Y 2Z ,达到平衡时,若它们的物质的量满足:n (X)+n (Y)=n (Z),则Y 的转化率为( ) A. 5b a +×100% B. b b a 5)(2+×100% C. 5)(2b a +×100% D. ab a 5+×100% 7. 将等物质的量的A 、B 、C 、D 四种物质混和,发生如下反应:a A +b Bc C(s)+d D当反应进行一定时间后,测得A 减少了n mol ,B 减少了12n mol ,C 增加了32n mol ,D增加了n mol ,此时达到化学平衡:(1) 该化学方程式中各物质的化学计量数为:a = 、b = 、 c = 、d = 。
专题十九化学平衡及其计算1、一定温度下,在2L的密闭容器中,X、Y、Z三种气体的物质的量随时间变化的曲线如下图所示:下列描述正确的是( )A.反应的化学方程式为: X(g)+Y(g)Z(g)B.反应开始到10s,X的物质的量浓度减少了0.79mol/LC.反应开始到10s时,Y的转化率为79.0%D.反应开始到10s,用Z表示的反应速率为0.158mol/(L·s)2、(NH4)2S03氧化是氨法脱硫的重要过程。
某小组在其他条件不变时,分别研究了一段时间内温度和(NH4)2S03,初始浓度对空气氧化(NH4)2S03速率的影响,结果如下图。
下列说法不正确的是( )A. 60℃之前,氧化速率增大与温度升高化学反应速率加快有关B. 60℃之后,氧化速率降低可能与02的溶解度下降及(NH4)2SO3受热易分解有关SO 水解程度增大有关C. (NH4)2SO3初始浓度增大到一定程度,氧化速率变化不大,与23D. (NH4)2SO3初始浓度增大到一定程度,氧化速率变化不大,可能与02的溶解速率有关3、将1mol M和2mol N置于体积为2L的恒容密闭容器中,发生反应:M(s)+2N(g)P(g)+Q(g) △H 。
反应过程中测得P的体积分数在不同温度下随时间的变化如图所示。
下列说法正确的是( )A.若X、Y两点的平衡常数分别为K1、K2,则K1>K2B.温度为T1时,N的平衡转化率为80%,平衡常数K =40C.无论温度为T1还是T2,当容器中气体密度和压强不变时,反应达平衡状态D.降低温度、增大压强、及时分离出产物均有利于提高反应物的平衡转化率4、温度为一定温度下,向2.0L恒容密闭容器中充入1.0mol PCl5,反应PCl5(g)ƒPCl3(g)+ Cl2(g)经过一段时间后达到平衡。
反应过程中测定的部分数据见下表。
下列说法正确的是( )t/s 0 50 150 250 350n(PCl3)/mol 0 0.16 0.19 0.20 0.20A.反应在前50s的平均速率v(PCl3) = 0.0032mol·L-1·s-1B.保持其他条件不变,升高温度,平衡时c(PCl3) = 0.11mol·L-1,则反应的ΔH<0C.相同温度下,起始时向容器中充入1.0mol PCl5、0.20mol PCl3和0.20mol Cl2,反应达到平衡前v(正)> v(逆)D.相同温度下,起始时向容器中充入2.0mol PCl3和2.0mol Cl2,达到平衡时,PCl3的转化率小于80%5、T℃时,发生可逆反应A(g)+2B(g)2C(g)+D(g) ΔH<0。
现将1mol A和2mol B加入甲容器中,将4mol C和2mol D加入乙容器中。
起始时,两容器中的压强相等,t1时两容器内均达到平衡状态(如图所示,隔板K固定不动)。
下列说法正确的是( )A.向甲中再加入1mol A和2mol B,达到新的平衡后,甲中C的浓度与乙中C的浓度相等B.t1时,甲、乙两容器中的压强仍相等C.移动活塞P,使乙的容积和甲的相等,达到新的平衡后,乙中C的体积分数是甲中C的体积分数的2倍D.分别向甲、乙中加入等量的氦气,甲中反应速率和乙中的反应速率均不变6、往三个不同容积的恒容密闭容器中分别充入1mol CO与2mol H2,发生反应CO(g)+2H2(g)CH3OH(g) ΔH,在不同的反应条件下,测得平衡时CO的转化率和体系压强如下表。
下列说法不正确的是( )温度(℃)容器体积(mL) CO转化率(%)平衡压强(Pa)①200 V150 p1②200 V270 p2③350 V350 p3A.起始时反应速率:②>①B.平衡时体系压强:p1<p2C.若容器体积V1>V3,则ΔH<0D.若实验②中再通入1mol CO,则CO的转化率大于70%7、臭氧是理想的烟气脱硝试剂,其脱硝反应为2NO2(g)+O3(g)N2O5(g)+O2(g) ΔH< 0。
若上述反应在恒容密闭容器中进行,则下列对该反应相关图像的判断正确的是( )A.甲图中t0时刻改变的反应条件为增大压强B.乙图中温度T2>T1,纵坐标可代表NO2的百分含量C.丙图为升高温度时的速率变化曲线D.丁图中a、b、c三点中b点对应的平衡常数K最小8、温度为T1时,在三个容积均为1L的恒容密闭容器中仅发生反应: 2NO22NO+O2(正反应吸热)。
实验测得:222=(NO)=(NO )v v k c正正消耗,222=(NO)=2(O)=(NO)(O)v v v k c c⋅逆消耗消耗逆,k正、k逆为速率常数,受温度影响。
下列说法正确的是( )容器编号物质的起始浓度(mol·L-1) 物质的平衡浓度(mol·L-1)2(NO)c(NO)c2(O)c2(O)cI 06 0 0 0.2II 0.3 0.5 0.2Ⅲ0 0.5 0.35A. 达平衡时,容器Ⅰ与容器Ⅱ中的总压强之比为 4:5B. 达平衡时,容器Ⅱ中22(O)(NO)cc比容器Ⅰ中的大C. 达平衡时,容器Ⅲ中NO的体积分数大于50%D. 当温度改变为T2时,若k正=k逆,则T2>T19、在容积为2.0L的密闭容器内,物质D在T℃时发生反应,反应物和生成物的物质的量随时间t的变化关系如图所示,下列叙述不正确的是( )A.从反应开始到第一次达到平衡时,物质A的平均反应速率为0.0667mol/(L·min)B.该反应的化学方程式为2D(s)2A(g)+B(g),该反应的平衡常数表达式为K=c2(A)·c(B)C.已知反应的ΔΗ>0,则第5分钟时图像呈现上述变化的原因可能是升高体系的温度D.若在第7分钟时增加D的物质的量,则表示A的物质的最变化的是a曲线10、合理利用和转化NO2、SO2、CO、NO等污染性气体是环保领域的電要课题。
(1)用CH4催化还原氮氧化物可以消除氮氧化物污染。
已知:①CH4(g) + 4NO2(g)=4NO(g)+CO2(g)+2H2O(g) H∆=-574. 0 kJ/mol②CH4(g) + 4NO(g)=2N2(g) + CO2(g) + 2H2O(g) H∆= -1160.0 kJ/mol③H 2O(g)=H 2O(l) H ∆=-44.0 kJ/molCH 4(g)与NO 2(g)反应生成N2(g)、CO 2(g)和H 2O(l)的热化学方程式是(2)已知2NO(g)+O 2(g) 2NO 2(g)的反应历程分两步:①2NO( g)N 2O 2 (g)(快)v 1正=k 1正,2(NO)c ,v 1逆=k 1逆•22(N O )c ② N 2O 2(g) +O 2(g)2NO 2(慢) v 2正=k 2正•22(N O )c ,v 2逆=k 2逆•2(NO)c一定温度下,反应2NO(g)+O 2(g) 2NO 2(g)达到平衡状态,该反应的平衡常数的表达式K =(用k 1正、k 1正、k 1逆、k 1逆表示),反应①的活化能E 1与反应②的活化能E 2的大小关系为E 1E 2(填“>”“<”或“=”)(3)用活性炭还原法处理氮氧化物的有关拉应为:C(S ) + 2NO(g)N 2(g)+CO 2(g)。
向恒容密闭容器中加入一定量的活性炭和NO,恒温(T C ︒)时.各物质的浓度随时间的变化如下表:NO N 2CO 20 0. 100 0 0 10 0.058 0.021 0.021 20 0.040 0.030 0.030 30 0.040 0.030 0.030 40 0.032 0.034 0.017 500.0320.0340.017①T C ︒时,该反应的平衡常数为(保留两位有效数字)②在31 min 时,若只改变某一条件使平衡发生移动,40 min 、50 min 时各物质的浓度如上表所示,则改变的条件是。
③在51 min 时,保持温度和容器体积不变再充人NO 和N 2,使二者的浓度均增加至原来的两倍,则化学平衡(填“正向移动”、“逆向移动”或“不移动”)。
(4)反应N 2O 4(g)2NO 2(g) H ∆>0,在一定条件下N 2O 4与NO 2的消耗速率与各自的分压(分压 =总压×物质的量分数)有如下关系22(N O )v =k 1•24(N O )p ,22(N O )v =k 2•22(N O)p 其中是k 1、k 2与温度有关的常数,相应的速率与 N 2O 4或NO 2的分压关系如图所示。
在T C时,图中M、N点能表示该反应达到平衡状态,理由是。
改变温度,v(NO2)会由M点变为A、B或C,v(N2O4)会由N点变为D、E或F,当升高到某一温度时,反应重新达到平衡,相应的点分别为(填字母)。
11、以氧化铝为原料,通过碳热还原法可合成氮化铝(AlN);通过电解法可制取铝。
电解铝时阳极产生的CO2,可通过二氧化碳甲醇化再利用。
请回答:1.已知:2Al2O3(s)=4Al(g)+3O2(g)△H1=+3 351kJ•mol﹣12C(s)+O2(g)=2CO(g)△H2=﹣221kJ•mol﹣12Al(g)+N2(g)=2AlN(s)△H3=﹣318kJ•mol﹣1则碳热还原Al2O3合成氮化铝的总热化学方程式为。
2.在常压,Ru/TiO2催化下,CO2和H2混合气体(体积比1:4,总物质的量a mol)进行反应,测得CO2的转化率、CH4和CO的选择性随温度的变化情况分别如图1和图2所示(选择性:转化的CO2中生成CH4和CO的百分比)。
反应Ⅰ:CO2(g)+4H2(g)⇌CH4(g)+2H2O(g)△H1反应Ⅱ:CO2(g)+H2(g)⇌CO(g)+H2O(g)△H2①下列说法不正确的是(填序号)。
A.△H1小于零B.温度可影响产物的选择性C.CO2的平衡转化率随温度升高先增大后减少D.其他条件不变将CO2和H2的初始体积比改变为1:3,可提高CO2的平衡转化率②350℃时,反应Ⅰ在t1时刻达到平衡,平衡时容器的体积为VL.则该温度下反应Ⅰ的平衡常数为_______ (用a、V表示)。
③350℃时,CH4的物质的量随时间的变化曲线如图所示。
画出400℃时,0~t1时间段内,CH4的物质的量随时间的变化曲线。
3.CO2和H2在一定条件下发生反应:CO2(g)+3H2(g)⇌CH3OH(g)+H2O(g),平衡常数K.在容积为2L的密闭容器中,充入2 mol CO2和6 mol H2,恒温恒容时达到平衡。
相=427同条件下,在另一个2 L的密闭容器中充入a mol CO2、b mol H2、c mol CH3OH、d mol H2O (g),要使两容器达到相同的平衡状态,且起始时反应逆向进行,则d的取值范围为。