整式乘除知识点总结
- 格式:docx
- 大小:17.95 KB
- 文档页数:5
整式的乘除知识点总结1、同底数幂的乘法法则: 同底数幂相乘, 底数_____, 指数_____, 即 _____( )。
2、幂的乘方, 底数_____, 指数_____, 即 _____( )。
3、积的乘方法则: 积的乘方等于把积的每一个因式分别______, 再把所得的幂______, 即 ______( 为正整数)。
4、同底数幂的除法法则: 同底数幂相除, 底数______, 指数______, 即 ______ 。
5、零指数幂:任何不等于0的数的0次幂都等于______, 即 ______( )。
6、负整数指数幂法则:任何不等于零的数的 ( 为正整数)次幂, 等于这个数的 次幂的______。
式子: ______( )。
7、可变形为p p aa 1=-_____________或_____________。
8、用科学记数法表示数的方法: 用科学记数法表示一个数, 就是把一个数写成______ 是非零整数)的形式。
方法: (确定 是只有______位整数的数;(确定 , 当原数的绝对值大于或等于10时, 等于原数的整数位减1;当原数的绝对值小于1时, 为______, 的绝对值等于原数中左起第一个非零数前面零的个数(含整数数位上的零)。
9、单项式乘单项式法则:单项式与单项式相乘, 把它们的______、______分别相乘, 其余字母连同它的指数不变, 作为积的因式。
10、单项式乘多项式法则: 单项式与多项式相乘, 就是根据分配律用______去乘______每一项, 再把所得的积______。
字母表示为 ___________。
11、多项式乘多项式法则:多项式与多项式相乘, 先用___________的每一项乘___________的每一项, 再把所得的积________。
字母表示: _______________12、平方差公式:两数和与这两数差的积, 等于它们的平方差。
用式子表示为=-+))((b a b a ________。
整式的乘除知识点归纳整式是数学中常见的一类代数表达式,包含了整数、变量和基本运算符(加、减、乘、除)。
一、整式的定义整式由单项式或多项式组成。
单项式是一个数字或变量的乘积,也可以包含指数。
例如,3x^2是一个单项式,其中3和x表示系数和变量,2表示指数。
多项式是多个单项式的和。
例如,2x^2 + 3xy + 5是一个多项式,其中2x^2,3xy和5分别是单项式,+表示求和运算符。
二、整式的乘法整式的乘法遵循以下几个重要的法则:1.乘积的交换法则:a×b=b×a,即乘法运算符满足交换定律。
2.乘积的结合法则:(a×b)×c=a×(b×c),即乘法运算符满足结合定律。
3.乘积与和的分配法则:a×(b+c)=(a×b)+(a×c),即乘法运算符对加法运算符满足分配律。
在进行整式的乘法运算时,要注意变量之间的乘积也需要按照乘法法则进行处理。
例如,(2x^2)×(3y)=6x^2y。
三、整式的除法整式的除法是乘法的逆过程。
除法运算中,被除数除以除数得到商。
以下是几个重要的除法规则:1.除法的整除法则:若a能被b整除,则a/b为整数。
例如,6除以3得到22.除法的商式法则:若x为任意非零数,则x/x=1、例如,2x^2/2x^2=13.除法的零律:任何数除以0都是没有意义的,即不可除以0。
例如,5/0没有意义。
在进行整式的除法运算时,要注意约分和消去的原则。
例如,(4x^2+ 2xy)/(2x) 可以约分为2x + y。
四、整式的运算顺序在解决整式的复杂运算问题时,需要遵循一定的运算顺序。
常见的运算顺序规则如下:1.先解决括号内的运算。
2.然后进行乘法和除法的运算。
3.最后进行加法和减法的运算。
五、整式的因式分解因式分解是将一个整式拆解为多个因式的乘积的过程。
对于给定的整式,可以通过以下步骤进行因式分解:1.先提取其中的公因式。
整式的乘除知识点整式的乘法运算是指对两个或多个整式进行相乘的运算。
整式的除法运算是指对一个整式除以另一个整式的运算。
整式的乘除运算是代数学中的基本运算,它在代数方程的解法、因式分解等应用中起着重要作用。
一、整式的乘法运算整式的乘法是指对两个或多个整式进行相乘的运算,其规则如下:1.单项式相乘:两个单项式相乘时,按照数字相乘,字母相乘,再将相同字母的指数相加的原则进行运算。
例如:(3x^2)(-2xy)=-6x^3y2.整式相乘:将一个整式中的每一项与另一个整式中的每一项进行相乘,然后将所得的结果相加。
例如:(x+5)(x-3)=x^2-x(3)+5(x)-15=x^2-3x+5x-15=x^2+2x-153.公式相乘:根据一些常见公式和特殊公式,可以通过整式的乘法运算简化计算。
例如:(a+b)(a-b)=a^2-(b)^2=a^2-b^2二、整式的除法运算整式的除法是指对一个整式除以另一个整式的运算,其规则如下:1.简单整式的除法:当被除式是单项式,除式也是单项式,并且除式不为零时,可以进行简单整式的除法运算。
例如:12x^3/4x=x^32.整式长除法:当被除式是一个整式,除式也是一个整式,并且除式不为零时,可以进行整式长除法运算。
例如:(3x^3-2x^2+4x-6)/(x+2)=3x^2-8x+20余-463.分式的除法:分式的除法可以利用倒数的概念进行处理,将除法问题转化为乘法问题。
例如:(a/b)÷(c/d)=(a/b)×(d/c)=(ad)/(bc)三、整式乘除运算的性质和应用1.乘法交换律:整式的乘法满足交换律,即a×b=b×a。
这个性质可以简化计算,使得整式的乘法更加灵活。
2.乘法结合律:整式的乘法满足结合律,即(a×b)×c=a×(b×c)。
这个性质可以改变运算次序,简化计算过程。
3.乘法分配律:整式的乘法满足分配律,即a×(b+c)=a×b+a×c。
整式乘除知识点整式是由常数和变量按照代数运算的规则经过加、减、乘、除等基本运算得到的式子。
整式乘除是代数学中的重要内容,掌握整式乘除的知识点对于解决代数问题和化简式子非常有帮助。
下面将介绍整式乘法和整式除法的要点和方法。
一、整式乘法整式乘法是指将两个整式相乘得到一个新的整式。
整式乘法的基本思想是利用分配律和合并同类项的原则进行运算。
1. 分配律分配律是整式乘法的基本运算定律,即对于任意的整式a、b、c来说,有:a × (b + c) = a × b + a × c这个定律表示乘法可以分别作用于加减运算中的每一项。
2. 合并同类项在整式乘法中,对于相同的字母次幂,只需要将系数相乘即可。
例如:3x × 4x = 12x²,3a² × 2a² = 6a^4。
二、整式除法整式除法是指将一个整式除以另一个整式,得到商和余数的运算过程。
整式除法的基本思想是通过长除法的方式进行计算。
整式除法的步骤如下:1. 对除数和被除数的次数进行降幂排列,确保被除数和除数的次数次幂之间存在对应关系。
2. 从被除数中选择一个项作为被除数,与除数的首项进行除法运算,得到一个商和余数。
3. 将商乘以除数,并减去这个乘积。
4. 重复步骤2和步骤3,直到被除数的次数次幂小于除数的次数次幂为止。
5. 将所有的商相加,并将余数放在最后。
例如,计算整式 (3x³ - 2x² + 5x - 1) ÷ (x - 2) 的步骤如下:(3x³ - 2x² + 5x - 1) ÷ (x - 2) = 3x² + 4x + 13 + 25/(x - 2)通过以上步骤,我们可以得到商和余数。
三、整式乘除综合运算在实际应用中,整式的乘法和除法常常需要综合运算。
在进行整式乘除综合运算时,需要根据分配律以及合并同类项的原则,进行逐步计算。
整 式 的 乘 除知识点归纳:1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。
如:bc a 22-的 系数为2-,次数为4,单独的一个非零数的次数是0。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
如:122++-x ab a ,项有2a 、ab 2-、x 、1,二次项为2a 、ab 2-,一次项为x ,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、多项式按字母的升(降)幂排列:如:1223223--+-y xy y x x按x 的升幂排列:3223221x y x xy y +-+--按x 的降幂排列:1223223--+-y xy y x x5、同底数幂的乘法法则:n m n m a a a +=∙(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+∙+6、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m m n a a a )()(==如:23326)4()4(4== 已知:23a =,326b =,求3102a b +的值;7、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=∙∙∙-8、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
整式乘除知识点在数学的学习中,整式乘除是一个重要的部分,它不仅是后续学习代数运算的基础,也在解决实际问题中有着广泛的应用。
下面就让我们一起来深入了解整式乘除的相关知识点。
一、整式的乘法(一)单项式乘以单项式法则:把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如:3x²y × 5xy³= 15x³y⁴(二)单项式乘以多项式法则:用单项式去乘多项式的每一项,再把所得的积相加。
例如:2x(3x² 5x + 1) = 6x³ 10x²+ 2x(三)多项式乘以多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(x + 2)(x 3) = x² 3x + 2x 6 = x² x 6二、整式的除法(一)单项式除以单项式法则:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
例如:18x⁴y³z² ÷ 3x²y²z = 6x²yz(二)多项式除以单项式法则:先把这个多项式的每一项分别除以这个单项式,然后把所得的商相加。
例如:(9x³y 18x²y²+ 3xy³) ÷ 3xy = 3x² 6xy + y²三、乘法公式(一)平方差公式(a + b)(a b) = a² b²例如:(3x + 2)(3x 2) = 9x² 4(二)完全平方公式(a + b)²= a²+ 2ab + b²(a b)²= a² 2ab + b²例如:(x + 5)²= x²+ 10x + 25四、整式乘除的应用(一)几何图形中的应用在求解长方形、正方形等图形的面积和周长时,经常会用到整式的乘除。
整式乘除知识点总结归纳一、整式的基本定义1. 整式的定义:整式是由多项式相加(减)得到的式子。
多项式是一个或多个单项式的和。
整式可以包含有限个数的变量,并且变量的次数为非负整数。
2. 整式的分类:整式可以根据变量的次数和系数的种类进行分类,分为一元整式和多元整式;再细分为单项式、多项式和混合式。
二、整式的乘法整式的乘法是代数学中的基本运算之一,它涉及到多项式之间的相乘。
在进行整式的乘法时,主要需要掌握以下几个要点:1. 单项式相乘:同底数的单项式相乘,指数相加;不同底数的单项式相乘,底数相乘,指数相加。
2. 多项式相乘:多项式相乘时,需要用分配律(乘法分配律)进行展开,然后对每一对单项式进行乘法运算。
3. 多项式的乘法规则:多项式相乘的规则与单项式相乘的规则一致,同底数指数相加,底数相乘。
需要注意的是,展开乘法时,需要对每一对单项式进行乘法运算,并将得到的结果进行合并。
例题:(1)计算:(3x+4y)*(2x-5y)解:按照乘法分配律,展开得到:6x^2-15xy+8xy-20y^2合并同类项,得到最终结果:6x^2-7xy-20y^2三、整式的除法整式的除法是代数学中的难点之一,它涉及到多项式之间的相除。
在进行整式的除法时,主要需要掌握以下几个要点:1. 用辅助线将被除式和除数进行排列,然后进行长除法计算。
2. 长除法计算过程:(1)确定被除式中的最高次项,选择一个除数,使得除数的最高次项与被除式中的最高次项相同。
(2)将除数乘以一个常数倍数,使得乘积的最高次项与被除式中最高次项的系数相同。
(3)将得到的乘积与被除式相减,得到一个新的多项式。
(4)重复以上步骤,直至新的多项式的次数小于除数的次数。
(5)最终得到商式和余数。
例题:(2x^2+7xy-3y^2)÷(x-2y)解:按照长除法步骤,得到商式和余数为:2x+11y-5 和 -21y+12所以,商式为2x+11y-5,余式为-21y+12。
1 七年级下册第一章整式的乘除知识点、易错点整理一、知识点:1、同底数幂的乘法:a m ·a n =a m+n (m ,n 都是正整数)即同底数幂相乘,底数不变,指数相加。
2、幂的乘方法则:(a m )n =a mn (m ,n 都是正整数)幂的乘方,底数不变,指数相乘。
3、积的乘方法则:(ab )n = a n ·b n (n 为正整数) 积的乘方=乘方的积4、单项式与单项式相乘法则:(1)系数与系数相乘(2)同底数幂与同底数幂相乘(3)其余字母及其指数不变作为积的因式注意点:(1)任何一个因式都不可丢掉(2)结果仍是单项式 (3)要注意运算顺序5、多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
(注意:项是包括前面的符号的,每一次单项式相乘的时候先处理符号问题。
)注意点:(1)多项式与多项式相乘的结果仍是多项式;(2)结果的项数应该是原两个多项式项数的积(没有经过合并同类项之前),检验项数常常作为检验解题过程是否的一个有效方法。
6、乘法公式一:平方差公式:(a +b )(a -b )=a 2-b 2。
(22-反同,即可把相同的项看作a ,把相反的项看作b 。
)乘法公式二:完全平方公式:(a ±b )2=a 2±2ab +b 2(前±后)2=前2±2×前×后+后2口诀:前平方,后平方,积的两倍中间放,中间符号看情况。
(这个情况就是前后两项同号得正,异号得负。
)7、a m ÷a n ==a m -n (a ≠0,m ,n 都是正整数,且m >n )即同底数幂相除,底数不变,指数相减。
8、① a 0=1(a ≠0)② pp a a 1=-= (a ≠0,p 是正整数) 注意点:因为p p p a a a ⎪⎭⎫ ⎝⎛==-11,即底数互为倒数,指数互为相反数,当底数为分数时,可以把底数变为倒数,指数变为相反数再计算会更加简便。
整式的乘除知识点总结一、幂的运算1. 同底数幂的乘法- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n = a^m + n (m,n都是正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(m,n都是正整数)。
- 例如:(3^2)^3 = 3^2×3=3^6。
3. 积的乘方- 法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即(ab)^n=a^nb^n(n是正整数)。
- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。
4. 同底数幂的除法- 法则:同底数幂相除,底数不变,指数相减。
即a^mdiv a^n=a^m - n(a≠0,m,n都是正整数,m > n)。
- 例如:5^5div5^3 = 5^5 - 3=5^2。
- 规定:a^0 = 1(a≠0);a^-p=(1)/(a^p)(a≠0,p是正整数)。
二、整式的乘法1. 单项式与单项式相乘- 法则:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
- 例如:3x^2y·(-2xy^3)=[3×(-2)](x^2· x)(y· y^3)= - 6x^3y^4。
2. 单项式与多项式相乘- 法则:就是用单项式去乘多项式的每一项,再把所得的积相加。
即m(a + b + c)=ma+mb+mc。
- 例如:2x(3x^2 - 4x + 5)=2x×3x^2-2x×4x + 2x×5 = 6x^3-8x^2 + 10x。
3. 多项式与多项式相乘- 法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
即(a + b)(m + n)=am+an+bm+bn。
整式乘除法知识点总结整式的基本概念整式(polynomial)是由若干个单项式相加或相减得到的式子,其中每个单项式的系数和非负整数次幂的变量的乘积。
例如,3x^2-5x+7就是一个整式,其中3x^2、-5x和7分别是单项式,它们相加得到一个整式。
整式可以用来描述代数关系、建立数学模型,是代数中的重要概念之一。
整式中有几个重要的概念:1. 单项式:只含有一个项的代数式称为单项式。
例如,3x、-2x^2、5y^3都是单项式,它们由系数和变量的乘积组成。
2. 多项式:由多个单项式相加或相减得到的式子称为多项式。
例如,3x^2-5x+7就是一个多项式,其中3x^2、-5x和7分别是单项式,它们相加得到一个多项式。
3. 次数:整式中最高次幂的指数称为整式的次数。
例如,5x^2-3x+2的次数为2,因为最高次幂的指数为2。
4. 系数:整式中变量的乘积中的常数因子称为系数。
例如,5x^2中的系数为5。
整式乘法规则整式乘法是指两个整式相乘的运算。
对于整式乘法,可以通过分配律、合并同类项和乘法结合律进行运算。
下面介绍整式乘法的规则和步骤。
1. 分配律:对于整式乘法,可以利用分配律进行运算。
分配律指的是a(b+c)=ab+ac和(a+b)c=ac+bc的规则,在整式乘法中同样适用。
例如,对于整式3x(2x+5),可以按照分配律进行运算,得到3x*2x+3x*5=6x^2+15x。
2. 合并同类项:在整式乘法中,可以合并同类项进行运算。
合并同类项指的是将具有相同变量和次数的项相加得到一个合并后的项。
例如,对于整式3x^2+4x^2-2x^2,可以合并同类项得到5x^2。
3. 乘法结合律:整式乘法同样适用于乘法的结合律,即a(bc)=(ab)c的规则。
在整式乘法中,可以先计算括号内的乘法,然后再进行外部的乘法运算。
例如,对于整式3x(2x+5),可以先计算括号内的乘法得到6x^2+15x,然后再进行外部的乘法运算。
整式除法规则整式除法是指一个整式除以另一个整式的运算。
整式的运算知识点总结整式是由字母、数字和运算符号组成的多项式,是代数学中常见的基本表达形式。
整式的运算是代数学中较为基础的内容之一,掌握整式的运算方法对于解决代数问题至关重要。
本文将对整式的运算知识点进行总结,包括整式的加减乘除以及相关的运算性质。
一、整式的加法和减法运算整式的加法和减法是最基础的运算,需要注意以下几点:1. 相同项的加减:对于相同的字母和指数的项,可以直接按照系数相加减的原则进行合并。
例如:3x^2 + 4x^2 = 7x^2;5y - 2y = 3y。
2. 不同项的加减:对于不同的项,无法进行合并。
可以将它们按照字母和指数的大小进行排列。
例如:2x^2 + 3x - 5x^2 - 2x = 2x^2 - 5x^2 + 3x - 2x = -3x^2 + x。
二、整式的乘法运算整式的乘法是将两个整式相乘得到一个新的整式,需要注意以下几点:1. 乘法的分配律:对于整式乘以一个数,可以将这个数分别乘以每一项,并将结果相加。
例如:3(2x^2 + 3x) = 6x^2 + 9x。
2. 乘法的合并同类项:乘法运算时,需要合并同类项,即将相同的字母和指数的项合并。
例如:(2x + 3)(4x - 2) = 8x^2 + 4x - 12x - 6 = 8x^2 - 8x - 6。
三、整式的除法运算整式的除法是将一个整式除以另一个整式得到商式和余式的运算,需要注意以下几点:1. 整式的除法并不总是能够完全除尽,有可能存在余数。
2. 设被除式为A(x),除式为B(x),商式为Q(x),余式为R(x),则A(x) = B(x)Q(x) + R(x)。
3. 除法的过程涉及到带余除法的计算步骤,可以利用这个过程来进行整数和多项式的除法。
四、整式的运算性质整式的运算有以下几个基本性质:1. 交换律:加法和乘法都满足交换律,即a + b = b + a,ab = ba。
2. 结合律:加法和乘法都满足结合律,即a + (b + c) = (a + b) + c,a(bc) = (ab)c。
第12章 整式的乘除与因式分解 知识链接一、整式的乘法1.同底数幂的乘法法则同底数幂相乘,底数不变,指数相加。
即:m n m n a a a+⋅=(m ,n 都是正整数)。
例1:计算 (1)821010⨯;(2)23x x ⋅-(-)();(3)n 2n 1n aa a a ++⋅⋅⋅例2:计算 (1)35b 2b 2b 2+⋅+⋅+()()();(2)23x 2y y x -⋅()(2-)例3:已知x 22m +=,用含m 的代数式表示x 2。
2.幂的乘方(重点)幂的乘方是指几个相同的幂相乘,如53a ()是三个5a 相乘,读作a 的五次幂的三次方。
幂的乘方法则:幂的乘方,底数不变,指数相乘。
即m n mn a a =()(m ,n 都是正整数)。
例4:计算(1)m 2a ();(2)()43m ⎡⎤-⎣⎦;(3)3m 2a -()3.积的乘方(重点)积的乘方的意义:指底数是乘积形式的乘方。
如:()()()()3ab ab ab ab =⋅⋅积的乘方法则:积的乘方,等于把积得每一个因式分别乘方,再把所得的幂相乘。
如:n n n ab a b ⋅()=例5:计算(1)()()2332xx -⋅-;(2)()4xy -;(3)()3233a b -例6:已知a b 105,106==,求2a 3b 10+的值。
例7:计算(1)201120109910010099⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭;(2)()315150.1252⨯4.单项式与单项式相乘(重点)法则:单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式例含有的字母,则连同它的指数作为积的一个因式。
例8:计算(1)2213ab a b 2abc 3⎛⎫⋅-⋅ ⎪⎝⎭; (2) ()()n 1n 212x y 3xy x z 2+⎛⎫-⋅-⋅- ⎪⎝⎭; (3) ()()322216m n x y mn y x 3-⋅-⋅⋅-5.单项式与多项式相乘(重点)法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
初中数学整式的乘除与分解因式知识点
整式的乘法与除法是初中数学中的重点内容之一。
下面是一些相关的知识点:
1. 整式的乘法:整式的乘法要注意项的乘法和系数的乘法。
将每一项的系数分别相乘,并将指数分别相加,得到乘积的系数和指数。
例如:(3x+2)(4x-1)
首先扩展,得到12x^2 + 5x - 2。
2. 整式的除法:整式的除法是通过“乘除消数”的方法来完成的。
将除数乘以一个适
当的式子,使得结果与被除式的某个部分相等或尽量接近。
然后将乘积减去被除式,
重复之前的步骤,直到无法再减少为止。
例如:(2x^2 + 5x + 3) ÷ (x + 1)
首先将被除式分解为(x + 1)(2x + 3),然后进行乘法,得到2x^2 + 5x + 3。
然后将乘积减去被除式,得到0。
所以结果为2x + 3。
3. 因式的分解:整式的因式分解是将一个整式写成几个因式的乘积的形式。
例如:6x^2 + 11x + 3的因式分解为(2x + 1)(3x + 3)。
这些知识点在初中数学中是比较基础的内容,掌握了整式的乘除与分解因式的方法,
将有助于解决更复杂的数学问题。
一、知识点归纳: (一)幂的四种运算:1、同底数幂的乘法:⑴语言叙述:同底数幂相乘,底数不变,指数相加; ⑵字母表示:a m ·a n = a m+n ;(m ,n 都是整数) ;⑶逆运用:a m+n = a m ·a n2、幂的乘方:⑴语言叙述:幂的乘方,底数不变,指数相乘; ⑵字母表示:(a m ) n = a mn ;(m ,n 都是整数); ⑶逆运用:a mn =(a m )n =(a n )m ;3、积的乘方:⑴语言叙述:积的乘方,等于每个因式乘方的积; ⑵字母表示:(ab)n = a n b n ;(n 是整数); ⑶逆运用:a n b n = (a b)n ;4、同底数幂的除法:⑴语言叙述:同底数幂相除,底数不变,指数相减;⑵字母表示:a m ÷a n = a m-n ;(a≠0,m 、n 都是整数); ⑶逆运用:a m-n = a m ÷a n .(二)整式的乘法:1、单项式乘以单项式:⑴语言叙述:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
⑵实质:分三类乘:⑴系数乘系数;⑵同底数幂相乘;⑶单独一类字母,则连同它的指数照抄; 2、单项式乘以多项式:⑴语言叙述:单项式与多项式相乘,就是根据分配律用单项式去乘多项式中的每一项,再把所得的积相加。
⑵字母表示:c)=ma +mb +mc ;(注意各项之间的符号!) 3、多项式乘以多项式:(1)语言叙述:多项式与多项式相乘,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加;(2)字母表示:=mn +mb +an +ab ;(注意各项之间的符号!) 注意点:⑴在未合并同类项之前,积的项数等于两个多项式项数的积。
⑵多项式的每一项都包含它前面的符号,确定乘积中每一项的符号时应用“同号得正,异号得负”。
⑶运算结果中如果有同类项,则要 合并同类项(三)乘法公式: 1、平方差公式:(1)语言叙述:两数和与这两数差的积,等于这两个数的平方差。
第 12 章整式的乘除知识点复习总结★第 12 章 整式的乘除知识点★★1.同底数幂的乘法公式为: a m a n a mn m、n均为正整数即:同底数幂相乘,底数不变,指数相加. 注意:(1)本公式可以反向利用,即: a mn a m a n m、n均为正整数有关的重要结论(2)AnAn n为偶数 Ann为奇数;(3) ABnB BAn (n为偶数). An (n为奇数)★2.幂的乘方公式为: am n amn (m、n为正整数)即,幂的乘方,底数不变,指数相乘. (1)公式可以反向利用,即: amn am n (m、n为正整数)(2)重要结论: am n an m amn (m、n为正整数)(3)公式可推广:1 / 14第 12 章整式的乘除知识点复习总结 am n p amnp (m、n、p为正整数)★3.积的乘方公式为:abn anbn (n为正整数)即积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘. (1)公式可推广:abcn anbncn (n为正整数)(2)公式可以反向使用,用于某些简便运算的题目.anbn abn anbncn abcn (n为正整数)(3)说明:在反向利用积的乘方公式时,可以把两个指数的最大公约 数给提出来.注意: a bn an bn (n为正整数),如a b2 a2 b2 .★4.同底数幂的除法公式: am an amn (m、n为正整数,且m n,a 0)即同底数幂相除,底数不变,指数相减. (1)是被除数的指数减去除数的整数. (2)公式可以改写为:am amn (m、n为正整数,且m n,a 0) an (3)当 m n时, am an a0 1. 记住:任何不等于 0 的数的 0 次方都等于 1. 0 的 0 次方没有意义. 底数既可以是数字、字母,也可以是单项式或多项式.2 / 14第 12 章整式的乘除知识点复习总结例题 LITI● 例 1.计算: 22011 . 22012 分析 给出最详细的过程.●例 2.计算 a 3 2a 3 分析 a 3与2a 3 是同类项解:原式 22011 220111 1 22011 2 22011 22011 1 2 22011●例 3.计算: a6 a4解:原式 3a3分析 本题为易错题,没有得到最终的结果.解:原式 a2 (有些学生的结果到此为止) a2 (这才是最终的结果).●例 4.已知 22n1 4n 48,求 n的值.分析 本题具有一定的难度,要求学生对所学的公式结论深刻掌握.解: 22n1 4n 48 2 22n 22 n 482 22n 22n 4822n 2 1 4822n 3 48 22n 16 22n 24∴ 2n 4,n 2. ● 例 5.已知 4 8t 16t 24 4 , 求 t 的值.3 / 14第 12 章整式的乘除知识点复习总结例题 LITI● 例 1.计算: 22011 . 22012 分析 给出最详细的过程.●例 2.计算 a 3 2a 3 分析 a 3与2a 3 是同类项解:原式 22011 220111 1 22011 2 22011 22011 1 2 22011●例 3.计算: a6 a4解:原式 3a3分析 本题为易错题,没有得到最终的结果.解:原式 a2 (有些学生的结果到此为止) a2 (这才是最终的结果).●例 4.已知 22n1 4n 48,求 n的值.分析 本题具有一定的难度,要求学生对所学的公式结论深刻掌握.解: 22n1 4n 48 2 22n 22 n 482 22n 22n 4822n 2 1 4822n 3 48 22n 16 22n 24∴ 2n 4,n 2. ●例 5.已知 4 8t 16t 24 4 , 求 t 的值.4 / 14第 12 章整式的乘除知识点复习总结★5.整式的乘法 整式的乘法运算有三种:(1)单项式·单项式;(2)单项式·多项式;(3)多项式·多项式. 单项式·单项式 系数与系数相乘,同底数幂相乘,单独的幂保留. (1)注意两个用科学记数法表示的数相乘 (2)在计算时要用到同底数幂的乘法公式. 其他两种运算的进行都需要将运算转化为单项式·单项式,然后再把所 得的积相加,还要用到乘法分配律,注意符号的改变.在进行多项式·多 项式时,还要注意合并同类项. 单项式与多项式相乘,将单项式分别乘以多项式的每一项,再将所得的 积相加. 运算的结果可以按某个字母的降幂顺序排列.●6.计算: 3 108 5 102 . 解: 3 108 5 102 3 5 108 102 15 1010 1.5 1011 两个重要的结论: (1)多项式相等的问题 如果两个多项式相等,则它们对应的系数相等.5 / 14第 12 章整式的乘除知识点复习总结A D如若Ax2BxCDx2ExF,则有 BE.C F(2)多项式中不不含某一项的问题如果一个多项式中不不含某项,则该项系数等于 0(合并同类项之后的系数).★6.平方差公式 即两数和乘以这两数的差a ba b a 2 b2这就是说,两数和与这两数差的积,等于这两数的平方差.说明: (1)该公式可以简化某些多项式乘以多项式的运算,也可以实现某些有理数运算的简便运算.(2)该公式可以反向利用,即逆用.(3)反向利用平方差公式可以用于分解因式.●例 7.计算 2x 3 y2 2x 3 y2 . 解:原式 2x 3 y 2x 3 y2x 3 y2x 3 y 2x 3 y 2x 3 y2x 3 y 2x 3 y 4x 6y 24xy ●例 8 平方差公式用于分解因式分解因式: 1 m 2 1 n2 . 49解:原式 1 m2 1 n2 4 9 6 / 14第 12 章整式的乘除知识点复习总结 1 22m 1 3n2 1 m 1 n 1 m 1 n 2 3 2 3 ●例 9 某些题目无法直接使用平方差公式,需要对所给的式子变形处理之后才可以使用(即创造条件使用平方差公式).计算:a b ca b c.解:原式 a b ca b c a 2 b c2 a 2 b2 2bc c2 a 2 b2 c 2 2bc●例 10 多项式相等的问题已知 x 3 6x 2 11x 6 x 1x 2 mx n,求 m、n的值. 解: x 3 6x 2 11x 6 x 1x 2 mx nx 3 6x 2 11x 6 x 3 mx 2 nx x 2 mx n x3 6x2 11x 6 x3 m 1x2 n mx nm 1 6 ∴ n m 11 n 67 / 14第 12 章整式的乘除知识点复习总结解之得:m 5 n 6.●11.多项式中不不含某一项的问题已知 x2 ax 8x2 3x b 的乘积中不含 x 2 项和 x 3 项,求 a、b 的值.解: x2 ax 8x2 3x b x4 3x 3 bx2 ax3 3ax2 abx 8x 2 24x 8b x4 3 ax3 b 3a 8x2 24x 8b∵该乘积中不含 x 2 项和 x 3 项∴ b3 a 0 3a 8 0解之得:a b 3 1.●例 12 反向利用平方差公式的问题计算:x 12 x 12 .分析 反向利用积的乘方公式和平方差公式可方便地解决问题.解: x 12 x 12 x 1x 12 x 2 12 x4 2x2 1●例 13 一道综合题探索下面的问题:8 / 14第 12 章整式的乘除知识点复习总结(1)x 1x 1 __________;x 1x2 x 1 __________; x 1x3 x2 x 1 __________; x 1 x 2012 x 2011 x 2010 x 1 __________.(2)请你用上面的结论计算: 22012 22011 22010 2 1. 解:(1) x 2 1; x 3 1; x 4 1; x 2013 1. (2) 22012 22011 22010 2 1 2 1 22012 22011 22010 2 1 22013 1 ★7.平方差公式的图形证明:★8.完全平方和公式的图形证明:★9.完全平方公式 完全平方公式有两个:完全平方和公式与完全平方差公式. 完全平方和公式:9 / 14第 12 章整式的乘除知识点复习总结a b2 a2 2ab b2完全平方差公式:a b2 a2 2ab b2两个公式可以合记为:a b2 a2 2ab b2说明: (1)公式里面的 a2、b2 叫做完全平方项,习惯上将它们放在公式的两 边,将乘积的 2 倍放中间. (2)两个公式的惟一区别在于一个是加上乘积的 2 倍,另一个是减去 乘积的 2 倍. (3)两个公式可以相互转化. (4)反向利用完全平方公式可以用于分解因式,是公式法里面的两个 非常重要且常用的公式. (5)有关的重要结论:a2 b2 a b2 2aba2 b2 a b2 2aba b2 a b2ab 4(6)完全平方式的判断 判断所给的多项式是不是完全平方式只需 要判断两个完全平方项所对应的数或式子的 2 倍是否等于多项式的10 / 14第三项(或第三项的相反数)即可,若等于,则是;若不等于,则不是.(7)配方法 配方法是一种很重要的解决问题的方法,可以用来分解因式、解方程(如在九年级要学习的解一元二次方程)等.把题目所给的多项式进行变形、拆项等处理,使多项式中出现完全平方式的过程,叫做配方,利用配方来解决问题的方法就叫做配方法.●例14.若()25422+++x a x 是完全平方式,则=a ________.分析: 根据完全平方式的判断方法,两个完全平方项2x 与25所对应的5与x 的乘积的2倍,应等于()x a 42+±.所以()x a x 4210+±=,解得 1=a 或9-=a .注意本题有两种情况,两种结果.●例15 体验配方法的一种应用当a 为何有理数时,二次三项式5422+-a a 有最小值?最小值是多少? 解:5422+-a a()()31231223242222+-=++-=++-=a a a a a∵()012≥-a ∴()33122≥+-a ,此时1=a .(小说明:即当1=a 时取等号) ∴该多项式的最小值为3.●例16 .配方法的应用求证:多项式64222++-+b a b a 的值总是正数.说明 这是我们做过的一道选择题改编而来.证明: 64222++-+b a b a()()()()121144122222+++-=+++++-=b a b b a a (○小○说○明:这里完成了配方)∵()()02,0122≥+≥-b a ∴()()112122≥+++-b a ∴多项式64222++-+b a b a 的值总是正数.●例17.若()222963n mn m n km +-=+,则k 的值为________. 分析 利用完全平方和公式把等式的左边展开,再根据两个多项式相等的结论即可解决本问题.本题属于易错题.解: ()222963n mn m n km +-=+ 222229696n mn m n kmn m k +-=++∴1,12±==k k ,但1=k 不符合题意,舍去,所以1-=k .●例18 完全平方公式的结论的应用已知0142=+-m m ,求221m m +的值. 分析 利用结论:()ab b a b a 2222-+=+解: 0142=+-m m41414122=+=+=+mm mm m m m mm ∴221mm +14242122=-=-⎪⎭⎫ ⎝⎛+=m m●例19 完全平方公式用于分解因式分解因式:1242--x x .解:原式16442-+-=x x()()()()()()624242424442222-+=--+-=--=-+-=x x x x x x x 说明:当然,这里还用到了配方法和其它的公式.●例20.已知ab b a b a 412222=+++,求22b a +的值. 解: ab b a b a 412222=+++()()()()01021204122222222=-+-=+-++-=-+++b a ab bab a ab ab ab b a ab∴⎩⎨⎧=-=-001b a ab ,得到122==b a ∴222=+b a .例21.将代数式262++x x 化为()q p x ++2的形式. 解: 262++x x()()737962996222-+=-++=+-++=x x x x x这里,7,3-==q p .。
初中数学整式的乘除与因式分解知识点归纳一、整式的乘法:1.普通整式相乘:将每一项的系数相乘,同时将每一项的指数相加。
2.平方整式相乘:先将每一项平方,再将每一项相乘得到结果。
3.完全平方的平方差公式:(a-b)(a+b)=a²-b²。
4. 公式展开:通过公式展开可求两个或多个整式的乘积,例如(a+b)²=a²+2ab+b²。
二、整式的除法:1.整式相除的概念:整式A除以整式B,若存在整式C,使得B×C=A,那么C称为A除以B的商式。
2.用辗转相除法进行整式的除法计算。
三、因式分解:1.抽象公因式法:将多项式中的每一项提取出公因式,然后将剩下的部分合并。
2.公式法:运用一些常用的公式,如平方差公式、完全平方公式等进行因式分解。
3.分组法:将多项式中的项进行分组,使每一组都有一个公因式,然后进行合并。
4. 二次三项式的因式分解:对于二次三项式a²+2ab+b²或a²-2ab+b²,可以因式分解为(a±b)²。
5.因式定理和余式定理:若(x-a)是多项式P(x)的因式,则P(a)=0。
根据这一定理可以找到多项式的因式。
四、常见整式的因式分解:1.平方差公式:a²-b²=(a+b)(a-b)。
2. 完全平方公式:a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²。
3. 符号"相反"公式:a²-2ab+b²=(b-a)²。
4. 三项平方公式:a³+b³=(a+b)(a²-ab+b²),a³-b³=(a-b)(a²+ab+b²)。
5. 公因式公式:a²+ab=a(a+b)。
整式的乘除与因式分解知识点全面一、整式的乘法与除法知识点:1.整式的乘法:整式的乘法是指两个或多个整式相乘的运算。
乘法的结果称为“积”。
-乘法的交换律:a×b=b×a-乘法的结合律:(a×b)×c=a×(b×c)-乘法的分配律:a×(b+c)=a×b+a×c2.整式的除法:整式的除法是指一个整式被另一个整式除的运算。
除法的结果称为“商”和“余数”。
-除法的除数不能为0,即被除式不能为0。
-除法的商和余数满足等式:被除式=除数×商+余数3.次数与次项:整式中的变量的幂次称为整式的次数。
次数为0的项称为常数项,次数最高的项称为最高次项。
4.整式的乘除法规则:-乘法规则:乘法运算时,将整式中的每一项依次相乘,然后将结果相加即可。
-除法规则:除法运算时,可以通过因式分解的方法进行计算。
5.乘法口诀:乘法口诀是指两个整数相乘时的计算规则。
-两个正整数相乘,结果为正数。
-两个负整数相乘,结果为正数。
-一个正整数与一个负整数相乘,结果为负数。
二、因式分解知识点:1.因式分解:因式分解是将一个整式表示为几个乘积的形式的运算。
可以通过提取公因式、配方法等方式进行因式分解。
2.提取公因式:提取公因式是指将整式中公共的因子提取出来,分解成公因式和余因式的乘积的过程。
3.配方法:配方法是指将整式中的一些项配对相加或相乘,通过变换形式,使得整个式子能够因式分解的过程。
4.差的平方公式:差的平方公式是指一个完全平方的差能够分解成两个因子相加的形式。
例如:a^2-b^2=(a+b)(a-b)。
5. 完全平方公式:完全平方公式是指一个完全平方的和可以分解成一个因子的平方的和的形式。
例如:a^2 + 2ab + b^2 = (a + b)^26.公式法:根据特定的公式,将整式进行因式分解。
7.分组法:将整式中的项分为两组,分别提取公因式,然后进行配方法或其他操作,将整式进行因式分解。
整式运算考点1、幂的有关运算①=⋅nm a a (m 、n 都是正整数)②=n m a )( (m 、n 都是正整数)③=n ab )( (n 是正整数) ④=÷nm a a (a ≠0,m 、n 都是正整数,且m>n ) ⑤=0a (a ≠0)⑥=-p a (a ≠0,p 是正整数) 幂的乘方法则:幂的乘方,底数不变,指数相乘。
积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
同底数幂相除,底数不变,指数相减。
例:在下列运算中,计算正确的是( )(A )326a a a ⋅= (B )235()a a =(C )824a a a ÷=(D )2224()ab a b =练习:1、()()103x x -⨯-=________.2、()()()32101036a a a a -÷-÷-÷ = 。
3、23132--⎛⎫-+ ⎪⎝⎭= 。
4、322(3)---⨯- = 。
5、下列运算中正确的是( )A .336x y x =;B .235()m m =;C .22122x x-=; D .633()()a a a -÷-=- 6、计算()8pm n a aa ⋅÷的结果是( )A 、8mnp a - B 、()8m n p a ++ C 、8mp np a+- D 、8mn p a+-7、下列计算中,正确的有( )①325a a a ⋅= ②()()()4222ab ab ab ab ÷= ③()322a a a a ÷÷= ④()752a a a -÷=。
A 、①②B 、①③C 、②③D 、②④ 8、在①5x x ⋅ ②7x y xy ÷ ③()32x - ④()233x y y ÷中结果为6x 的有( )A 、①B 、①②C 、①②③④D 、①②④ 提高点1:巧妙变化幂的底数、指数 例:已知:23a =,326b =,求3102a b+的值;1、 已知2a x =,3bx =,求23a bx-的值。
数学中的整式运算知识点数学中的整式运算是指对整式进行各种加减乘除的运算。
整式是由常数、变量及其指数和系数之和组成的表达式,其中变量都是以整数指数出现的。
一、整式的加法和减法整式的加法和减法遵循相同的规律:将相同的项按照系数相加或相减,并保留同类项的系数。
例如,考虑以下两个整式的加法和减法:整式A:3x^3 + 2x^2 - 5x + 1整式B:-2x^3 + 4x^2 + 3x - 2将两个整式对应的同类项相加或相减得到结果:A +B = (3x^3 + (-2x^3)) + (2x^2 + 4x^2) + (-5x + 3x) + (1 + (-2))= x^3 + 6x^2 - 2x - 1A -B = (3x^3 - (-2x^3)) + (2x^2 - 4x^2) + (-5x - 3x) + (1 - (-2))= 5x^3 - 2x^2 - 2x + 3二、整式的乘法整式的乘法遵循分配律和乘法法则,即将每个项相乘,再将同类项相加。
例如,考虑以下两个整式的乘法:整式A:(2x + 1)(3x - 4)整式B:(x^2 - 3)(x + 2)将每个项相乘并将同类项相加得到结果:A = 2x * 3x + 2x * (-4) + 1 * 3x + 1 * (-4)= 6x^2 - 8x + 3x - 4= 6x^2 - 5x - 4B = x^2 * x + x^2 * 2 + (-3) * x + (-3) * 2= x^3 + 2x^2 - 3x - 6三、整式的除法整式的除法是将一个整式除以另一个整式,得到商和余式。
但需要注意的是,整式的除法不一定能得到整式的结果。
例如,考虑以下整式的除法:整式A:4x^3 - 9x^2 + 2x - 3整式B:2x - 1计算得到商和余式:2x^2 - 5__________________2x - 1 | 4x^3 - 9x^2 + 2x - 3- (4x^3 - 2x^2)__________________-7x^2 + 2x - 3- (-7x^2 + 7x)__________________-5x - 3通过除法运算可得到商为2x^2 - 5,余式为-5x - 3。
整式乘除知识点总结
为了让大家更好的迎接中考,那么,整式的知识点是必不可少的。
下面是小编与大家分享的整式乘除知识点总结,欢迎大家参考借鉴!
整式乘除知识点总结(一)
1.单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式。
2.单项式与多项式相乘
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:
①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
②运算时要注意积的符号,多项式的每一项都包括它前面的符号;
③在混合运算时,要注意运算顺序。
3.多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
②多项式相乘的结果应注意合并同类项;
③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到
整式乘除知识点总结(二)
单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
a)积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;
b)相同字母相乘,运用同底数幂的乘法法则;
c)只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
d)单项式乘法法则对于三个以上的单项式相乘同样适用;
e)单项式乘以单项式,结果仍是一个单项式。
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:
a)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
b)运算时要注意积的符号,多项式的每一项都包括它前面的符号;
c)在混合运算时,要注意运算顺序。
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
a)多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
b)多项式相乘的结果应注意合并同类项;
整式乘除知识点总结(三)
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。
或虽含有除法运算,但除式中不含字母的一类代数式叫单项式;数字或字母的乘积叫单项式(单独的一个数字或字母也是单项式)。
2.系数:单项式中的数字因数叫做这个单项式的系数。
所有字母的指数之和叫做这个单项式的次数。
任何一个非零数的零次方等于1.
3.多项式:几个单项式的和叫多项式。
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
5.常数项:不含字母的项叫做常数项。
6.多项式的排列
(1)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
(2)把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
7.多项式的排列时注意:
(1)由于单项式的项,包括它前面的*质符号,因此在排列时,仍需把每一项的*质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式:
单项式和多项式统称为整式。
8.多项式的加法:
多项式的加法,是指多项式的同类项的系数相加(即合并同类项)。
9.同类项:所含字母相同,并且相同字母的次数也分别相同的项叫做同类项。
10.合并同类项:多项式中的同类项可以合并,叫做合并同类项,合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字
母与字母的指数不变。
11.掌握同类项的概念时注意:
(1)判断几个单项式或项,是否是同类项,就要掌握两个条件:
①所含字母相同。
②相同字母的次数也相同。
(2)同类项与系数无关,与字母排列的顺序也无关。
(3)所有常数项都是同类项。
12.合并同类项步骤:
(1)准确的找出同类项;
(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;
(3)写出合并后的结果。
13.在掌握合并同类项时注意:
(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0;
(2)不要漏掉不能合并的项;
(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
14.整式的拓展
整式的乘除:重点是整式的乘除,尤其是其中的乘法公式。
乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握.因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。
添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。
在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。
整式四则运算的主要题型有:
(1)单项式的四则运算
此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。
(2)单项式与多项式的运算
整式乘除知识点总结(四)
整式的加减
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;
单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
6.合并同类项法则:系数相加,字母与字母的指数不变.
7.去(添)括号法则:
去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
8.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)
9.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).。