普朗克黑体辐射公式
- 格式:docx
- 大小:36.32 KB
- 文档页数:1
所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。
辐射热平衡状态: 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
实验发现:热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。
实验得到: 1. Wien 公式从热力学出发加上一些特殊的假设,得到一个分布公式:Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。
2. Rayleigh-Jeans 公式Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且∞→=⎰∞v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是4T E σ=,该式叫做Stefan-Bolzmann公式,σ叫做Stefan-Bolzmann 常数。
3. Planck 黑体辐射定律1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。
作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以给定的频率 v 振荡;(2)黑体只能以 E = hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。
得到:νννπνρνd kT h C h d ⎪⎪⎭⎫ ⎝⎛-=1)/exp(1833该式称为 Planck 辐射定律 h 为普朗克常数,h=s j .10626.634-⨯4,普朗克的推导过程:把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏ααk C 2,1=每一个简振模在力学上等价于一个自由度,记频率在()νννd +,内的自由度数为()ννd g ,则(0,v )范围内的总自由度数G(v)与g(v)的关系为()()ννννd g G ⎰=0。
欢迎阅读普朗克黑体辐射公式的推导所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。
黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。
辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。
实验发现:热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。
实验得到: 1.Wien 公式从热力学出发加上一些特殊的假设,得到一个分布公式:Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。
2. Rayleigh-Jeans 公式Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且∞→=⎰∞v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。
3. Planck 黑体辐射定律1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。
作为辐射原子的模型,Planck 假定:(1)原子的性能和谐振子一样,以给定的频率v 振荡;(2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。
得到:νννπνρνd kT h C h d ⎪⎪⎭⎫ ⎝⎛-=1)/exp(1833该式称为Planck 辐射定律 h 为普朗克常数,h=s j .10626.634-⨯4,普朗克的推导过程:把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏ααk C 2,1=每一个简振模在力学上等价于一个自由度,记频率在()νννd +,内的自由度数为()ννd g , 则(0,v )范围内的总自由度数G(v)与g(v)的关系为()()ννννd g G ⎰=0。
量子力学解释黑体辐射谱黑体辐射谱是指由具有完全吸收和完全发射性质的物体所辐射出的电磁波谱。
在经典物理学中,黑体辐射无法得到很好的解释,而量子力学的发展则提供了更准确的解释和计算方法。
量子力学的基本原理是,微观粒子的能量是量子化的,也就是说,存在一个最小的能量单位,即光子。
光子是电磁波的粒子化表现,其能量与光的频率有关系,由普朗克公式E=hf给出,其中h为普朗克常数,f为光的频率。
在黑体辐射中,物体吸收的能量会导致其内部电子发生激发和跃迁,而发射出的能量会形成辐射光子。
根据量子力学的原理,能量的量子化导致了辐射光子的能量也是离散的。
具体来说,当物体处于较高的温度时,其内部的电子会被激发到较高的能级上,当电子从一个能级跃迁到另一个能级时,能量差可以用一个光子的能量来表示,这个光子的能量对应着一个特定的波长或频率。
根据量子力学的理论,我们可以计算出黑体辐射谱的分布。
普朗克黑体辐射定律给出了黑体辐射功率与波长或频率的关系。
根据定律,黑体辐射功率与波长的关系可以用一个公式来表示,即普朗克公式:B(λ, T) = (2hc^2/λ^5) × (1/(e^(hc/λkT) - 1)其中,B(λ, T)表示单位时间内单位面积的黑体辐射功率,λ表示波长,T表示温度,h为普朗克常数,c为光速,k为玻尔兹曼常数。
根据普朗克公式,我们可以得到黑体辐射谱的分布图像,即黑体辐射谱线。
在低频段(长波段),辐射能量较低,谱线呈现为一个平缓的曲线;随着频率的增加,能量也随之增加,曲线逐渐变得陡峭。
当频率趋近于无穷大时,辐射能量趋于零。
这个分布被称为黑体辐射曲线,也被称为普朗克曲线。
量子力学的解释还提供了对黑体辐射的理论计算。
通过量子力学的数学模型,我们可以计算特定温度下的黑体辐射谱线,并与实验数据进行比较。
这种计算可以更准确地描述和解释黑体辐射的特性。
总的来说,量子力学提供了对黑体辐射谱的解释和计算方法。
通过量子化的能量和光子的概念,我们可以理解和描述黑体辐射谱线的分布规律。
黑体辐射公式(普朗克公式):推导普朗克黑体辐射公式设黑体腔内是稳定的驻波场,是具有不同频率、不同传播方向的驻波系统.在腔壁上电场形成波节,磁场形成波腹.每一驻波代表一种振动模式. 以长方形腔为例.腔内某一驻波的波矢为:产生驻波的条件为: 其中因此,谐振腔中可以存在的波矢为:因此有一组 对应一种模式.不同的频率应有不同的模式,相同的频率,因k 方向不同,也会有不同的模式. 一组 对应一个波矢,对应波矢三维空间中的一个点.波矢三维空间中的一任意点,其坐标为 注意:驻波波矢有限制.不同的 形成三维空间点阵, 8个格点形成一个长方体元, 每个格点又属于8个长方体元因此,每一格点对应一个长方体元, 有n 个格点, 对应n 个长方体元, 就有n 个振动模式.频率从 0~ν 范围内, 有多少个振动模式? 由 可知,允许存在的波矢数等于在波矢空间内半径为2πν/c 的球体内可以存在的体元数。
因m 1、m 2、m 3为正整数,故对应1/8球体内的体元数: 3221(,).1h kTh r T ce νπνν=⋅-2222,x y z k k k k =++2cos ,x k παλ=2cos ,y k πβλ=2cos ,zk πγλ=123,,0,1,2,m m m =112cos ,L m αλ=222cos ,L m βλ=332cos .L m γλ=11,x k m L π=22,y k m L π=33.z k m L π=222,/k c c πππνλν===22222312123()()()m m m k L L L π⎡⎤=++⎢⎥⎣⎦222312123()()().22m mm c c k L L L νπ==++1,2,3m m m 1,2,3m m m 123123(,,)m m m L L L πππ1,2,3m m m 222222()x y z k k k k cπν==++43331424(),833V c cπνπνπ=⋅=⋅球体元的体积:其中,V =L 1L 2L 3为谐振腔的体积 体元数:考虑到两个偏振态:将上式两边除以V 并对ν 微分,得单位体积频率在ν~ d ν 范围内的本征模数. 普朗克认为,黑体腔器壁是不同频率的线性谐振子,由能量子假说,这些谐振子取分立的值,按照玻耳兹曼定理,具有能量 的振动几率有如下关系所以,平均能量为壁上振子分布应与驻波分布相同,因此单位体积内频率范围在 ν ~ d ν 内的能量密度为黑体单色辐出度为二 证明关系式热辐射以光速c 向各个方向辐射,因此,在任意一方向上的立体角d Ω内,频率为ν的辐出度为在小孔外2π立体角空间内总辐射能量为 3123.V L L L Vππππ=⋅⋅=元334,3V V V c πν=⋅球元338.3N V cνπν=⋅238,dn d cπνν=0,hεν=0,m εε=0000,,2,3εεε230001:::kTkTkTeeeενενεν---0000000.11m kTm kT m h kTkTm m eh ee eεεενεενε--∞=∞====--∑∑3381().1h kTh d ceνπνρνν=⋅-30221(,)(,).41h kTc h r T T c eνπννρν==⋅-22001(,)(,)cos sin (,)44cr T c T d d T ππνρνθθθφρνπ==⎰⎰0(,)(,).4r T T νρν=0(,)(,)cos ,4cdr T T d νρνθπ=Ω。
普朗克黑体辐射公式与经典表达式
公式:
电磁波波长和频率的关系为
相关公式:
1,普朗克定律有时写做能量密度频谱的形式:
方米·赫兹)。
对全频域积分可得到与频率无关的能量密度。
一个黑体的辐射场可以被看作是光子气体,此时的能量密度可由气体的热力学参数决定。
2,能量密度频谱也可写成波长的函数
普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律,英文:Planck's
law, Blackbody radiation law)描述,在任意温度T下,从一个黑体中发射出的电磁辐射的辐射率与频率彼此之间的关系。
黑体辐射定律是德国物理学家普朗克(Max Planck)于1900年所创的。
普朗克辐射定律,是公认的物体间热力传导基本法则,认为单位面积单位时间辐射功率和温度的四次方成正比,比值是5.67×10-8 W·m^-2 ·K^-4。
虽然有物理学家怀疑此定律在两个物体极度接近时不能成立,但始终无法证明和提出实证。
美国麻省理工学院(MIT)2009年7月30日宣布,该校动力工程学华裔教授陈刚与其团队的研究,首次打破“黑体辐射定律”的公式,证实物体在极度近距时的热力传导,可以高到定律公式所预测的一千倍之多。
该研究将在“NanoLetter”2009年8月号科学杂志上发表。
“这是指单位频率在单位体积内的能量,单位是焦耳/(立方米·赫兹)。
对全频域积分可得到与频率无关的能量密度。
一个黑体的辐射场可以被看作是光子气体,此时的能量密度可由气体的热力学参数决定。
”。
式中:W0 为黑体总辐射通量密度,单位(W²cm-2);σ为斯忒藩-玻耳兹曼常量,(σ=(5.6697±0.0029)³10-2W²cm-2²k-4)式(2-7)为斯忒藩-玻耳兹曼定律,即黑体总辐射通量密度随温度的增加而迅速增大,它与温度的四次方成正比。
因此,温度只要有微小变化,就会引起辐射通量密度很大的变化,在用红外装置测定温度时,就是根据此定律作为理论依据的。
从图 2-10 中可以看到黑体辐射均有个极大值,它所对应的波长λmax,若对(2-6)式的 Wλ(λ,T)求波长的偏微分,并求极值,即可得到λmax。
?W? (?,T) ? 0??经整理可得:λmax²T=b(2 - 8)式中:λmax 为辐射通量密度的峰值波长;b 为常数,b=2897.8±0.4(μm²k)。
(2-9)式称为维恩位移定律,它说明随着温度的升高,辐射最大值对应的峰值波长向短波方向移动,表 2-4 给出不同温度时λmax 的数值。
表 2-4 不同温度时黑体辐射的峰值波长T(K) 273 300 310 1000 2000 3000 4000 5000 6000 7000λ maxμm 10.61 9.66 9.34 2.90 1.45 0.97 0.72 0.58 0.48 0.41上述讨论的是黑体辐射,自然界一般物体不是黑体,但在某一确定温度T 时,物体最强辐射所对应的波长λmax,也可以用维恩位移公式计算出近似值。
如:人体表面平均温度为37°(即 310K),其发射到空间的电磁辐射的峰值波长为外波段。
9.34即人体辐射的峰值波长位于热红二、地物的发射光谱特性任何地物当温度高于绝对温度OK 时,组成物质的原子、分子等微粒,在不停地做热运动,都有向周围空间辐射红外线和微波的能力。
通常地物发射电磁辐射的能力是以发射率作为衡量标准。
地物的发射率是以黑体辐射作为基准。
普朗克黑体辐射定律给出黑体的光谱辐射亮度与温度和波长的关系普朗克黑体辐射定律是物理学中的一个重要理论,它给出了黑体的光谱辐射亮度与温度和波长的关系。
这个定律的发现为研究黑体辐射的性质和规律提供了基础,并且在实际应用中也有着广泛的应用。
下面将详细介绍普朗克黑体辐射定律的内容、意义、应用和局限性。
一、普朗克黑体辐射定律的内容普朗克黑体辐射定律是由德国物理学家马克斯·普朗克在1900年提出的,它给出了黑体辐射光谱的能量分布规律。
该定律指出,黑体辐射的光谱辐射亮度L(T,λ)与温度T和波长λ之间的关系可以用以下公式表示:L(T,λ) = (hc/λ^5) / [exp(hc/λkT) - 1]其中,h是普朗克常数,c是光速,k是玻尔兹曼常数。
这个公式表明,随着温度的升高,黑体辐射的亮度也会随之增强;随着波长的增加,黑体辐射的亮度会逐渐减弱。
二、普朗克黑体辐射定律的意义普朗克黑体辐射定律的发现为研究黑体辐射的性质和规律提供了基础。
在物理学中,黑体是一种理想的辐射体,它可以吸收所有入射的辐射能量,并且不产生任何反射和透射。
因此,研究黑体辐射的性质可以帮助我们更好地理解物质对辐射的吸收和发射规律。
此外,普朗克黑体辐射定律还为我们提供了一种测量物质温度的方法。
在实际应用中,我们可以通过测量物质的光谱辐射亮度来推算其温度,这对于工业生产和科学实验中温度的测量和控制具有重要意义。
三、普朗克黑体辐射定律的应用普朗克黑体辐射定律在实际应用中有着广泛的应用。
例如,在工业生产中,我们可以通过控制炉温和轧辊温度等关键参数,来保证产品质量和生产效率。
在科学实验中,我们可以通过测量样品的光谱辐射亮度来推算其温度,进而研究其物理和化学性质。
此外,普朗克黑体辐射定律还可以用于计算天体的表面温度和辐射性质,这对于天文学和宇宙学研究具有重要意义。
四、普朗克黑体辐射定律的局限性虽然普朗克黑体辐射定律具有广泛的应用价值,但它也存在一些局限性。
黑体工作原理
黑体工作原理是指黑体辐射产生的原理。
所谓黑体是指一种理想的物体,它能够完全吸收所有辐射而不反射或透过任何光线。
根据普朗克的量子假设,黑体辐射的能量是以离散的微粒形式存在的,称为光子。
每个光子的能量由频率决定,可以用普朗克公式来表示:E = hν,其中E为光子能量,h为普朗克常数,ν为光波频率。
在黑体内部,存在着大量的高速运动的粒子,如气体分子或自由电子等。
当这些粒子与其他粒子碰撞时,会发生能量的转移和重新分布。
部分粒子具有足够的能量逃逸到外部,形成黑体辐射。
这些辐射的能量由光子携带,其频率和能量之间存在着一定的关系。
黑体辐射的强度与温度有关。
根据普朗克黑体辐射公式,黑体辐射功率与频率或波长的分布呈现出特定的形态。
在较低频率或较长波长处,输出功率较低,而在较高频率或较短波长处,输出功率更高。
根据维恩位移定律,与黑体辐射强度峰值相对应的波长与温度呈反比关系。
换句话说,随着温度的升高,峰值波长向短波方向移动。
这也解释了为什么高温物体会发出更多的可见光,而低温物体则发出较少的远红外辐射。
当温度足够高时,黑体辐射可以覆盖整个电磁波谱范围,包括短波紫外线、可见光、长波红外线和微波等。
这是由于高温下
粒子的热运动更加剧烈,能量分布更加广泛。
总之,黑体工作原理涉及到黑体吸收能量、粒子热运动和辐射频谱的特性。
通过研究黑体辐射,人们可以深入了解物体的热力学特性和能量传递过程。
同时,黑体工作原理也为各种光学、热学和电子学设备的设计和应用提供了理论基础。
黑体普朗克公式推导1. 空腔内的光波模式数在一个由边界限制的空间V 内,只能存在一系列独立的具有特定波矢k 的平面单色驻波。
这种驻波称为电磁波的模式或光波模式,以k 为标志。
设空腔为立方体,如下图x图1 立方体空腔沿三个坐标轴方向传播的波分别应满足的驻波条件是⎪⎪⎪⎩⎪⎪⎪⎨⎧=∆=∆=∆222λλλq z n y m x (1)式中m 、n 、q 为正整数。
将xx k λπ2=代入(1)式中,有xm k x ∆=π则在x 方向上,相邻两个光波矢量的间隔为: xx m x m k x ∆=∆--∆=∆πππ)1( 同理,相邻两光波矢在三个方向的间隔为:⎪⎪⎪⎩⎪⎪⎪⎨⎧∆=∆∆=∆∆=∆z k y k x k zy x πππ (2)因此每个波矢在波矢空间所占的体积元为 Vzy x k k k z y x 33ππ=∆∆∆=∆∆∆ (3)xk y图2 波矢空间在波矢空间中,处于k 和k d 之间的波矢k 对应的点都在以原点为圆心、k 为半径、k d 为厚度的薄球壳内,这个球壳的体积为()k k k k k d 4d 3434233πππ=-- (4) 式中k =k 、k d d =k 。
根据(1)式的驻波条件,k 的三个分量只能取正值,因此k d 和k d 之间的、可以存在于V 中的光波模式在波矢空间所占的体积只是上述球壳的第一卦限,所以2d 8d 422kk k k V k ππ== (5) 由(3)式已知每个光波矢的体积元,则在该体积内的光波模式数为V kk V V M k 223d /2ππ== (6) 式中乘以2是因为每个光波矢量k 都有两个可能的偏振方向,因此光波模式数是光波矢量数的2倍。
由于λπ2=k ,λλπd 2d 2=k ,上式可以用波长形式表示,即在体积为V 的空腔内,波长λλd +间隔的光波模式数为:λλπd 84VM = (7)2. 黑体辐射公式黑体辐射是黑体温度T 和辐射场波长λ的函数。
黑体辐射的量子假说
黑体辐射的量子假说是指根据普朗克的量子理论,黑体辐射的能量不是连续分布的,而是以离散的能量量子形式存在的。
普朗克在1900年提出了辐射的量子假说,他认为辐射的能量
只能以离散的形式传播,且每个能量量子的大小与频率呈正比。
这个能量量子被称为普朗克常数,记作h。
根据量子假说,辐
射能量E与频率ν之间的关系为E = hν,其中h约等于
6.62607015 × 10^-34 J·s。
量子假说的提出解决了经典物理学中的紫外灾变问题,即根据经典电动力学理论,黑体辐射的能量应该是无限大的。
量子假说进一步奠定了量子力学的基础,推动了对微观世界的探索,对现代物理学的发展产生了巨大的影响。