概率论与数理统计说课稿
- 格式:docx
- 大小:38.79 KB
- 文档页数:6
概率论与数理统计说课比赛概率论和数理统计是现代数学的重要分支,广泛应用于各个领域,如金融、医学、工程、社会科学等。
本文将围绕概率论和数理统计的基本概念、应用、方法等内容展开讨论。
一、概率论的基本概念概率是一种描述事件发生可能性的数学工具。
在概率论中,我们通常用样本空间、事件、概率等概念来描述随机现象。
样本空间是指所有可能出现的结果的集合,事件是样本空间的子集,概率则是描述某一事件发生可能性的数值。
在概率论中,我们还会遇到一些重要的分布,如均匀分布、正态分布、泊松分布等。
这些分布在实际应用中有着重要的作用,可以帮助我们更好地理解和分析随机现象。
二、数理统计的基本概念数理统计是一种通过概率模型来研究数据规律的方法。
在数理统计中,我们通常会用到样本、样本均值、方差、标准差等概念。
样本是指从总体中随机抽取的一部分数据,样本均值是样本中所有数据的平均值,方差和标准差则可以帮助我们度量数据的离散程度。
在数理统计中,我们还会用到一些常见的统计量,如t检验、方差分析、回归分析等。
这些方法可以帮助我们更好地理解和分析数据,从而得到有用的结论。
三、概率论与数理统计的应用概率论和数理统计在各个领域都有着广泛的应用。
例如,在金融领域,我们可以用概率论和数理统计来研究股票、债券等金融产品的价格变化规律,从而帮助投资者做出更加明智的投资决策。
在医学领域,我们可以用概率论和数理统计来研究疾病的发病率、治疗效果等问题,从而帮助医生更好地制定治疗方案。
在工程领域,我们可以用概率论和数理统计来研究产品的可靠性、寿命等问题,从而帮助企业更好地控制生产成本和提高产品质量。
四、概率论与数理统计的方法概率论和数理统计的方法有很多,其中一些常见的方法包括:最大似然估计、贝叶斯估计、假设检验等。
这些方法都是通过利用样本数据来推断总体规律的。
最大似然估计是一种通过寻找最大化似然函数值的方法来估计总体参数的方法。
贝叶斯估计则是一种基于贝叶斯定理的估计方法,可以用来估计总体参数的后验概率分布。
第一章随机事件与概率§1.1 随机事件1.1.1 随机试验与样本空间概率论约定为研究随机现象所作的随机试验应具备以下三个特征:(1)在相同条件下试验是可重复的;(2)试验的全部可能结果不只一个,且都是事先可以知道的;(3)每一次试验都会出现上述可能结果中的某一个结果,至于是哪一个结果则事前无法预知。
为简单计,今后凡是随机试验皆简称试验,并记之以英文字母E。
称试验的每个可能结果为样本点,并称全体样本点的集合为试验的样本空间,分别用希腊字母ω和Ω表示样本点及样本空间。
必须指出的是这个样本空间并不完全由试验所决定,它部分地取决于实验的目的。
假设抛掷一枚硬币两次,出于某些目的,也许只需要考虑三种可能的结果就足够了,两次都是正面,两次都是反面,一次是正面一次是反面。
于是这三个结果就构成了样本空间Ω。
但是,如果要知道硬币出现正反面的精确次序,那么样本空间Ω就必须由四个可能的结果组成,正面-正面、反面-反面、正面-反面、反面-正面。
如果还考虑硬币降落的精确位置,它们在空中旋转的次数等事项,则可以获得其它可能的样本空间。
经常使用比绝对必要的样本空间较大的样本空间,因为它便于使用。
比如,在前面的例子中,由四个可能结果组成的样本空间便于问题的讨论,因为对于一个“均匀”的硬币这四个结果是“等可能”的。
尽管这在有3种结果的样本空间内是不对的。
例 1.1.1 1E :从最简单的试验开始,这些试验只有两种结果。
在抛掷硬币这一试验中出现“正面”或“反面”;在检查零件质量时,可能是“合格”或“不合格”;当用来模拟电子产品旋转的方向时,结果是“左边”或者“右边”;在这些情况下样本空间Ω简化为:Ω={正面,反面}。
2E :更复杂一些,有的随机试验会产生多种可能的结果,比如掷一颗骰子,观察出现的点数。
样本空间为:{1,2,3,4,5,6}Ω=。
3E : 掷两枚硬币(或者观察两个零件或两个电子产品),可以得到Ω={(正面,正面)、(反面,反面)、(正面,反面)、(反面,正面) } 读者可以将其推广到掷n 个硬币,样本空间里有多少样本点呢?4E :再复杂一些,一名射手向某目标射击,直至命中目标为止,观察其命中目标所进行的射击次数。
《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。
《概率论与数理统计》课程教学大纲一、课程基本信息二、课程目标(一)总体目标:概率论与数理统计是研究随机现象客观规律性的数学学科,在高等工科学校教学计划中是一门基础理论课。
通过本课程的学习,使学生掌握概率论与数理统计的基本概念,基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。
(二)课程目标:课程目标1:知识目标通过本课程的学习,学生系统掌握随机变量及其分布、参数估计与假设检验等重要知识。
课程目标2:技能目标通过本课程的基本概念、基本理论和基本方法的讲授及学生的练习,培养学生的数学推理,数理逻辑,演绎归纳,数据分析,假设论证能力。
课程目标3:素质培养(1) 通过本课程的教学,培养和提高学生对所学知识进行整理、概括、消化吸收能力,以及围绕教学内容阅读参考资料,自我扩充知识领域的能力。
(2) 通过作业和课堂讨论,培养学生口头表达能力,做到思路清晰,层次分明。
(3)通过作业,培养学生独立思考,深入钻研问题的习惯以及一题多解,举一反三的能力,应用数学的意识以及运用数学知识分析问题的良好品质。
(4)具有自主学习和终身学习的意识,有不断学习和适应发展的能力。
(三)课程目标与毕业要求、课程内容的对应关系三、教学内容第一章随机事件及其概率1.教学目标理解随机事件和样本空间的概念;熟练掌握事件之间的关系与基本运算。
理解事件频率的概念;了解随机现象的统计规律性。
知道概率的公理化定义;理解古典概率的概念;了解几何概率;掌握概率的基本性质;会应用这些性质进行概率计算。
理解条件概率的概念;掌握乘法定理、全概率公式和贝叶斯公式,并会应用这些公式进行概率计算。
理解事件独立性的概念;会应用事件的独立性进行概率计算。
2.教学重难点本节是基础知识,在高中阶段大部分已经学过,都是重点内容。
教学的重难点在于事件的三种关系:互斥,独立和包含,事件概率的两个公式:加法公式和乘法公式,以及全概率和贝叶斯公式的应用。
课程名称:概率论与数理统计授课对象:大学本科学生课时安排:2课时教学目标:1. 使学生掌握概率论与数理统计的基本概念、基本原理和基本方法。
2. 培养学生运用概率论与数理统计方法解决实际问题的能力。
3. 增强学生对数学理论的应用意识和创新思维。
教学内容:一、概率论的基本概念1. 随机事件2. 概率3. 条件概率4. 独立性5. 全概率公式与贝叶斯公式二、随机变量及其分布1. 离散型随机变量2. 连续型随机变量3. 常见分布4. 多维随机变量及其分布教学过程:第一课时一、导入1. 介绍概率论与数理统计在各个领域的应用,激发学生学习兴趣。
2. 阐述本课程的教学目标和重要性。
二、基本概念讲解1. 随机事件:通过举例说明随机事件的概念,如掷骰子、抽签等。
2. 概率:讲解概率的定义、性质及计算方法,如古典概率、几何概率等。
3. 条件概率:讲解条件概率的定义、性质及计算方法,如贝叶斯公式。
4. 独立性:讲解独立性概念、性质及判断方法。
三、课堂练习1. 学生独立完成课堂练习题,巩固所学知识。
2. 教师巡视指导,解答学生疑问。
第二课时一、随机变量及其分布讲解1. 离散型随机变量:讲解离散型随机变量的定义、性质及常见分布,如二项分布、泊松分布等。
2. 连续型随机变量:讲解连续型随机变量的定义、性质及常见分布,如均匀分布、正态分布等。
3. 常见分布:讲解常见分布的应用,如正态分布、指数分布等。
4. 多维随机变量及其分布:讲解多维随机变量的定义、性质及常见分布,如二维正态分布、二维均匀分布等。
二、课堂练习1. 学生独立完成课堂练习题,巩固所学知识。
2. 教师巡视指导,解答学生疑问。
三、总结1. 总结本节课所学内容,强调重点和难点。
2. 鼓励学生在课后进行复习和巩固。
教学评价:1. 课堂练习:通过课堂练习,检验学生对基本概念、基本原理和基本方法的掌握程度。
2. 课后作业:布置课后作业,巩固所学知识,提高学生运用概率论与数理统计方法解决实际问题的能力。
WORD 格式可编辑《概率论与数理统计》说课稿各位老师大家好!我说课的课程是“概率论与数理统计”《概率论与数理统计》是研究随机现象的统计规律的性的一门学科,是高等师范专科学校数学教育专业的一门必修课程。
本课程分为两大部分:第一部分是概率论,主要包括事件与概率;随机变量及其分布;随机变量的数字特征;大数定律与中心极限定理,它是数理统计的理论基础,第二部分是数理统计,主要包括参数估计;假设检验;方差分析与一元线性回归。
通过本课程的学习使学生初步掌握处理随机现象的基础理论和基本方法,使学生具有解决某些实际问题的能力,为从事中、小学数学教学有关内容的教学奠定了扎实的基础。
我说课的内容主要从以下六个方面进行:1、课程设置 2 、课程设计 3 、课程的教学实施4、教学资源 5 、课程特色 6、教学效果一、课程设置(一)本课程的性质、地位、作用数学教育专业主要培养适应基础教育发展需要,德、智、体、美全面发展,具有扎实的数学学科基本知识与基本方法,掌握小学教学的基本规律和基本技能,具有良好的师范素质、较强的实践能力,为从事中、小学数学教学有关内容的教学奠定了扎实的基础。
WORD 格式可编辑课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合数学教育专业的特点介绍性地给出在该领域中的具体应用。
通过本课程的教学,使学生掌握概率论与数理统计的基本概念、理论和思想,初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决、处理实际不确定问题的基本技能和基本素质。
先修课程:《数学分析》、《高等代数》等课程。
课程用到了数学分析中的一重积分、二重积分、导数等知识,用到高等代数中的 n 维向量等知识。
后续课可能在数学建模中用到。
(二)教学目标本课程分为两大部分:第一部分是概率论,主要包括事件与概率;随机变量及其分布;随机变量的数字特征;大数定律与中心极限定理,它是数理统计的理论基础,第二部分是数理统计,主要包括参数估计;假设检验;方差分析与一元线性回归。
《概率论与数理统计》教案一、教学目标1. 了解概率论与数理统计的基本概念,理解随机现象的统计规律性。
2. 掌握概率论的基本计算方法,包括组合、排列、概率公式等。
3. 熟悉数理统计的基本方法,包括描述性统计、推断性统计、假设检验等。
4. 能够运用概率论与数理统计的方法解决实际问题。
二、教学内容1. 概率论的基本概念:随机试验、样本空间、事件、概率等。
2. 概率计算方法:组合、排列、概率公式、条件概率、独立性等。
3. 数理统计的基本概念:总体、样本、描述性统计、推断性统计等。
4. 假设检验:卡方检验、t检验、F检验等。
5. 实际问题应用:概率论与数理统计在实际问题中的举例分析。
三、教学方法1. 讲授法:讲解概率论与数理统计的基本概念、原理和方法。
2. 案例分析法:通过具体案例,让学生了解概率论与数理统计在实际问题中的应用。
3. 互动教学法:引导学生参与课堂讨论,提问、解答问题,提高学生的思考能力。
4. 实践操作法:引导学生利用统计软件进行数据分析和处理,提高学生的实际操作能力。
四、教学环境1. 教室环境:宽敞、明亮,教学设备齐全,包括投影仪、计算机等。
2. 教材和辅导资料:选用合适的教材和辅导资料,为学生提供丰富的学习资源。
3. 统计软件:安装统计分析软件,如Excel、SPSS等,方便学生进行实践操作。
五、教学评价1. 平时成绩:考察学生的出勤、课堂表现、作业完成情况等。
2. 期中考试:设置期中考试,检验学生对概率论与数理统计知识的掌握程度。
3. 课程设计:布置课程设计项目,让学生运用概率论与数理统计的方法解决实际问题。
4. 期末考试:全面考察学生对概率论与数理统计知识的掌握程度。
六、教学资源1. 教材:选用权威、适合教学的的概率论与数理统计教材。
2. 辅导资料:提供习题集、案例分析集等辅导资料,帮助学生巩固知识。
3. 在线资源:推荐优秀的在线课程、教学视频、学术文章等,方便学生自主学习。
4. 软件工具:介绍和使用统计软件工具,如R、Python等,提高学生数据分析能力。
《概率论与数理统计》教案第一章:概率的基本概念1.1 概率的定义与性质介绍概率的定义,理解概率是衡量随机事件发生可能性大小的数。
掌握概率的基本性质,如additivity(可加性)和symmetry(对称性)。
1.2 条件概率与独立性引入条件概率的概念,理解在给定一些信息的情况下,事件发生的概率。
学习独立事件的定义,掌握独立性原理,了解如何通过乘法规则计算联合概率。
第二章:随机变量及其分布2.1 随机变量的概念介绍随机变量的定义,理解随机变量是随机现象的数值化描述。
学习离散随机变量和连续随机变量的区别,以及如何列出随机变量的可能取值。
2.2 概率分布学习概率分布的概念,掌握如何计算随机变量取某个值的概率。
掌握期望值和方差的计算方法,了解它们在描述随机变量集中趋势和离散程度方面的作用。
第三章:多维随机变量及其分布3.1 联合随机变量引入多维随机变量的概念,理解多个随机变量共同作用的概率分布。
学习如何列出联合随机变量的可能取值,以及如何计算联合概率。
3.2 独立随机变量掌握独立多维随机变量的概念,了解独立性在概率论中的重要性。
学习如何计算两个独立随机变量的联合分布,以及如何推导条件概率。
第四章:大数定律与中心极限定理4.1 大数定律介绍大数定律的概念,理解在足够多次试验中,随机变量的样本平均将趋近于其期望值。
学习弱大数定律和强大数定律的表述,以及它们在实际应用中的意义。
4.2 中心极限定理掌握中心极限定理的内容,了解当样本量足够大时,样本均值的分布将趋近于正态分布。
学习如何应用中心极限定理进行近似计算,以及其在统计学中的重要性。
第五章:数理统计的基本概念5.1 统计量与样本介绍统计量的概念,理解统计量是用来描述样本特征的函数。
学习如何计算样本均值、样本方差等基本统计量。
5.2 抽样分布与估计掌握抽样分布的概念,了解不同统计量的抽样分布特性。
学习点估计和区间估计的定义,了解如何根据样本数据估计总体参数。
概率论与数理统计ProbabiIityandStatistics一、课程基本信息课程编号:110849适用专业:全校性公共课课程性质:学科基础必修/学科基础限选开课单位:数学与数据科学学院学时:40学分:2.5考核方式:闭卷考试,平时成绩占30%,期末考试成绩占70%先修课程:高等数学中文简介:概率论与数理统计是研究随机现象统计规律性的一门数学学科。
它是经济贸易与经济管理专业必修的基础课,是学习专业课、基础专业课以及研究生课程等后续课程的必要基础,也是参加社会生产、日常生活和工作的必要基础。
主要内容包括:随机事件及其概率、随机变量及其分布、随机变量的数字特征、数理统计的基础知识、参数估计、假设检验等。
二、教学目的与要求1、知识目标通过该课程的学习,使学生系统地获得概率统计等方面的基本知识、基本理论和常用的运算方法;为后续专业课程的学习奠定必要的数学基础。
2、能力目标在课程的教学过程中,要通过各个教学环节逐步培养学生在观察问题、分析问题、解决问题的能力方面能力,使学生形成良好的辩证唯物主义世界观。
3、素质目标培养学生灵活、抽象、猜想、活跃的数学思维,逐步形成数学意识,让数学这一工具进入到学生的生活实践中。
4、课程思政目标概率论与数理统计作为大学重要的公共基础课,应当承担起为学生树立正确的人生观、世界观和价值观的重任,引导学生在学习概率论与数理统计课程内容的基础上树立正确的三观,具有强烈的爱国主义热情,通过四年的大学学习,把学生培养成既具有远大理想又具有高度社会责任感的新时代大学生,真正成为对祖国对社会有用的人才,为祖国的繁荣昌盛做出自己应有的贡献。
具体的目标主要包括:(1)通过对数学抽象概念产生的数学文化背景介绍,培养学生的爱国情怀、文化自信和民族自豪感,学习古人坚韧不拔的毅力和拼搏精神;(2)让学生了解身边的数学,认识数学的理性价值、应用价值和审美价值,激发学生的兴趣,增强学生对未知世界的好奇心,培养勇于探索的创新意识。
《概率论与数理统计(文科)》说课一、课程目标《概率论与数理统计》(文科)是我校工管系、贸经系、会计系各专业的一门重要基础课和必修课,内容丰富,实用性强。
它是一门从数量方面研究和揭示随机现象统计规律性的学科,是数学的重要分支学科,在金融、保险、经济与企业管理等方面都起到非常重要的作用。
可以这样说,概率统计是一门极富时代性和创造性的学科,在当代全球经济环境中,最成功的管理者和决策者是那些能够理解和有效运用概率和统计信息的人。
我们基础部的数学教师,都非常重视这门课程与专业课及实践的联系。
比如说:会计—当会计师事物所为其客户进行审计时,他们要利用统计抽样方法。
金融—金融顾问们利用各种统计信息来引导投资。
营销—装在零售收银台的电子扫描设备是用来为各种各样的营销研究的应用收集资料的。
经济—经济学家可以根据统计信息指标,来预测经济发展趋势。
所以我们现在重点要做的是,培养同学们运用概率与数理统计的方法去分析和解决有关实际问题的能力。
二、课程内容我们采用的教材是2005年7月出版的,由龚徳恩主编的四川人民出版社出版的《经济数学基础》第三分册《概率统计》(修订第四版),内容难易程度适宜,章节安排合理,比较适合我校的同学进行学习。
考虑到后续课程和将来工作的需要,实际授课讲授以下几部分,具体学时分配如下:这些章节的选择,是通过教学实践总结的,与后续课和学生将来工作关系最紧密的部分。
课程的重点:随机变量的分布和数字特征,几种重要的分布函数以及中心极限定理难点:最大似然估计解决方法:弱化定理证明,强调实践,精简多练根据我们学校的学生学习情况编写了难度适中的练习册。
三、教学进程这门课程的具体教学内容如下:第一章随机事件与概率◆随机事件◆概率◆条件概率与独立性◆全概率公式与贝叶斯公式重点:条件概率、乘法公式、全概率公式及贝叶斯公式,另外还要求掌握几种概型(古典概型、贝努利概型)。
难点:条件概率与三大公式。
教学心得:本章的学习开始,有必要给学生简单介绍《概率与统计》产生、发展的历史及其重大意义,以提高学生的人文精神和数学素养。
WORD 格式可编辑《概率论与数理统计》说课稿各位老师大家好!我说课的课程是“概率论与数理统计”《概率论与数理统计》是研究随机现象的统计规律的性的一门学科,是高等师范专科学校数学教育专业的一门必修课程。
本课程分为两大部分:第一部分是概率论,主要包括事件与概率;随机变量及其分布;随机变量的数字特征;大数定律与中心极限定理,它是数理统计的理论基础,第二部分是数理统计,主要包括参数估计;假设检验;方差分析与一元线性回归。
通过本课程的学习使学生初步掌握处理随机现象的基础理论和基本方法,使学生具有解决某些实际问题的能力,为从事中、小学数学教学有关内容的教学奠定了扎实的基础。
我说课的内容主要从以下六个方面进行:1、课程设置 2 、课程设计 3 、课程的教学实施4、教学资源 5 、课程特色 6、教学效果一、课程设置(一)本课程的性质、地位、作用数学教育专业主要培养适应基础教育发展需要,德、智、体、美全面发展,具有扎实的数学学科基本知识与基本方法,掌握小学教学的基本规律和基本技能,具有良好的师范素质、较强的实践能力,为从事中、小学数学教学有关内容的教学奠定了扎实的基础。
WORD 格式可编辑课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合数学教育专业的特点介绍性地给出在该领域中的具体应用。
通过本课程的教学,使学生掌握概率论与数理统计的基本概念、理论和思想,初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决、处理实际不确定问题的基本技能和基本素质。
先修课程:《数学分析》、《高等代数》等课程。
课程用到了数学分析中的一重积分、二重积分、导数等知识,用到高等代数中的 n 维向量等知识。
后续课可能在数学建模中用到。
(二)教学目标本课程分为两大部分:第一部分是概率论,主要包括事件与概率;随机变量及其分布;随机变量的数字特征;大数定律与中心极限定理,它是数理统计的理论基础,第二部分是数理统计,主要包括参数估计;假设检验;方差分析与一元线性回归。
概率论与数理统计说课稿
《随机事件的独立性》说课和教学方案(含板书)设计
一,说教材
1,教学内容:"随机事件的独立性"这节课属于XXX出版的"概率论与数理统计(经管类)"中的第一章第五节的内容,是继上一节条件概率,乘法公式,全概率公式等内容后的有一节有关随机事件独立性的概率求法的内容,这是概率统计中必学的一节内容,为后面随机变量的独立性内容的基础.
2,教学目标
通过本节课的研究,理解随机事件独立性的概念,会用公式判别或根据实际判断随机事件是否独立,并能利用时间的独立性公式来求一些概率.
3,教学的重难点
教学重点:如何利用事件的独立性来求一些事件的概率;
教学难点:随机事件独立性的判断.
4,教材分析
由于随机事件的独立性的有关概念有些抽象,教材采用了描述性定义的方式,要求学生达到理解的层次.并在对前面的内容进行分析后通过一个引例后来讲述本节课的内容.
二,说教法与学法
一节课的效果如何,关键是看教师的教与学生的学如何相结合.由于本节知识的抽象性,按照学生的心理特点和思考规律,本节采用调动学生思考的积极性,不管他们最终思考结果如何,一定要体现学生的主体作用,教师为辅.在教学过程中多提疑点,启发引导.为了巩固知识和方法,采用讲练结合.同时可适当借助多媒体辅助教学,以引导思考为核心,展示课件,启发引导学生观察思考,分析,并沿着积极的思维方向,逐步达到即定的教学目标.应该充分发挥学生的主动性,由学生自己阅读,审题,分析,提炼,再由教师讲解题目的含义,教学生如何正确阅读分析,如何利用随机事件的独立性来求解某一类概率问题.
三,说教学程序设计
1,复引入,并自然进入新课
设A和B是试验E的两个变乱,在一般情形下,A的产生对B的产生是有影响的,即.但有时,,即变乱A的产生与否,不影响变乱B产生的概率,由乘法公式可得
引例:某检修工人负责甲,乙两个车间机器的检修.已知甲车间机器需要检修的概率是0.2,乙车间机器需要检修的概率是0.15,求检修工人空闲的概率.
解:设A={甲车间不需要检验},B={乙车间不需要检验},所求为P(AB).
由概率乘法公式P(AB)=
解引例:因为A与B独立,
所以P(AB)=P(A)P(B)=(1-0.2)(1-0.15)=0.68
引入的目的:
①,充分让学生思考为什么会成立,体现学生主体作用.
②,教师多提疑问,变更学生的思考积极性,渐渐引入.
③,可让不同角度的解法,同时纠正了学生惯性思维导致的错误,打开了学生思维空间.④,巩固上节课所研究的条件概率,乘法公式,全概率公式等内容,并强调注意事项,让学生熟练掌握条件概率的公式.
以提问的方式引入,再现旧知识,巩固旧知识,为研究本节课的知识作好铺垫,并有利于新旧知识的衔接.可借助多媒体动画演示随机事件独立性公式.这不仅使学生直观,形象地得以理解和再现,同时,也有利于培养学生的探索性思维能力,激发学生的求知欲.
2,进修新概念
定义:若变乱A,B满足P(AB)=P(A)P(B)
称事件A,B相互独立.则有
P(B A)=P(B) P(A B)=P(A)
反之,有P(AB)=P(A)P(B) A与B独立.
关于事件的独立性有结论:
若四对变乱A,B;A,;,B;,中有一对独立,则另外三对也独立(即这四对变乱或者都独立,或者都不独立).
这为判断事件的独立性提供了方便.
3,例题讲解
例1甲,乙各自同时同时向一架敌机射击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5,求敌机被击中的概率.
分析:可利用全概率公式及独立性公式P(A+B)=P(A)+P(B)-P(AB)
P(AB)= P(A) P(B)
或者利用公式: P(A+B)=1-P()
由独立性:P()=P()P()求解.
定义2设A,B,C为三个事件,如果满足
则称变乱A,B,C相互独立,若仅前面三项成立,则称变乱A,B,C两两独立.
注意:事件的独立性可推广到n个事件相互独立的情形.
例2设袋中装有4只分别标有1,2,3,4号的球,设A={取到1号或2号球},B={取到1号或3号球},C={取到1号或4号球},则事件A,B,C两两独立,但不相互独立.
分析及求解:因为P(A)=P(B)=P(C)=
P(AB)=P(AC)=P(BC)==
P(ABC)= =,
所以,三个事件A,B,C两两独立,但并不相互独立.
例3一个元件能正常工作的概率叫做这个元件的可靠性,由原件组成的系统能正常工作的概率叫做系统的可靠性.如图所示,设有四个独立工作的元件先按串联在按并联的方式连接(称为串并联系统).设地i个元件的可靠性为(i=1,2,3,4),试求系统的可靠性.
分析:根据物理学串并联知识及由变乱的独立性,得体系的牢靠性.
4,课堂练
练1某电台有若干台发射机,每台发射机都独立地运行,正常工作的概率都是0.8.问电台至少需要几台发射机才能保证正常工作的概率达到99%以上.
根据所设,所求为P(A)>0.99.至少有一台发射机正常工作,则电台才能正常工作,故是一个和变乱的概率,用摩根律可以将和变乱转化成积变乱,利用变乱的独立性,就可以求得结果.只需有一台发射机正常工作,则电台就能正常工作.
设有n台发射机,A={电台正常工作},又设Ak={第k台发射机正常工作},k=1,2,…,n.根据变乱的和之定义,XXX表示至少有一台发射机正常工作,则A产生,故P(A)=
P(A1+A2+…+An).
5,归纳小结:本节课主要研究了通过讲述一个引例来讲述了随机事件的独立性的概念,并通过三个例子来说明随机事件概率的求法以及说明了如何应用独立性来求某些随机事件的概率,特别要注意到是利用正反两方面来求随机事件的概率.
四,布置作业:讲义19页20~23。