潍坊市诸城市2017年中考数学三模试卷含答案解析
- 格式:doc
- 大小:1.42 MB
- 文档页数:32
⼭东省潍坊市2017年中考数学试题(word版,含答案)秘密★启⽤前试卷类型:A2017年潍坊市初中学业⽔平考试数学试题2017.06注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第I卷为选择题,36分;第Ⅱ卷为⾮选择题,84分;共4页,120分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上⾯的项⽬填涂清楚.所有答案都必须涂、写在答题卡相应位置,答在本试卷上⼀律⽆效.第Ⅰ卷(选择题共36分)⼀、选择题(本⼤题共12⼩题,在每个⼩题给出的四个选项中,只有⼀项是正确的,请把正确的选项选出来,每⼩题选对得3分,选错、不选或选出的答案超过⼀个均记0分)1.下列计算,正确的是().A.623aaa=B.33aaa=22aaa=+ D.422aa=)(2.如图所⽰的⼏何体,其俯视图是().3.可燃冰,学名叫“天然⽓⽔合物”,是⼀种⾼效清洁、储量巨⼤的新能源,据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿⽤科学记数法可表⽰为().A.3101? B.8101000? C.11101? D.14101?4.⼩莹和⼩博⼠下棋,⼩莹执圆⼦,⼩博⼠执⽅⼦.如图,棋盘中⼼⽅⼦的位置⽤()0,1-表⽰,右下⾓⽅⼦的位置⽤()1,0-表⽰.⼩莹将第4枚圆⼦放⼊棋盘后,所有棋⼦构成⼀个轴对称图形.她放的位置是().A.()1,2-B.()1,1-C.()2,1-D.()2,1--5.⽤教材中的计算器依次按键如下,显⽰的结果在数轴上对应点的位置介于()之间.B.C与D C、E与F D、A与B6.如图,?=∠90BCD,DEAB//,则α∠与β∠满⾜()A. ?=∠+∠180βα B.?=∠-∠90αβC.αβ∠=∠3 D.?=∠+∠90βα7.甲、⼄、丙、丁四名射击运动员在选拔赛中,每⼈射击了10次、甲、⼄两⼈的成绩如表所⽰,丙、丁两⼈的成绩如图所⽰.欲选⼀名运动员参赛,从平均数和⽅差两个因丙 D. 丁8.⼀次函数baxy+=与反⽐例函数xbay-=,其中0<ab,ba、为常数,它们在同⼀坐标系中的图象可以是().9.若代数式12--xx有意义,则实数x的取值范围是().A.1≥x B.2≥x C.1>x D.2>x10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,CD AO⊥,垂⾜为E,连接BD,?=∠50GBC,则DBC∠的度数为().A.50°B.60°C.80°D.85°11.定义[]x表⽰不超过实数x的最⼤整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数的图象如图所⽰,则⽅程[]221xx=的解为().A.0或2B.0或2C.1或2- D.2或2-12.点CA、为半径是3的圆周上两点,点B为CA的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为().A.5或22 B.5或32 C.6或22第Ⅱ卷(⾮选择题共84分)说明:将第Ⅱ卷答案⽤0.5mm的⿊⾊签字笔答在答题卡的相应位置上.⼆、填空题(本⼤题共6⼩题,共18分,只要求填写最后结果,每⼩题填对得3分)13.计算:=--÷--12)111(2xxx.14.因式分解:=-+-)2(22xxx .15.如图,在ABC中,ACD、分别为边AB、AC上的点,ADAC3=,AEAB3=,点F为BC边上⼀点,添加⼀个条件: ,可以使得FDB与ADE相似.(只需写出⼀个)16.已知关于x的⼀元⼆次⽅程0122=+-xkx有实数根,则k的取值范围是 .17.如图,⾃左⾄右,第1个图由1个正六边形、6个正⽅形和6个等边三⾓形组成;第2个图由2个正六边形、11个正⽅形和10个等边三⾓形组成;第3个图由3个正六边形、16个正⽅形和14个等边三⾓形组成;…按照此规律,第n个图中正⽅形和等边三⾓形的个数之和为个.18.如图,将⼀张矩形纸⽚ABCD的边BC斜着向AD边对折,使点B落在D上,记为B',折痕为CE;再将CD边斜向下对折,使点D落在CB'上,记为D',折痕为CG,2=''DB,BCBE31=.则矩形纸⽚ABCD的⾯积为 .三、解答题(本⼤题共7⼩题,共66分.解答要写出必要的⽂字说明、证明过程或演算步骤)19.(本题满分8分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进⾏了1000⽶跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男⽣,请估计成绩未达到良好有多少名?(3)某班甲、⼄两位成绩优秀的同学被选中参加即将举⾏的学校运动会1000⽶⽐赛,预赛分为A、B、C三组进⾏,选⼿由抽签确定分组.甲、⼄两⼈恰好分在同⼀组的概率是多少?20.(本题满分8分)如图,某数学兴趣⼩组要测量⼀栋五层居民楼CD 的⾼度.该楼底层为车库,⾼2.5⽶;上⾯五层居住,每层⾼度相等.测⾓仪⽀架离地1.5⽶,在A 处测得五楼顶部点D 的仰⾓为?60,在B 处测得四楼顶部点E 的仰⾓为?30,14=AB ⽶.求居民楼的⾼度(精确到0.1⽶,参考数据:3≈1.73).21.(本题满分8分)某蔬菜加⼯公司先后两批次收购蒜薹(tai )共100吨.第⼀批蒜薹价格为4000元/吨;因蒜薹⼤量上市,第⼆批价格跌⾄1000元/吨,这两批蒜薹共⽤去16万元. (1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进⾏加⼯,分为粗加⼯和精加⼯两种粗加⼯每吨利润400元,精加⼯每吨利润1000元.要求精加⼯数量不多于粗加⼯数量的三倍.为获得最⼤利润,精加⼯数量应为多少吨?最⼤利润是多少?22.(本题满分8分)如图,AB 为半圆O 的直径,AC 是⊙O 的⼀条弦,D 为C B的中点,作AC DE ⊥,交B 的延长线于点F ,连接DA . (1)求证:EF 为半圆O 的切线;(2)若36==DF DA ,求阴影区域的⾯积.(结果保留根号和π)23.(本题满分9分)⼯⼈师傅⽤⼀块长为10dm ,宽为6dm 的矩形铁⽪制作⼀个⽆盖的长⽅体容器,需要将四⾓各裁掉⼀个正⽅形,(厚度不计)(1)在图中画出裁剪⽰意图,⽤实线表⽰裁剪线,虚线表⽰折痕;并求长⽅体底⾯⾯积为212dm 时,裁掉的正⽅形边长多⼤?(2)若要求制作的长⽅体的底⾯长不⼤于底⾯宽的五倍,并将容器进⾏防锈处理,侧⾯每平⽅分⽶的费⽤为0.5元,底⾯每平⽅分⽶的费⽤为2元,裁掉的正⽅形边长多⼤时,总费⽤最低,最低为多少?24.(本题满分12分)边长为6的等边ABC ?中,点D 、E 分别在AC 、BC 边上, AB DE //, 32=EC .(l )如图1,将DEC ?沿射线EC ⽅向平移,得到C E D '''?,边E D ''与AC 的交点为M ,边D C ''与C AC '∠的⾓平分线交于点N .当C C '多⼤时,四边形D MCN '为菱形?并说明理由.(2)如图2,将DEC ?绕点C 旋转α(?<①在旋转过程中,D A '和E B '有怎样的数量关系?并说明理由. ②连接AP ,当AP 最⼤时,求D A '的值.(结果保留根号)25.(本题满分13分)如图1,抛物线c bx ax y ++=2经过平⾏四边形ABCD 的顶点)30(,A 、)01(,-B 、)32(,D ,抛物线与x 轴的另⼀交点为E .经过点E 的直线l 将平⾏四边形ABCD 分割为⾯积相等的两部分,与抛物线交于另⼀点P .点P 为直线l 上⽅抛物线上⼀动点,设点P 的横坐标为t .(1)求抛物线的解析式;(2)当t 何值时,PFE ?的⾯积最⼤?并求最⼤值的⽴⽅根;(3)是否存在点P 使PAE ?为直⾓三⾓形?若存在,求出t 的值;若不存在,说明理由.。
一、选择题(共12小题,每小题3分,满分36分)1.如图,在△ABC 中,DE ∥BC ,且AE=CE ,则△ADE 与四边形DBCE 的面积之比等于( ).A .1B .12 C .13 D .14【答案】C .考点:相似三角形的判定与性质.2.如图,某水库堤坝横断面迎水坡AB 的坡比是BC=50m ,则迎水坡面AB 的长度是( ).A .100mB .mC .150mD .【答案】A . 【解析】试题分析:根据题意可得BC AC =,把BC=50m ,代入即可算出AC 的长,再利用勾股定理算出AB 的长即可.∵堤坝横断面迎水坡AB 的坡比是1:,∴BC AC =BC=50m ,∴m ,∴,故选:A .考点:解直角三角形的应用-坡度坡角问题.3.若一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,则b,k的值分别为().A.0,4 B.0,5 C.﹣6,5 D.﹣6,4【答案】D.【解析】试题分析:先把(x﹣3)2=k化成x2﹣6x+9﹣k=0,再根据一元二次方程x2+bx+5=0得出b=﹣6,9﹣k=5,然后求解即可.∵(x﹣3)2=k,∴x2﹣6x+9﹣k=0,∵一元二次方程x2+bx+5=0配方后为(x﹣3)2=k,∴b=﹣6,9﹣k=5,∴k=4,∴b,k的值分别为﹣6、4;故选D.考点:解一元二次方程-配方法.4.如图,要使△ABC∽△CBD,则下列选项中不能作为条件添加的是().A.BC2=BD∙BA B.∠A=∠BCD C.AC2=AD∙AB D.∠BDC=∠ACB【答案】C.【解析】试题分析:图中已知条件是∠ABC=∠CBD,所以根据“两角法”、“两边及其夹角法”进行添加条件即可.如图,∠ABC=∠CBD.A、若添加BC2=BD∙BA即BC BABD CB=时,可以判定△ABC∽△CBD,故本选项错误;B、若添加∠A=∠BCD时,可以判定△ABC∽△CBD,故本选项错误;C、若添加AC2=AD∙AB即AC ABAD AC=时,可以判定△ABC∽△ACD,故本选项正确;D、若添加∠BDC=∠ACB时,可以判定△ABC∽△CBD,故本选项错误;故选:C.考点:相似三角形的判定.5.如图,在Rt△ABC中,∠C=90°,AB=6,cosB=23,则BC的长为().A.4 B.C D 【答案】A.【解析】试题分析:根据cosB=23,可得CBAB=23,再把AB的长代入可以计算出CB的长.∵cosB=23,∴CBAB=23,∵AB=6,∴CB=23×6=4,故选:A.考点:锐角三角函数的定义.6.关于x的一元二次方程x2﹣5x+p2﹣2p+5=0的一个根为1,则实数p的值是().A.4 B.0或2 C.1 D.﹣1【答案】C.【解析】试题分析:本题根据一元二次方程的根的定义、一元二次方程的定义求解.∵x=1是方程的根,由一元二次方程的根的定义,可得p2﹣2p+1=0,解此方程得到p=1.故本题选C.考点:一元二次方程的解.7.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.B.C.50 D.25【答案】D.【解析】试题分析:根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC为等腰直角三角形,然后根据解直角三角形的知识解答.如图:根据题意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴△ABC为等腰直角三角形,∵BC=50×0.5=25,∴AC=BC=25(海里).故选D.考点:1.等腰直角三角形;2.方向角.8.如果关于x的一元二次方程kx2x+1=0有两个不相等的实数根,那么k的取值范围是().A.k<12B.k<12且k≠0 C.﹣12≤k<12D.﹣12≤k<12且k≠0【答案】D.【解析】试题分析:根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,综合k的取值范围是-12≤k<12,且k≠0.故选:D.考点:根的判别式.9.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF 交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有().A.1组 B.2组 C.3组 D.4组【答案】C.考点:1.相似三角形的应用;2.解直角三角形的应用.10.如图,正方形ABCD的两边BC,AB分别在平面直角坐标系的x轴、y轴的正半轴上,正方形A′B′C′D′与正方形ABCD是以AC的中点O′为中心的位似图形,已知,若点A′的坐标为(1,2),则正方形A′B′C′D′与正方形ABCD的相似比是().A.16B.13C.12D.23【答案】B.【解析】试题分析:延长A′B′交BC于点E,根据大正方形的对角线长求得其边长,然后求得小正方形的边长后即可求两个正方形的相似比.∵在正方形ABCD中,BC=AB=3,延长A′B′交BC于点E,∵点A′的坐标为(1,2),∴OE=1,EC=A′E=3﹣1=2,∴OE:BC=1:3,∴AA′:AC=1:3,∵AA′=CC′,∴AA′=CC′=A′C′,∴A′C′:AC=1:3,∴正方形A′B′C′D′与正方形ABCD的相似比是13.故选B.考点:1.位似变换;2.坐标与图形性质.11.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°到正方形AB ′C ′D ′,图中阴影部分的面积为( ).A .12 B .1 D .1 【答案】C . 【解析】试题分析:设B ′C ′与CD 的交点为E ,连接AE ,利用“HL ”证明Rt △AB ′E 和Rt △ADE 全等,根据全等三角形对应角相等∠DAE=∠B ′AE ,再根据旋转角求出∠DAB ′=60°,然后求出∠DAE=30°,再解直角三角形求出DE ,然后根据阴影部分的面积=正方形ABCD 的面积﹣四边形ADEB ′的面积,列式计算即可得解.如图,设B ′C ′与CD 的交点为E ,连接AE ,在Rt △AB ′E 和Rt △ADE 中,'AE AE AB AD⎧=⎨=⎩,∴Rt △AB ′E ≌Rt △ADE(HL ),∴∠DAE=∠B ′AE ,∵旋转角为30°,∴∠DAB ′=60°,∴∠DAE=12×60°=30°,∴DE=1,∴阴影部分的面积=1×1﹣2×(12×1)=1.故选:C .考点:1.旋转的性质;2.正方形的性质.12.如图,Rt △ABC 中,AB ⊥AC ,AB=3,AC=4,P 是BC 边上一点,作PE ⊥AB 于E ,PD ⊥AC 于D ,设BP=x ,则PD+PE=( ).A .5x +3B .4-5xC .72D .21212525x x -【答案】A . 【解析】试题分析:先根据勾股定理求得BC 的长,再根据相似三角形的判定得到△CDP ∽△CAB ,△BPE ∽△BCA ,利用相似三角形的边对应成比例就不难求得PD+PE 了.∵在Rt △ABC 中,AB ⊥AC ,AB=3,AC=4,∴由勾股定理得BC=5,∵AB ⊥AC ,PE ⊥AB ,PD ⊥AC ,∴PE ∥AC ,PD ∥AB ,∴△CDP ∽△CAB ,△BPE ∽△BCA ,∴PD PC AB BC =,PE BP AC BC =,∴PD=3(5)5x -,PE=45x ,∴PD+PE=3(5)5x -+45x =5x+3.故选A . 考点:1.相似三角形的判定与性质;2.勾股定理.二、填空题(共6小题,每小题3分,满分18分)13.观察下列等式 ①sin30°=12 cos60°=12②sin45° cos45°③sin60° cos30° …根据上述规律,计算sin2a+sin2(90°﹣a)= .【答案】1.【解析】试题分析:根据①②③可得出规律,即sin2a+sin2(90°﹣a)=1,继而可得出答案.由题意得,sin230°+sin2(90°﹣30°)=1;sin245°+sin2(90°﹣45°)=1;sin260°+sin2(90°﹣60°)=1;故可得sin2a+sin2(90°﹣a)=1.故答案为:1.考点:互余两角三角函数的关系.14.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为.【答案】(22﹣x)(17﹣x)=300.【解析】试题分析:把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.设道路的宽应为x米,由题意有(22﹣x)(17﹣x)=300,故答案为:(22﹣x)(17﹣x)=300.考点:由实际问题抽象出一元二次方程.15.如图,△ABC中,DE∥FG∥BC,且S△ADE=S梯形DFGE=S梯形FBCG,DE:FG:BC= .【答案】1.【解析】试题分析:由平行线可得△ADE ∽△AFG ∽△ABC ,进而利用相似三角形面积比等于对应边的平方比,即可得出结论.∵S △ADE =S 梯形DFGE =S 梯形FBCG ,∵DE ∥FG ∥BC ,∴△ADE ∽△AFG ∽△ABC ,∴ADE AFGS S∆∆=12,ADE ABCS S∆∆ =13,由于相似三角形的面积比等于对应边长的平方比,∴DE :FG :BC=11. 考点:相似三角形的判定与性质.16.已知线段AB 的长为2,以AB 为边在AB 的下方作正方形ACDB .取AB 边上一点E ,以AE 为边在AB 的上方作正方形AENM .过E 作EF ⊥CD ,垂足为F 点,如图.若正方形AENM 与四边形EFDB 的面积相等,则AE 的长为 .1. 【解析】试题分析:设AE=x ,则BE=2﹣x ,就有EFDB 的面积为2(2﹣x ),正方形AENM 的面积=x 2,根据正方形AENM 与四边形EFDB 的面积相等建立方程求出其解即可.设AE=x ,则BE=2﹣x ,由图形得x 2=2(2﹣x ),解得:x 11,x 2=1(舍去)﹣1. 考点:一元二次方程的应用.17.如图,将45°的∠AOB 按下面的方式放置在一把刻度尺上:顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数恰为2cm .若按相同的方式将37°的∠AOC 放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数约为 cm .(结果精确到0.1cm ,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】2.7. 【解析】试题分析:过点B 作BD ⊥OA 于D ,过点C 作CE ⊥OA 于E .首先在等腰直角△BOD 中,得到BD=OD=2cm ,则CE=2cm ,然后在直角△COE 中,根据正切函数的定义即可求出OE 的长度.过点B 作BD ⊥OA 于D ,过点C 作CE ⊥OA 于E .在△BOD 中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm ,∴CE=BD=2cm .在△COE 中,∠CEO=90°,∠COE=37°,∵tan37°=CEOE≈0.75,∴OE ≈2.7cm .∴OC 与尺上沿的交点C 在尺上的读数约为2.7cm .故答案为2.7.考点:解直角三角形的应用.18.已知a ≠b ,且a 、b 满足a 2﹣3a ﹣4=0,b 2﹣3b ﹣4=0,那么a b +ba的值等于 . 【答案】﹣174. 【解析】试题分析:由a 、b 满足a 2﹣3a ﹣4=0、b 2﹣3b ﹣4=0,可得出a 、b 是方程x 2﹣3x ﹣4=0的两个根,利用根与系数的关系即可得出a+b=3、ab=﹣4,将a b +b a 变形成22()ababa b -+,代入数据即可得出结论.∵a 、b满足a 2﹣3a ﹣4=0,b 2﹣3b ﹣4=0,∴a 、b 是方程x 2﹣3x ﹣4=0的两个根,∴a+b=3,ab=﹣4,∴a b +b a =22ab a b +=22()ab aba b -+=22(4)43-⨯--=﹣174.故答案为:﹣174. 考点:1.根与系数的关系;2.分式的值.三、解答题(共6小题,满分66分)19.解关于x 的方程: (1)(2x ﹣5)2=(x ﹣2)2 (2)(1+x )2+(1+x )=12(3)x2+ax+b=0(配方法)【答案】(1)x1=3,x2=73.(2)x1=2,x2=﹣5.(3)当a2﹣4b<0时,方程无解.当a2﹣4b≥0时,x=﹣2a±.【解析】试题分析:(1)利用直接开方法解即可.(2)移项,利用因式分解法解即可.(3)根据配方法的步骤解即可.试题解析:(1)∵(2x﹣5)2=(x﹣2)2,∴2x﹣5=±(x﹣2),∴x1=3,x2=73.(2)∵(1+x)2+(1+x)=12,∴(1+x)2+(1+x)﹣12=0∴(1+x+4)(1+x﹣3)=0,∴1+x+4=0或1+x﹣3=0,∴x1=2,x2=﹣5.(3)∵x2+ax+b=0,∴x2+ax=﹣b,∴x2+ax+(2a)2=(2a)2﹣b,∴(x+2a)2=244ba-,当a2﹣4b<0时,方程无解.当a2﹣4b≥0时,x=﹣2a.考点:1. 直接开方法解一元二次方程;2.解一元二次方程-配方法;3.解一元二次方程-因式分解法.20.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,CEBE=13,CF=DF,连接AE、AF、EF,并延长FE交AB的延长线于点G.(1)若正方形的边长为4,则EG等于;(2)求证:△ECF∽△FDA;(3)比较∠EAB与∠EAF的大小.【答案】(1);(2)证明参见解析;(3)∠EAF<∠EAB.【解析】试题分析:(1)先根据正方形边长得CF=2,由平行相似得:△FCE ∽△GBE ,则FC CE BG BE=,代入求得BG=6,根据勾股定理得:;(2)根据已知边的长度分别求EC FD =12,CF AD =24=12,则EC FD =CF AD,再由正方形性质得:∠C=∠D=90°,则△ECF ∽△FDA ;(3)先根据(2)中的△ECF ∽△FDA ,得∠CFE=∠DAF ,EF FA =CE DF =12,证明∠EFA=90°,分别计算∠EAB 与∠EAF 的正切值,根据两锐角正切大的角大,得出结论.试题解析:(1)∵四边形ABCD 是正方形,∴AB=CD=BC=4,∠ABC=90°,DC ∥AB ,∵CF=DF ,∴CF=12CD=2, ∵DC ∥AG ,∴△FCE ∽△GBE ,∴FC CE BG BE =,∵CE BE =13,∴FC BG =13,BE=34BC=34×4=3,∴2BG =13,∴BG=6,在Rt △BEG 中,=;故答案为:;(2)∵四边形ABCD 是正方形,∴BC=AD=DC=4,∠C=∠D=90°,∵DF=FC=2,CE=1,∴EC FD =12,CF AD =24=12,∴EC FD =CF AD,∴△ECF ∽△FDA ;(3)∵△ECF ∽△FDA ,∴∠CFE=∠DAF ,EF FA =CE DF =12,∵∠DFA+∠DAF=90°,∴∠CFE+∠DFA=90°,∴∠EFA=90°,∴tan ∠EAF=EF FA =12,∵CE BC =14,∴tan ∠EAB=EB AB =34,∵12<34,∴∠EAF <∠EAB .考点:相似形综合题.21.已知一元二次方程x 2﹣2x+m ﹣1=0. (1)当m 取何值时,方程有两个不相等的实数根?(2)设x 1,x 2是方程的两个实数根,且满足x 12+x 1x 2=1,求m 的值.【答案】(1)m <2;(2)m=74. 【解析】试题分析:(1)若一元二次方程有两不等实数根,则根的判别式△=b 2﹣4ac >0,建立关于m 的不等式,即可求出m 的取值范围.(2)x 1是方程的实数根,就适合原方程,可得到关于x 1与m 的等式.再根据根与系数的关系知,x 1x 2=m ﹣1,故可求得x 1和m 的值.试题解析:(1)根据题意得△=b2﹣4ac=4﹣4×(m﹣1)>0,解得m<2;(2)∵x1是方程的实数根,∴x12﹣2x1+m﹣1=0 ①,∵x1,x2是方程的两个实数根,∴x1•x2=m﹣1,∵x12+x1x2=1,∴x12+m﹣1=1 ②,由①②得x1=0.5,把x=0.5代入原方程得,m=74.考点:1.根与系数的关系;2.一元二次方程的解;3.根的判别式.22.今年“五一“假期.某数学活动小组组织一次登山活动.他们从山脚下A点出发沿斜坡AB到达B点.再从B点沿斜坡BC到达山顶C点,路线如图所示.斜坡AB的长为1040米,斜坡BC的长为400米,在C点测得B点的俯角为30°.已知A点海拔121米.C点海拔721米.(1)求B点的海拔;(2)求斜坡AB的坡度.【答案】(1)521米.(2)1:2.4.【解析】试题分析:(1)过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足,构造直角三角形ABE 和直角三角形CBD,然后解直角三角形.(2)求出BE的长,根据坡度的概念解答.试题解析:如图,过C作CF⊥AM,F为垂足,过B点作BE⊥AM,BD⊥CF,E、D为垂足.在C点测得B点的俯角为30°,∴∠CBD=30°,又BC=400米,∴CD=400×sin30°=400×12=200(米).∴B点的海拔为721﹣200=521(米).(2)∵BE=DF=521﹣121=400米,又∵AB=1040米,米,∴AB的坡度i AB=BEAE=400960=512.故斜坡AB的坡度为1:2.4.考点:1.解直角三角形的应用-坡度坡角问题;2.解直角三角形的应用-仰角俯角问题.23.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产76件,每件利润10元.每提高一个档次,每件利润增加2元.(1)每件利润为14元时,此产品质量在第几档次?(2)由于生产工序不同,产品每提高1个档次,一天产量减少4件.若生产第x档的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;若生产某档次产品一天的总利润为1080元,该工程生产的是第几档次的产品?【答案】(1)第3档次;(2)y=﹣8x2+128x+640;第5档次.【解析】试题分析:(1)由每提高一个档次,每件利润增加2元,14﹣10=4,需要提高2个档次,由此即可解决问题.(2)根据一天的利润=生产的件数×每件的利润,即可求出y与x的关系,再列出方程即可解决问题.试题解析:(1)由每提高一个档次,每件利润增加2元,每件利润为14元时,14﹣10=4,4÷2=2,需要提高2个档次,所以此产品质量在第3档次.(2)由题意y=[10+2(x﹣1)][76﹣4(x﹣1)]=﹣8x2+128x+640.(1≤x≤10).当y=1080时,﹣8x2+128x+640=1080,解得x=5或11(舍弃).所以工程生产的是第5档次的产品时,一天的总利润为1080元.考点:1.二次函数的应用;2.一元二次方程的应用.24.如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.(1)求证:AC∥BD;(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,tan61.9°≈0.553;可使用科学计算器)【答案】(1)证明参见解析;(2) 61.9°;(3) 小红的连衣裙会拖落到地面.理由参见解析.【解析】试题分析:(1)根据等角对等边和对顶角相等得出∠OAC=∠OCA=12(180º-∠AOC )和∠OBD=∠ODB=12(180º-∠BOD ),∠AOC=∠BOD 进而利用平行线的判定得出即可;或利用三角形相似和平行线判定可得出结论;(2)首先过点O 作OM ⊥EF 于点M ,则EM=16cm ,利用cos ∠OEF=1683417EM OE ==≈0.471,即可得出∠OEF 的度数;(3)首先证明Rt △OEM ∽Rt △ABH ,进而得出AH 的长即可.试题解析:(1)方法一:∵AB 、CD 相交于点O ,∴∠AOC=∠BOD ,∵OA=OC ,∴∠OAC=∠OCA=12(180º-∠AOC ),同理可证:∠OBD=∠ODB=12(180º-∠BOD ),∴∠OAC=∠OBD ,∴AC ∥BD ;方法二:AB=CD=136cm ,OA=OC=51cm ,∴OB=OD=85cm ,∴35OA OC OB OD ==,又∵∠AOC=∠BOD ,∴△AOC ∽△BOD , ∴∠OAC=∠OBD ;∴AC ∥BD ;(2)在△OEF 中,OE=OF=34cm ,EF=32cm ;过点O 作OM ⊥EF 于点M ,则EM=16cm ;∴cos ∠OEF=1683417EM OE ==≈0.471,用科学计算器求得∠OEF=61.9°;(3)方法一:小红的连衣裙会拖落到地面;在Rt △OEM 中, =30cm ,过点A 作AH ⊥BD 于点H ,同(1)可证:EF ∥BD ,∴∠ABH=∠OEM ,则Rt △OEM ∽Rt △ABH ,∴OE OM AB AH =,AH=3013612034OM AB OE ⨯== cm ,因为小红的连衣裙垂挂在衣架后的总长度122cm >晒衣架的高度AH=120cm .所以小红的连衣裙会拖落到地面.方法二:小红的连衣裙会拖落到地面;同(1)可证:EF ∥BD ,∴∠ABD=∠OEF=61.9°;过点A 作AH ⊥BD 于点H,在Rt△ABH中sin∠ABD=AHAB,AH=AB×sin∠ABD=136×sin61.9°=136×0.882≈120.0cm,因为小红的连衣裙垂挂在衣架后的总长度122cm>晒衣架的高度AH=120cm.所以小红的连衣裙会拖落到地面.考点:1.相似三角形的应用;2.解直角三角形的应用.。
2017年山东省潍坊市诸城市中考数学三模试卷一、选择题(共12小题,每小题3分)1.下列计算正确的是()A.30=0 B.﹣|﹣3|=﹣3 C.3﹣1=﹣3 D.2.下列运算正确的是()A.5x2•x3=5x5B.2x+3y=5xy C.4x8÷2x2=4x4D.(﹣x3)2=x53.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个4.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.16,10.5 B.8,9 C.16,8.5 D.8,8.55.方程(k﹣1)x2﹣x+=0有两个实数根,则k的取值范围是()A.k≥1 B.k≤1 C.k>1 D.k<16.如图,将△ABC绕点B按逆时针方向旋转90°后得到△A′BC′,若AB=3,BC=2,则CC′的长为()A.2 B.﹣2 C.2 D.37.如图是五个相同的正方体组成的一个几何体,它的左视图是()A .B .C .D .8.函数y=ax ﹣a 与y=(a ≠0)在同一直角坐标系中的图象可能是( )A .B .C .D .9.若关于x 的一元一次不等式组有解,则m 的取值范围为( )A .B .m ≤C .D .m ≤10.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于( )A .B .C .2D .11.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论中正确的是( )A .a >0B .3是方程ax 2+bx+c=0的一个根C .a+b+c=0D .当x <1时,y 随x 的增大而减小12.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共6小题,共18分,每小题3分)13.若分式的值为零,则x= .14.已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.15.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为.16.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是.17.如图,直线y=﹣3x+3与x轴交于点B,与y轴交于点A,以线段AB为边,在第一象限内作正方形ABCD,点C落在双曲线y=(k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y=(k≠0)上的点D1处,则a= .18.如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10= .三、解答题(本大题共7小题,共66分)19.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x12+x22=3x1x2,求实数p的值.20.某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)样本容量是,并补全直方图;(2)该年级共有学生800人,请估计该年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰好有1位女生,E组发言的学生中有2位男生,现从A组与E 组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好都是男生的概率.21.如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P 处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为(即tan∠PCD=).(1)求该建筑物的高度(即AB的长).(2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)22.如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AE=6,CE=2,求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)23.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?24.已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.(1)当t为何值时,PQ∥AB?(2)当t=3时,求△QMC的面积;(3)是否存在t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.25.如图,直线y=x+1与y轴交于A点,过点A的抛物线y=﹣x2+bx+c与直线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)直接写出抛物线的解析式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s 与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?对于所求的t值,平行四边形BCMN是否菱形?请说明理由.2017年山东省潍坊市诸城市中考数学三模试卷参考答案与试题解析一、选择题(共12小题,每小题3分)1.下列计算正确的是()A.30=0 B.﹣|﹣3|=﹣3 C.3﹣1=﹣3 D.【考点】6F:负整数指数幂;15:绝对值;22:算术平方根;6E:零指数幂.【分析】根据平方根,负指数幂的意义,绝对值的意义,分别计算出各个式子的值即可判断.【解答】解:A、30=1,故A错误;B、﹣|﹣3|=﹣3,故B正确;C、3﹣1=,故C错误;D、=3,故D错误.故选B.2.下列运算正确的是()A.5x2•x3=5x5B.2x+3y=5xy C.4x8÷2x2=4x4D.(﹣x3)2=x5【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=5x5,符合题意;B、原式不能合并,不符合题意;C、原式=2x6,不符合题意;D、原式=x6,不符合题意,故选A3.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念求解.【解答】解:第二个、第三个图形既是轴对称图形又是中心对称图形,共2个.故选C.4.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.16,10.5 B.8,9 C.16,8.5 D.8,8.5【考点】W5:众数;VC:条形统计图;W4:中位数.【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数,由图可知锻炼时间超过8小时的有14+7=21人.【解答】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;故选B.5.方程(k﹣1)x2﹣x+=0有两个实数根,则k的取值范围是()A.k≥1 B.k≤1 C.k>1 D.k<1【考点】AA:根的判别式.【分析】假设k=1,代入方程中检验,发现等式不成立,故k不能为1,可得出此方程为一元二次方程,进而有方程有解,得到根的判别式大于等于0,列出关于k的不等式,求出不等式的解集得到k的范围,且由负数没有平方根得到1﹣k大于0,得出k的范围,综上,得到满足题意的k的范围.【解答】解:当k=1时,原方程不成立,故k≠1,∴方程为一元二次方程,又此方程有两个实数根,∴b2﹣4ac=(﹣)2﹣4×(k﹣1)×=1﹣k﹣(k﹣1)=2﹣2k≥0,解得:k≤1,1﹣k>0,综上k的取值范围是k<1.故选D.6.如图,将△ABC绕点B按逆时针方向旋转90°后得到△A′BC′,若AB=3,BC=2,则CC′的长为()A.2 B.﹣2 C.2 D.3【考点】R2:旋转的性质.【分析】根据旋转的性质得到BC′=BC=2,∠CBC′=90°,根据等腰直角三角形的性质即可得到结论.【解答】解:将△ABC绕点B按逆时针方向旋转90°后得到△A′BC′,∴BC′=BC=2,∠CBC′=90°,∴CC′=BC=2,故选A.7.如图是五个相同的正方体组成的一个几何体,它的左视图是()A.B. C. D.【考点】U2:简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一列有1个正方形,第二列有2个正方形.故选D.8.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】当反比例函数图象分布在第一、三象限,则a>0,然后根据一次函数图象与系数的关系对A、B进行判断;当反比例函数图象分布在第二、四象限,则a<0,然后根据一次函数图象与系数的关系对C、D进行判断.【解答】解:A、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以A选项错误;B、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以B选项错误;C、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以C选项错误;D、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以D选项正确.故选D.9.若关于x的一元一次不等式组有解,则m的取值范围为()A.B.m≤C.D.m≤【考点】CB:解一元一次不等式组.【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可.【解答】解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.10.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于()A.B.C.2 D.【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故选D.11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.3是方程ax2+bx+c=0的一个根C.a+b+c=0D.当x<1时,y随x的增大而减小【考点】H4:二次函数图象与系数的关系;H3:二次函数的性质.【分析】根据抛物线的开口方向可得a<0,根据抛物线对称轴可得方程ax2+bx+c=0的根为x=﹣1,x=3;根据图象可得x=1时,y>0;根据抛物线可直接得到x<1时,y随x的增大而增大.【解答】解:A、因为抛物线开口向下,因此a<0,故此选项错误;B、根据对称轴为x=1,一个交点坐标为(﹣1,0)可得另一个与x轴的交点坐标为(3,0)因此3是方程ax2+bx+c=0的一个根,故此选项正确;C、把x=1代入二次函数y=ax2+bx+c(a≠0)中得:y=a+b+c,由图象可得,y>0,故此选项错误;D、当x<1时,y随x的增大而增大,故此选项错误;故选:B.12.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选A二、填空题(本大题共6小题,共18分,每小题3分)13.若分式的值为零,则x= 0或2 .【考点】63:分式的值为零的条件.【分析】根据分式的分子分为零且分母不为零,可得答案.【解答】解:由题意得x3﹣3x2+2x=0且x﹣1≠0,解得x=0或x=2,故答案为:0或2.14.已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.【考点】97:二元一次方程组的解;54:因式分解﹣运用公式法.【分析】根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得答案.【解答】解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故答案为:.15.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为8 .【考点】M5:圆周角定理;KH:等腰三角形的性质.【分析】连接AD,由圆周角定理得出∠AEB=∠ADB=90°,由等腰三角形的性质得出BD=CD,由三角形中位线定理得出OD∥AC,CE=2MD=4,求出AE,再由勾股定理求出BE即可.【解答】解:连接AD,如图所示:∵以AB为直径的⊙O与BC交于点D,∴∠AEB=∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∴BM=EM,∴CE=2MD=4,∴AE=AC﹣CE=6,∴BE==;故答案为:8.16.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是.【考点】FA:待定系数法求一次函数解析式.【分析】延长BC交x轴于点F;连接OB,AF;连接CE,DF,且相交于点N.把将多边形OABCDE 分割两个矩形,过两个矩形的对角线的交点的直线把多边形OABCDE分割成面积相等的两部分.而M点正是矩形ABFO的中心,求得矩形CDEF的中心N的坐标,设y=kx+b,利用待定系数法求k,b即可.【解答】解:如图,延长BC交x轴于点F;连接OB,AF;连接CE,DF,且相交于点N.由已知得点M(2,3)是OB,AF的中点,即点M为矩形ABFO的中心,所以直线l把矩形ABFO 分成面积相等的两部分.又因为点N(5,2)是矩形CDEF的中心,所以,过点N(5,2)的直线把矩形CDEF分成面积相等的两部分.于是,直线MN即为所求的直线l.设直线l的函数表达式为y=kx+b,则解得,故所求直线l的函数表达式为.故答案为.17.如图,直线y=﹣3x+3与x轴交于点B,与y轴交于点A,以线段AB为边,在第一象限内作正方形ABCD,点C落在双曲线y=(k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y=(k≠0)上的点D1处,则a= 2 .【考点】GB:反比例函数综合题.【分析】对于直线解析式,分别令x与y为0求出y与x的值,确定出A与B坐标,后根据三角形全等得出C点坐标,进而求出反比例函数的解析式,进而确定D点的坐标和D1点的坐标,即可确定出a的值.【解答】解:对于直线y=﹣3x+3,令x=0,得到y=3;令y=0,得到x=1,即A(0,3),B(1,0),过C作CE⊥x轴,交x轴于点E,过A作AF∥x轴,过D作DF垂直于AF于F,如图所示,∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∴∠OAB+∠ABO=90°,∠ABO+∠EBC=90°,∴∠OAB=∠EBC,在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴BE=AO=3,CE=OB=1,∴C(4,1),把C坐标代入反比例解析式得:k=4,即y=,同理得到△DFA≌△BOA,∴DF=BO=1,AF=AO=3,∴D(3,4),把y=4代入反比例解析式得:x=1,即D1(1,4),则将正方形ABCD沿x轴负方向平移2个单位长度,使点D恰好落在双曲线y=(k≠0)上的点D1处,即a=2,故答案为:2.18.如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10= π.【考点】MI:三角形的内切圆与内心;38:规律型:图形的变化类.【分析】(1)图1,作辅助线构建正方形OECF,设圆O的半径为r,根据切线长定理表示出AD和BD的长,利用AD+BD=5列方程求出半径r=(a、b是直角边,c为斜边),运用圆面积公式=πr2求出面积=π;(2)图2,先求斜边上的高CD的长,再由勾股定理求出AD和BD,利用半径r=(a、b是直角边,c为斜边)求两个圆的半径,从而求出两圆的面积和=π;(3)图3,继续求高DM和CM、BM,利用半径r=(a、b是直角边,c为斜边)求三个圆的半径,从而求出三个圆的面积和=π;综上所述:发现S1+S2+S3+…+S10=π.【解答】解:(1)图1,过点O做OE⊥AC,OF⊥BC,垂足为E、F,则∠OEC=∠OFC=90°∵∠C=90°∴四边形OECF为矩形∵OE=OF∴矩形OECF为正方形设圆O的半径为r,则OE=OF=r,AD=AE=3﹣r,BD=4﹣r∴3﹣r+4﹣r=5,r==1∴S1=π×12=π(2)图2,由S△ABC=×3×4=×5×CD∴CD=由勾股定理得:AD==,BD=5﹣=由(1)得:⊙O的半径==,⊙E的半径==∴S1+S2=π×+π×=π(3)图3,由S△CDB=××=×4×MD∴MD=由勾股定理得:CM==,MB=4﹣=由(1)得:⊙O的半径=,:⊙E的半径==,:⊙F的半径==∴S1+S2+S3=π×+π×+π×=π∴图4中的S1+S2+S3+S4=π则S1+S2+S3+…+S10=π故答案为:π.三、解答题(本大题共7小题,共66分)19.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x12+x22=3x1x2,求实数p的值.【考点】AA:根的判别式.【分析】(1)化成一般形式,求根的判别式,当△>0时,方程总有两个不相等的实数根;(2)根据根与系的关系求出两根和与两根积,再把变形,化成和与乘积的形式,代入计算,得到一个关于p的一元二次方程,解方程.【解答】证明:(1)(x﹣3)(x﹣2)﹣p2=0,x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=25﹣24+4p2=1+4p2,∵无论p取何值时,总有4p2≥0,∴1+4p2>0,∴无论p取何值时,方程总有两个不相等的实数根;(2)x1+x2=5,x1x2=6﹣p2,∵x12+x22=3x1x2,∴(x1+x2)2﹣2x1x2=3x1x2,∴52=5(6﹣p2),∴p=±1.20.某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)样本容量是50 ,并补全直方图;(2)该年级共有学生800人,请估计该年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰好有1位女生,E组发言的学生中有2位男生,现从A组与E 组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好都是男生的概率.【考点】X6:列表法与树状图法;V3:总体、个体、样本、样本容量;V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图;VB:扇形统计图.【分析】(1)求得B组所占的百分比,然后根据B组有10人即可求得总人数,即样本容量,然后求得C组的人数,从而补全直方图;(2)利用总人数乘以对应的百分比即可求解;(3)分别求出A、E两组的人数,确定出各组的男女生人数,然后列表或画树状图,再根据概率公式计算即可得解.【解答】解:(1)∵B、E两组发言人数的比为5:2,E组发言人数占8%,∴B组发言的人数占20%,由直方图可知B组人数为10人,所以,被抽查的学生人数为:10÷20%=50人,∴样本容量为50人.F组人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×(1﹣90%)=50×10%,=5(人),C组人数为:50×30%=15(人),E组人数为:50×8%=4人补全的直方图如图;(2)F组发言的人数所占的百分比为:10%,所以,估计全年级在这天里发言次数不少于12次的人数为:800×(8%+10%)=144(人);(3)∵A组发言的学生为:50×6%=3人,有1位女生,∴A组发言的有2位男生,∵E组发言的学生:4人,∴有2位女生,2位男生.∴由题意可画树状图为:∴共有12种情况,所抽的两位学生恰都是男生的情况有4种,∴所抽的两位学生恰好是一男一女的概率为=.21.如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P 处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为(即tan∠PCD=).(1)求该建筑物的高度(即AB的长).(2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】(1)过点P作PE⊥BD于E,PF⊥AB于F,在Rt△ABC中,求出AB的长度即可;(2)设PE=x米,则BF=PE=x米,根据山坡坡度为,用x表示CE的长度,然后根据AF=PF 列出等量关系式,求出x的值即可.【解答】解:(1)过点P作PE⊥BD于E,PF⊥AB于F,又∵AB⊥BC于B,∴四边形BEPF是矩形,∴PE=BF,PF=BE∵在Rt△ABC中,BC=90米,∠ACB=60°,∴AB=BC•tan60°=90(米),故建筑物的高度为90米;(2)设PE=x米,则BF=PE=x米,∵在Rt△PCE中,tan∠PCD==,∴CE=2x,∵在Rt△PAF中,∠APF=45°,∴AF=AB﹣BF=90﹣x,PF=BE=BC+CE=90+2x,又∵AF=PF,∴90﹣x=90+2x,解得:x=30﹣30,答:人所在的位置点P的铅直高度为()米.22.如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AE=6,CE=2,求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)【考点】MD:切线的判定;MO:扇形面积的计算.【分析】(1)连结OC,如图,先根据切线的性质得∠BAD=90°,再根据平行线的性质,由OD∥BC得∠1=∠3,∠2=∠4,加上∠3=∠4,则∠1=∠2,接着证明△AOD≌△COD,得到∠OCD=∠OAD=90°,于是可根据切线的判定定理得到DE是⊙O的切线;(2)设半径为r,则OE=AE﹣OA=6﹣r,OC=r,在Rt△OCE中利用勾股定理得到r2+(2)2=(6﹣r)2,解得r=2,再利用正切函数求出∠COE=60°,然后根据扇形面积公式和S阴影部=S△COE﹣S扇形BOC进行计算即可.分【解答】解:(1)连结OC,如图,∵AD为⊙O的切线,∴AD⊥AB,∴∠BAD=90°,∵OD∥BC,∴∠1=∠3,∠2=∠4,∵OB=OC,∴∠3=∠4,∴∠1=∠2,在△OCD和△OAD中,,∴△AOD≌△COD(SAS);∴∠OCD=∠OAD=90°,∴OC⊥DE,∴DE是⊙O的切线;(2)设半径为r,则OE=AE﹣OA=6﹣r,OC=r,在Rt△OCE中,∵OC2+CE2=OE2,∴r2+(2)2=(6﹣r)2,解得r=2,∵tan∠COE===,∴∠COE=60°,∴S阴影部分=S△COE﹣S扇形BOC=×2×2﹣=2﹣π.23.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】CE:一元一次不等式组的应用;FH:一次函数的应用.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.由题意,得解得答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(2)由题意,得解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.方案二:A地的赈灾物资运往D县42吨,运往E县58吨;B地的赈灾物资运往D县78吨,运往E县22吨.方案三:A地的赈灾物资运往D县43吨,运往E县57吨;B地的赈灾物资运往D县77吨,运往E县23吨.方案四:A地的赈灾物资运往D县44吨,运往E县56吨;B地的赈灾物资运往D县76吨,运往E县24吨.方案五:A地的赈灾物资运往D县45吨,运往E县55吨;B地的赈灾物资运往D县75吨,运往E县25吨.(3)设运送这批赈灾物资的总费用为w元.由题意,得w=220x+250+200+220(x﹣20)+200×60+210×20=﹣10x+60800.因为w随x的增大而减小,且40<x≤45,x为整数.所以,当x=41时,w有最大值.则该公司承担运送这批赈灾物资的总费用最多为:w=60390(元).24.已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4).连接PQ、MQ、MC.(1)当t为何值时,PQ∥AB?(2)当t=3时,求△QMC的面积;(3)是否存在t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.【考点】LO:四边形综合题.【分析】(1)根据勾股定理求出AC,根据PQ∥AB,得出关于t的比例式,求解即可;(2)过点P 作PD ⊥BC 于D ,根据△CPD ∽△CBA ,列出关于t 的比例式,表示出PD 的长,再根据S △QMC =QC•PD,进行计算即可;(3)过点M 作ME ⊥BC 的延长线于点E ,根据△CPD ∽△CBA ,得出PD=(4﹣t ),CD=(4﹣t ),再根据△PDQ ∽△QEM ,得到=,即PD•EM=QE•DQ,进而得到方程(﹣t )2=(﹣t )(+t ),求得t=或t=0(舍去),即可得出当t=时,PQ ⊥MQ .【解答】解:(1)如图所示,AB=3cm ,BC=5cm ,AC ⊥AB , ∴Rt △ABC 中,AC=4,若PQ ∥AB ,则有=,∵CQ=PA=t ,CP=4﹣t ,QB=5﹣t ,∴=,即20﹣9t+t 2=t 2, 解得t=,当t=时,PQ ∥AB ;(2)如图所示,过点P 作PD ⊥BC 于点D , ∴∠PDC=∠A=90°, ∵∠PCD=∠BCA ∴△CPD ∽△CBA ,∴=, 当t=3时,CP=4﹣3=1, ∵BA=3,BC=5,∴=,∴PD=,又∵CQ=3,PM ∥BC ,∴S △QMC =×3×=;(3)存在时刻t=,使PQ⊥MQ,理由如下:如图所示,过点M作ME⊥BC的延长线于点E,∵△CPD∽△CBA,∴==,∵BA=3,CP=4﹣t,BC=5,CA=4,∴==,∴PD=(4﹣t),CD=(4﹣t).∵PQ⊥MQ,∴∠PDQ=∠QEM=90°,∠PQD=∠QME,∴△PDQ∽△QEM,∴=,即PD•EM=QE•DQ.∵EM=PD=(4﹣t)=﹣t,DQ=CD﹣CQ=(4﹣t)﹣t=﹣t,QE=DE﹣DQ=5﹣[(4﹣t)﹣t]= + t,∴(﹣t)2=(﹣t)(+t),即2t2﹣3t=0,∴t=或t=0(舍去),∴当t=时,PQ⊥MQ.25.如图,直线y=x+1与y轴交于A点,过点A的抛物线y=﹣x2+bx+c与直线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)直接写出抛物线的解析式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s 与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?对于所求的t值,平行四边形BCMN是否菱形?请说明理由.【考点】HF:二次函数综合题.【分析】(1)先求得点B和点A的坐标,然后将原点坐标,点A和点B的坐标代入抛物线的解析式求解即可;(2)设点P的坐标为(t,0),则N(t,﹣t2+t+1),M(t, t+1),然后依据MN等于M、N两点的纵坐标之差可得到S与t的函数关系式;(3)已知MN∥BC,故此当MN=NB时,四边形BCMN为平行四边形,然后列出方程组求解即可;当MC=MN时,四边形BCMN为菱形,然后分别将t=1和t=2代入求得点M的坐标,然后再求得MC的长,最后依据MC于是等于MN进行判断即可.31 【解答】解:(1)∵BC ⊥x 轴,垂足为点C ,C (3,0),∴B 的横坐标为3.将x=3代入y=x+1得:y=.∴B (3,).将x=0代入y=x+1得:y=1.∴A (0,1).将点A 和点B 的坐标代入得:,解得:b=,c=1. ∴抛物线的解析式为y=﹣x 2+x+1.(2)设点P 的坐标为(t ,0),则N (t ,﹣t 2+t+1),M (t , t+1). ∴S=(﹣t 2+t+1)﹣(t+1)=﹣t 2+t .(0<t <3).(3)∵MN ∥BC ,∴当MN=NB 时,四边形BCMN 为平行四边形.∴﹣t 2+t=,解得t=1或t=2.∴当t=1或t=2时,四边形BCMN 为平行四边形.当t=1时,M (1,).依据两点间的距离公式可知:MC==.∴MN=MC .∴四边形BCMN 为菱形.当t=2时,M (2,2),则MC==.∴MC ≠MN .∴此时四边形BCMN 不是菱形.综上所述,当t=1时,四边形BCMN 为菱形.。
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前山东省潍坊市2017年初中学业水平考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列计算,正确的是( ) A .326a a a ⨯=B .33a a a ÷=C .224a a a +=D .224()a a = 2.如图所示的几何体,其俯视图是( )ABCD3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为( ) A .3110⨯B .8100010⨯C .11110⨯D .14110⨯4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用()1,0-表示,右下角方子的位置用(0,)1-表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( )A .()2,1-B .()1,1-C .(1,)2-D .(1,2)--5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )A .B 与C 之间B .C 与D 之间C .E 与F 之间D .A 与B 之间 6.如图,90,BCD AB DE =︒∠∥,则α∠与β∠满足( )A .180αβ+=︒∠∠B .90βα-=︒∠∠C .3βα=∠∠D .90αβ+=︒∠∠7.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选A .甲B .乙C .丙D .丁8.一次函数y ax b =+与反比例函数a by x-=,其中0,,ab a b <为常数,它们在同一坐标系中的图象可以是( )ABC D9.有意义,则实数x 的取值范围是( ) A .1x ≥B .2x≥C.1x >D .2x >10.如图,四边形ABCD 为O 的内接四边形.延长AB 与DC 相交于点G ,AO CD ⊥,垂足为E ,连接BD ,50GBC =︒∠,则DBC ∠的度数为毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)( ) A .50︒ B .60︒ C .80︒D .85︒11.定义[x ]表示不超过实数x 的最大整数,如[1.8]1=,[ 1.4-]2=-,[3-]3=-.函数y =[x ]的图象如图所示,则方程[x ]212x =的解为( )A .0B .0或2C .1或D或12.点A ,C 为半径是3的圆周上两点,点B 为AC 的中点,以线段BA ,BC 为邻边作菱形ABCD ,顶点D 恰在该圆直径的三等分点上,则该菱形的边长为( ) ABCD第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.计算:212111x x x -⎛⎫-÷= ⎪--⎝⎭ . 14.因式分解:2(22)x x x --+= .15.如图,在ABC △中,,,AB AC D E ≠分别为边,AB AC 上的点,3,3AC AD AB AE ==,点F 为BC 边上一点,添加一个条件: ,可以使得FDB △与ADE △相似.(只需写出一个)16.已知关于x 的一元二次方程2210kx x +=-有实数根,则k 的取值范围是 . 17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;……按照此规律,第n 个图中正方形和等边三角形的个数之和为 个.18.如图,将一张矩形纸片ABCD 的边BC 斜着向AD 边对折,使点B 落在AD 边上,记为B ',折痕为CE ;再将CD 边斜向下对折,使点D 落在B C '上,记为D ',折痕为1,2,3CG B D BE BC ''==.则矩形纸片ABCD 的面积为 . 三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤) 19.(本小题满分8分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分为,,A B C 三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?20.(本小题满分8分)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为60︒,在B 处测得四楼顶部点E 的仰角为30︒,14AB =米.求居民楼的高度(精确到0.1米,1.73).21.(本小题满分8分)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)某蔬菜加工公司先后两批次收购蒜薹(t ái )共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨.这两批蒜薹共用去16万元.(1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?22.(本小题满分8分)如图,AB 为半圆O 的直径,AC 是O 的一条弦,D 为BC 的中点,作DE AC ⊥,交AB 的延长线于点F ,连接DA . (1)求证:EF 为半圆O 的切线;(2)若DA DF ==求阴影区域的面积.(结果保留根号和π)23.(本小题满分9分)工人师傅用一块长为10dm 、宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为212dm 时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?24.(本小题满分12分)边长为6的等边ABC △中,点,D E 分别在,AC BC 边上,,DE AB EC =∥图1 图2(1)如图1,将DEC △沿射线EC 方向平移,得到D E C '''△,边D E ''与AC 的交点为M ,边C D ''与ACC '∠的角平分线交于点N .当CC '多大时,四边形MCND '为菱形?并说明理由;(2)如图2,将DEC △绕点C 旋转36(0)0αα︒︒∠<<,得到D E C ''△,连接,AD BE ''.边D E ''的中点为P .①在旋转过程中,AD '和BE '有怎样的数量关系?并说明理由; ②连接AP ,当AP 最大时,求AD '的值.(结果保留根号)25.(本小题满分13分)如图,抛物线2y ax bx c =++经过平行四边形ABCD 的顶点0,3,(),0()1A B -,()2,3D ,抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点F .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t .备用图毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)(1)求抛物线的解析式;(2)当t 何值时,PFE △的面积最大?并求最大值的立方根;(3)是否存在点P 使PAE △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.山东省潍坊市2017年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】解:A.原式5a =,故A 错误;B.原式2a =,故B 错误;C.原式22a =,故C 错误;故选D【提示】根据整式运算法则即可求出答案.【考点】同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,积的乘方 2.【答案】D【解析】解:从上边看是一个同心圆,内圆是虚线,故选:D . 【提示】根据从上边看得到的图形是俯视图,可得答案. 【考点】简单几何体的三视图 3.【答案】C【解析】解:将1000亿用科学记数法表示为:11.110⨯故选:C .【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【考点】用科学记数法表示较大的数 4.【答案】B称图形.故选B .90βα∠-∠=︒,故选B .数学试卷 第9页(共20页) 数学试卷 第10页(共20页)∴¼¼CM DM=,∴280DBC EAD ∠=∠=︒.故选C .¼¼选D.1数学试卷第11页(共20页)数学试卷第12页(共20页)秀人数:124030%÷=,如图所示:(2)成绩未达到良好的男生所占比例为:25%5%30%+=,所以600名九年级男生中有60030%180⨯=(名);(3)如图:可得一共有9种可能,甲、乙两人恰好分在同一组的有3种,所以甲、乙两人恰好分在同一组的概率3193P==.数学试卷第13页(共20页)数学试卷第14页(共20页)数学试卷 第15页(共20页) 数学试卷 第16页(共20页)【提示】(1)直接利用切线的判定方法结合圆心角定理分析得出OD EF ⊥,即可得出答案;(2)直接利用得出ACD COD S S =△△,再利用AED COD S S S =-△阴影扇形,求出答案. 【考点】切线的判定与性质,扇形面积的计算 23.【答案】解:(1)如图所示:数学试卷 第17页(共20页) 数学试卷 第18页(共20页)'221AD AP PD '=+=62355⎫⎛⎫+⎪⎪⎭⎝⎭数学试卷 第19页(共20页) 数学试卷 第20页(共20页)2【提示】(1)由A .B .C 三点的坐标,利用待定系数法可求得抛物线解析式; (2)由A .C 坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E 点坐标,从而可求得直线EF 的解析式,作PH x ⊥轴,交直线l 于点M ,作FN PH ⊥,则可用t 表示出PM 的长,从而可表示出PEF △的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有90PAE ∠=︒或90APE ∠=︒两种情况,当90PAE ∠=︒时,作PG y⊥轴,利用等腰直角三角形的性质可得到关于t 的方程,可求得t 的值;当90APE ∠=︒时,作PK x ⊥轴,AQ PK ⊥,则可证得PKE AQP △∽△,利用相似三角形的性质可得到关于t 的方程,可求得t 的值.【考点】二次函数的综合应用,待定系数法,平行四边形的性质,二次函数的性质,三角形的面积,直角三角形的性质,相似三角形的判定和性质,方程思想,分类讨论思想。
2017年山东省潍坊市中考数学试卷一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a42.(3分)如图所示的几何体,其俯视图是()A. B.C.D.3.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.(3分)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)5.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B6.(3分)如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°7.(3分)甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()A.甲B.乙C.丙D.丁8.(3分)一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.9.(3分)若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.(3分)如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°11.(3分)定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()A.0或B.0或2 C.1或D.或﹣12.(3分)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2二、填空题(共6小题,每小题3分,满分18分。
秘密★启用前 试卷类型:A2017年潍坊市初中学业水平考试数 学 试 题 2017.06注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第I 卷为选择题,36分;第Ⅱ卷为非选择题,84分;共4页,120分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答 题卡相应位置,答在本试卷上一律无效.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分) 1.下列计算,正确的是( ).A.623a a a =⨯B.33a a a =÷C.422a a a =+D.422a a =)( 2.如图所示的几何体,其俯视图是( ).3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源,据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为( ).A.3101⨯B.8101000⨯C.11101⨯D.14101⨯4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用()0,1-表示,右下角方子的位置用()1,0-表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( ). A.()1,2- B.()1,1- C.()2,1- D.()2,1--5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.A.B 与CB.C 与D C 、E 与F D 、A 与B6.如图,︒=∠90BCD ,DE AB //,则α∠与β∠满足( )A. ︒=∠+∠180βα B.︒=∠-∠90αβ C.αβ∠=∠3 D.︒=∠+∠90βα7.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选丙 D. 丁8.一次函数b ax y +=与反比例函数xba y -=,其中0<ab ,b a 、为常数,它们在同一坐标系中的图象可以是( ).9.若代数式12--x x 有意义,则实数x 的取值范围是( ). A.1≥x B.2≥x C.1>x D.2>x10.如图,四边形ABCD 为⊙O 的内接四边形.延长AB 与DC 相交于点G ,CD AO ⊥,垂足为E ,连接BD ,︒=∠50GBC ,则DBC ∠的度数为( ). A.50° B.60° C.80° D.85°11.定义[]x 表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数的图象如图所示,则方程[]221x x =的解为( ). A.0或2 B.0或2 C.1或2- D.2或2-12.点C A 、为半径是3的圆周上两点,点B 为C A 的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆直径的三等分点上,则该菱形的边长为( ).A.5或22B.5或32C.6或22D.6或32第Ⅱ卷(非选择题 共84分)说明:将第Ⅱ卷答案用0.5mm 的黑色签字笔答在答题卡的相应位置上. 二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.计算:=--÷--12)111(2x x x . 14.因式分解:=-+-)2(22x x x .15.如图,在ABC ∆中,AC AB ≠,E D 、分别为边AB 、AC 上的点,AD AC 3=,AE AB 3=,点F 为BC 边上一点,添加一个条件: ,可以使得FDB ∆与ADE ∆相似.(只需写出一个)16.已知关于x 的一元二次方程0122=+-x kx 有实数根,则k 的取值范围是 . 17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为 个.18.如图,将一张矩形纸片ABCD 的边BC 斜着向AD 边对折,使点B 落在D 上,记为B ',折痕为CE ;再将CD 边斜向下对折,使点D 落在CB '上,记为D ',折痕为CG ,2=''D B ,BC BE 31=.则矩形纸片ABCD 的面积为 .三、解答题(本大题共7小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛,预赛分为A 、B 、C 三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?20.(本题满分8分)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为︒60,在B 处测得四楼顶部点E 的仰角为︒30,14=AB 米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73).21.(本题满分8分)某蔬菜加工公司先后两批次收购蒜薹(tai )共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨,这两批蒜薹共用去16万元. (1)求两批次购进蒜薹各多少吨?(2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少? 22.(本题满分8分)如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为C B的中点,作AC DE ⊥,交B 的延长线于点F ,连接DA . (1)求证:EF 为半圆O 的切线;(2)若36==DF DA ,求阴影区域的面积.(结果保留根号和π)23.(本题满分9分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形,(厚度不计) (1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为212dm 时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?24.(本题满分12分)边长为6的等边ABC ∆中,点D 、E 分别在AC 、BC 边上, AB DE //, 32=EC .(l )如图1,将DEC ∆沿射线EC 方向平移,得到C E D '''∆,边E D ''与AC 的交点为M ,边D C ''与C AC '∠的角平分线交于点N .当C C '多大时,四边形D MCN '为菱形?并说明理由.(2)如图2,将DEC ∆绕点C 旋转α(︒<<︒3600α),得到C ED ''∆,连接D A '、E B ',边E D ''的中点为P .①在旋转过程中,D A '和E B '有怎样的数量关系?并说明理由. ②连接AP ,当AP 最大时,求D A '的值.(结果保留根号) 25.(本题满分13分)如图1,抛物线c bx ax y ++=2经过平行四边形ABCD 的顶点)30(,A 、)01(,-B 、)32(,D ,抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点P .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t . (1)求抛物线的解析式;(2)当t 何值时,PFE ∆的面积最大?并求最大值的立方根;(3)是否存在点P 使PAE ∆为直角三角形?若存在,求出t 的值;若不存在,说明理由.。
2017年山东省潍坊市中考数学试卷一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)下列计算,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a42.(3分)如图所示的几何体,其俯视图是()A. B.C.D.3.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.(3分)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)5.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B6.(3分)如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°7.(3分)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()A.甲B.乙C.丙D.丁8.(3分)一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.9.(3分)若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.(3分)如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°11.(3分)定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()A.0或B.0或2 C.1或D.或﹣12.(3分)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2二、填空题(共6小题,每小题3分,满分18分。
山东省潍坊市2017年中考数学真题试卷和答案一、选择题(每小题3分,满分36分)。
1.下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a42.如图所示的几何体,其俯视图是()A.B. C.D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠α D.∠α+∠β=90°7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()A.甲B.乙C.丙D.丁8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.9.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= x2的解为()#N.A.0或B.0或2 C.1或D.或﹣12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2二、填空题(每小题3分,共18分)。
2017年山东省潍坊市中考数学试卷一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a42.(3分)如图所示的几何体,其俯视图是()A. B.C.D.3.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.(3分)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)5.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B6.(3分)如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°7.(3分)甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()A.甲B.乙C.丙D.丁8.(3分)一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.9.(3分)若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.(3分)如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°11.(3分)定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()A.0或B.0或2 C.1或D.或﹣12.(3分)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2二、填空题(共6小题,每小题3分,满分18分。
2017年山东省潍坊市中考数学试卷一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a42.(3分)如图所示的几何体,其俯视图是()A. B.C.D.3.(3分)可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.(3分)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)5.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B6.(3分)如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°7.(3分)甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()甲乙平均数98方差11A.甲B.乙C.丙D.丁8.(3分)一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.9.(3分)若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.(3分)如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°11.(3分)定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()A.0或B.0或2 C.1或D.或﹣12.(3分)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2二、填空题(共6小题,每小题3分,满分18分。
山东省潍坊市2017年初中学业水平考试 数学答案解析第Ⅰ卷一、选择题1.【答案】D【解析】解:A.原式5a =,故A 错误;B.原式2a =,故B 错误;C.原式22a =,故C 错误;故选D【提示】根据整式运算法则即可求出答案.【考点】同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方,积的乘方2.【答案】D【解析】解:从上边看是一个同心圆,内圆是虚线,故选:D .【提示】根据从上边看得到的图形是俯视图,可得答案.【考点】简单几何体的三视图3.【答案】C【解析】解:将1000亿用科学记数法表示为:11.110⨯故选:C .【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】用科学记数法表示较大的数4.【答案】B【解析】解:棋盘中心方子的位置用(1,0)-表示,则这点所在的横线是x 轴,右下角方子的位置用(0,1)-,则这点所在的纵线是y 轴,则当放的位置是(1,1)--时构成轴对称图形.故选B .【提示】首先确定x 轴、y 轴的位置,然后根据轴对称图形的定义判断.【考点】轴对称图形,坐标位置的确定5.【答案】A∴1218090αβ∠+∠=∠+︒-∠=︒,∴90βα∠-∠=︒,故选B .9.【答案】B【解析】解:由题意可知:2010x x -≥⎧⎨->⎩∴解得:2x ≥,故选B 【提示】根据二次根式有意义的条件即可求出x 的范围;【考点】二次根式有意义的条件10.【答案】C【解析】解:如图,∵A .B .D .C 四点共圆,∴50GBC ADC ∠=∠=︒,∵AE CD ⊥,∴90AED ∠=︒,∴905040EAD ∠=︒-︒=︒,延长AE 交O e 于点M ,∵AO CD ⊥,∴¼¼CMDM =,∴280DBC EAD ∠=∠=︒.故选C .如图所示:60030%180⨯=(名);(3)如图:可得一共有9种可能,甲、乙两人恰好分在同一组的有3种,所以甲、乙两人恰好分在同一组的概率3193P==.23602【提示】(1)直接利用切线的判定方法结合圆心角定理分析得出OD EF ⊥,即可得出答案;(2)直接利用得出ACD COD S S =△△,再利用AED COD S S S =-△阴影扇形,求出答案.【考点】切线的判定与性质,扇形面积的计算23.【答案】解:(1)如图所示:2【提示】(1)由A .B .C 三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A .C 坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E 点坐标,从而可求得直线EF 的解析式,作PH x ⊥轴,交直线l 于点M ,作F N P H ⊥,则可用t 表示出PM 的长,从而可表示出PEF △的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有90PAE ∠=︒或90APE ∠=︒两种情况,当90PAE ∠=︒时,作PG y ⊥轴,利用等腰直角三角形的性质可得到关于t 的方程,可求得t 的值;当90APE ∠=︒时,作PK x ⊥轴,AQ PK ⊥,则可证得PKE AQP △∽△,利用相似三角形的性质可得到关于t 的方程,可求得t 的值.【考点】二次函数的综合应用,待定系数法,平行四边形的性质,二次函数的性质,三角形的面积,直角三角形的性质,相似三角形的判定和性质,方程思想,分类讨论思想11 / 11。
2017山东省潍坊市中考数学真题及答案一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4D.(a2)2=a42.如图所示的几何体,其俯视图是()A.B.C.D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()甲乙平均数9 8方差 1 1A.甲B.乙C.丙D.丁8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C.D.9.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]=x2的解为()#N.A.0或B.0或2 C.1或D.或﹣12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2二、填空题(共6小题,每小题3分,满分18分。
潍坊市诸城市2017年中考数学三模试卷含答案解析2017年山东省潍坊市诸城市中考数学三模试卷一、选择题(共12小题,每小题3分)1.下列计算正确的是()A.30=0 B.﹣|﹣3|=﹣3 C.3﹣1=﹣3 D.2.下列运算正确的是()A.5x2•x3=5x5B.2x+3y=5xy C.4x8÷2x2=4x4D.(﹣x3)2=x53.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个4.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.16,10.5 B.8,9 C.16,8.5 D.8,8.55.方程(k﹣1)x2﹣x+=0有两个实数根,则k的取值范围是()A.k≥1 B.k≤1 C.k>1 D.k<16.如图,将△ABC绕点B按逆时针方向旋转90°后得到△A′BC′,若AB=3,BC=2,则CC′的长为()A.2 B.﹣2 C.2 D.37.如图是五个相同的正方体组成的一个几何体,它的左视图是()A .B .C .D .8.函数y=ax ﹣a 与y=(a ≠0)在同一直角坐标系中的图象可能是( )A .B .C .D .9.若关于x 的一元一次不等式组有解,则m 的取值范围为( )A .B .m ≤C .D .m ≤10.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于( )A .B .C .2D .11.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论中正确的是( )A .a >0B .3是方程ax 2+bx+c=0的一个根C .a+b+c=0D .当x <1时,y 随x 的增大而减小12.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.二、填空题(本大题共6小题,共18分,每小题3分)13.若分式的值为零,则x= .14.已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.15.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为.16.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是.17.如图,直线y=﹣3x+3与x轴交于点B,与y轴交于点A,以线段AB为边,在第一象限内作正方形ABCD,点C落在双曲线y=(k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y=(k≠0)上的点D1处,则a= .18.如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10= .三、解答题(本大题共7小题,共66分)19.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x12+x22=3x1x2,求实数p的值.20.某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)样本容量是,并补全直方图;(2)该年级共有学生800人,请估计该年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰好有1位女生,E组发言的学生中有2位男生,现从A组与E 组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好都是男生的概率.21.如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P 处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为(即tan∠PCD=).(1)求该建筑物的高度(即AB的长).(2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)22.如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AE=6,CE=2,求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)23.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?24.已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t <4).连接PQ、MQ、MC.(1)当t为何值时,PQ∥AB?(2)当t=3时,求△QMC的面积;(3)是否存在t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.25.如图,直线y=x+1与y轴交于A点,过点A的抛物线y=﹣x2+bx+c与直线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)直接写出抛物线的解析式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s 与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?对于所求的t值,平行四边形BCMN是否菱形?请说明理由.2017年山东省潍坊市诸城市中考数学三模试卷参考答案与试题解析一、选择题(共12小题,每小题3分)1.下列计算正确的是()A.30=0 B.﹣|﹣3|=﹣3 C.3﹣1=﹣3 D.【考点】6F:负整数指数幂;15:绝对值;22:算术平方根;6E:零指数幂.【分析】根据平方根,负指数幂的意义,绝对值的意义,分别计算出各个式子的值即可判断.【解答】解:A、30=1,故A错误;B、﹣|﹣3|=﹣3,故B正确;C、3﹣1=,故C错误;D、=3,故D错误.故选B.2.下列运算正确的是()A.5x2•x3=5x5B.2x+3y=5xy C.4x8÷2x2=4x4D.(﹣x3)2=x5【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=5x5,符合题意;B、原式不能合并,不符合题意;C、原式=2x6,不符合题意;D、原式=x6,不符合题意,故选A3.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念求解.【解答】解:第二个、第三个图形既是轴对称图形又是中心对称图形,共2个.故选C.4.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.16,10.5 B.8,9 C.16,8.5 D.8,8.5【考点】W5:众数;VC:条形统计图;W4:中位数.【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数,由图可知锻炼时间超过8小时的有14+7=21人.【解答】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数是9;故选B.5.方程(k﹣1)x2﹣x+=0有两个实数根,则k的取值范围是()A.k≥1 B.k≤1 C.k>1 D.k<1【考点】AA:根的判别式.【分析】假设k=1,代入方程中检验,发现等式不成立,故k不能为1,可得出此方程为一元二次方程,进而有方程有解,得到根的判别式大于等于0,列出关于k的不等式,求出不等式的解集得到k的范围,且由负数没有平方根得到1﹣k大于0,得出k的范围,综上,得到满足题意的k的范围.【解答】解:当k=1时,原方程不成立,故k≠1,∴方程为一元二次方程,又此方程有两个实数根,∴b2﹣4ac=(﹣)2﹣4×(k﹣1)×=1﹣k﹣(k﹣1)=2﹣2k≥0,解得:k≤1,1﹣k>0,综上k的取值范围是k<1.故选D.6.如图,将△ABC绕点B按逆时针方向旋转90°后得到△A′BC′,若AB=3,BC=2,则CC′的长为()A.2 B.﹣2 C.2 D.3【考点】R2:旋转的性质.【分析】根据旋转的性质得到BC′=BC=2,∠CBC′=90°,根据等腰直角三角形的性质即可得到结论.【解答】解:将△ABC绕点B按逆时针方向旋转90°后得到△A′BC′,∴BC′=BC=2,∠CBC′=90°,∴CC′=BC=2,故选A.7.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.【考点】U2:简单组合体的三视图.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一列有1个正方形,第二列有2个正方形.故选D.8.函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】当反比例函数图象分布在第一、三象限,则a>0,然后根据一次函数图象与系数的关系对A、B进行判断;当反比例函数图象分布在第二、四象限,则a<0,然后根据一次函数图象与系数的关系对C、D进行判断.【解答】解:A、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以A选项错误;B、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以B选项错误;C、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以C选项错误;D、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以D选项正确.故选D.9.若关于x的一元一次不等式组有解,则m的取值范围为()A.B.m≤C.D.m≤【考点】CB:解一元一次不等式组.【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可.【解答】解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.10.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于()A.B.C.2 D.【考点】M5:圆周角定理;T1:锐角三角函数的定义.【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故选D.11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.a>0B.3是方程ax2+bx+c=0的一个根C.a+b+c=0D.当x<1时,y随x的增大而减小【考点】H4:二次函数图象与系数的关系;H3:二次函数的性质.【分析】根据抛物线的开口方向可得a<0,根据抛物线对称轴可得方程ax2+bx+c=0的根为x=﹣1,x=3;根据图象可得x=1时,y>0;根据抛物线可直接得到x<1时,y随x的增大而增大.【解答】解:A、因为抛物线开口向下,因此a<0,故此选项错误;B、根据对称轴为x=1,一个交点坐标为(﹣1,0)可得另一个与x轴的交点坐标为(3,0)因此3是方程ax2+bx+c=0的一个根,故此选项正确;C、把x=1代入二次函数y=ax2+bx+c(a≠0)中得:y=a+b+c,由图象可得,y>0,故此选项错误;D、当x<1时,y随x的增大而增大,故此选项错误;故选:B.12.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选A二、填空题(本大题共6小题,共18分,每小题3分)13.若分式的值为零,则x= 0或2 .【考点】63:分式的值为零的条件.【分析】根据分式的分子分为零且分母不为零,可得答案.【解答】解:由题意得x3﹣3x2+2x=0且x﹣1≠0,解得x=0或x=2,故答案为:0或2.14.已知x、y是二元一次方程组的解,则代数式x2﹣4y2的值为.【考点】97:二元一次方程组的解;54:因式分解﹣运用公式法.【分析】根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得答案.【解答】解:,①×2﹣②得﹣8y=1,y=﹣,把y=﹣代入②得2x﹣=5,x=,x2﹣4y2=()=,故答案为:.15.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为8 .【考点】M5:圆周角定理;KH:等腰三角形的性质.【分析】连接AD,由圆周角定理得出∠AEB=∠ADB=90°,由等腰三角形的性质得出BD=CD,由三角形中位线定理得出OD∥AC,CE=2MD=4,求出AE,再由勾股定理求出BE即可.【解答】解:连接AD,如图所示:∵以AB为直径的⊙O与BC交于点D,∴∠AEB=∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∴BM=EM,∴CE=2MD=4,∴AE=AC﹣CE=6,∴BE==;故答案为:8.16.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是.【考点】FA:待定系数法求一次函数解析式.【分析】延长BC交x轴于点F;连接OB,AF;连接CE,DF,且相交于点N.把将多边形OABCDE 分割两个矩形,过两个矩形的对角线的交点的直线把多边形OABCDE分割成面积相等的两部分.而M点正是矩形ABFO的中心,求得矩形CDEF的中心N的坐标,设y=kx+b,利用待定系数法求k,b即可.【解答】解:如图,延长BC交x轴于点F;连接OB,AF;连接CE,DF,且相交于点N.由已知得点M(2,3)是OB,AF的中点,即点M为矩形ABFO的中心,所以直线l把矩形ABFO 分成面积相等的两部分.又因为点N(5,2)是矩形CDEF的中心,所以,过点N(5,2)的直线把矩形CDEF分成面积相等的两部分.于是,直线MN即为所求的直线l.设直线l的函数表达式为y=kx+b,则解得,故所求直线l的函数表达式为.故答案为.17.如图,直线y=﹣3x+3与x轴交于点B,与y轴交于点A,以线段AB为边,在第一象限内作正方形ABCD,点C落在双曲线y=(k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y=(k≠0)上的点D1处,则a= 2 .【考点】GB:反比例函数综合题.【分析】对于直线解析式,分别令x与y为0求出y与x的值,确定出A与B坐标,后根据三角形全等得出C点坐标,进而求出反比例函数的解析式,进而确定D点的坐标和D1点的坐标,即可确定出a的值.【解答】解:对于直线y=﹣3x+3,令x=0,得到y=3;令y=0,得到x=1,即A(0,3),B(1,0),过C作CE⊥x轴,交x轴于点E,过A作AF∥x轴,过D作DF垂直于AF于F,如图所示,∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°,∴∠OAB+∠ABO=90°,∠ABO+∠EBC=90°,∴∠OAB=∠EBC,在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴BE=AO=3,CE=OB=1,∴C(4,1),把C坐标代入反比例解析式得:k=4,即y=,同理得到△DFA≌△BOA,∴DF=BO=1,AF=AO=3,∴D(3,4),把y=4代入反比例解析式得:x=1,即D1(1,4),则将正方形ABCD沿x轴负方向平移2个单位长度,使点D恰好落在双曲线y=(k≠0)上的点D1处,即a=2,故答案为:2.18.如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10= π.【考点】MI:三角形的内切圆与内心;38:规律型:图形的变化类.【分析】(1)图1,作辅助线构建正方形OECF,设圆O的半径为r,根据切线长定理表示出AD和BD的长,利用AD+BD=5列方程求出半径r=(a、b是直角边,c为斜边),运用圆面积公式=πr2求出面积=π;(2)图2,先求斜边上的高CD的长,再由勾股定理求出AD和BD,利用半径r=(a、b是直角边,c为斜边)求两个圆的半径,从而求出两圆的面积和=π;(3)图3,继续求高DM和CM、BM,利用半径r=(a、b是直角边,c为斜边)求三个圆的半径,从而求出三个圆的面积和=π;综上所述:发现S1+S2+S3+…+S10=π.【解答】解:(1)图1,过点O做OE⊥AC,OF⊥BC,垂足为E、F,则∠OEC=∠OFC=90°∵∠C=90°∴四边形OECF为矩形∵OE=OF∴矩形OECF为正方形设圆O的半径为r,则OE=OF=r,AD=AE=3﹣r,BD=4﹣r∴3﹣r+4﹣r=5,r==1∴S1=π×12=π(2)图2,由S△ABC=×3×4=×5×CD∴CD=由勾股定理得:AD==,BD=5﹣=由(1)得:⊙O的半径==,⊙E的半径==∴S1+S2=π×+π×=π(3)图3,由S△CDB=××=×4×MD∴MD=由勾股定理得:CM==,MB=4﹣=由(1)得:⊙O的半径=,:⊙E的半径==,:⊙F的半径==∴S1+S2+S3=π×+π×+π×=π∴图4中的S1+S2+S3+S4=π则S1+S2+S3+…+S10=π故答案为:π.三、解答题(本大题共7小题,共66分)19.已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:无论p取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x1,x2,且满足x12+x22=3x1x2,求实数p的值.【考点】AA:根的判别式.【分析】(1)化成一般形式,求根的判别式,当△>0时,方程总有两个不相等的实数根;(2)根据根与系的关系求出两根和与两根积,再把变形,化成和与乘积的形式,代入计算,得到一个关于p的一元二次方程,解方程.【解答】证明:(1)(x﹣3)(x﹣2)﹣p2=0,x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=25﹣24+4p2=1+4p2,∵无论p取何值时,总有4p2≥0,∴1+4p2>0,∴无论p取何值时,方程总有两个不相等的实数根;(2)x1+x2=5,x1x2=6﹣p2,∵x12+x22=3x1x2,∴(x1+x2)2﹣2x1x2=3x1x2,∴52=5(6﹣p2),∴p=±1.20.某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)样本容量是50 ,并补全直方图;(2)该年级共有学生800人,请估计该年级在这天里发言次数不少于12次的人数;(3)已知A组发言的学生中恰好有1位女生,E组发言的学生中有2位男生,现从A组与E 组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好都是男生的概率.【考点】X6:列表法与树状图法;V3:总体、个体、样本、样本容量;V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图;VB:扇形统计图.【分析】(1)求得B组所占的百分比,然后根据B组有10人即可求得总人数,即样本容量,然后求得C组的人数,从而补全直方图;(2)利用总人数乘以对应的百分比即可求解;(3)分别求出A、E两组的人数,确定出各组的男女生人数,然后列表或画树状图,再根据概率公式计算即可得解.【解答】解:(1)∵B、E两组发言人数的比为5:2,E组发言人数占8%,∴B组发言的人数占20%,由直方图可知B组人数为10人,所以,被抽查的学生人数为:10÷20%=50人,∴样本容量为50人.F组人数为:50×(1﹣6%﹣20%﹣30%﹣26%﹣8%)=50×(1﹣90%)=50×10%,=5(人),C组人数为:50×30%=15(人),E组人数为:50×8%=4人补全的直方图如图;(2)F组发言的人数所占的百分比为:10%,所以,估计全年级在这天里发言次数不少于12次的人数为:800×(8%+10%)=144(人);(3)∵A组发言的学生为:50×6%=3人,有1位女生,∴A组发言的有2位男生,∵E组发言的学生:4人,∴有2位女生,2位男生.∴由题意可画树状图为:∴共有12种情况,所抽的两位学生恰都是男生的情况有4种,∴所抽的两位学生恰好是一男一女的概率为=.21.如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P 处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为(即tan∠PCD=).(1)求该建筑物的高度(即AB的长).(2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】(1)过点P作PE⊥BD于E,PF⊥AB于F,在Rt△ABC中,求出AB的长度即可;(2)设PE=x米,则BF=PE=x米,根据山坡坡度为,用x表示CE的长度,然后根据AF=PF 列出等量关系式,求出x的值即可.【解答】解:(1)过点P作PE⊥BD于E,PF⊥AB于F,又∵AB⊥BC于B,∴四边形BEPF是矩形,∴PE=BF,PF=BE∵在Rt△ABC中,BC=90米,∠ACB=60°,∴AB=BC•tan60°=90(米),故建筑物的高度为90米;(2)设PE=x米,则BF=PE=x米,∵在Rt△PCE中,tan∠PCD==,∴CE=2x,∵在Rt△PAF中,∠APF=45°,∴AF=AB﹣BF=90﹣x,PF=BE=BC+CE=90+2x,又∵AF=PF,∴90﹣x=90+2x,解得:x=30﹣30,答:人所在的位置点P的铅直高度为()米.22.如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AE=6,CE=2,求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)【考点】MD:切线的判定;MO:扇形面积的计算.【分析】(1)连结OC,如图,先根据切线的性质得∠BAD=90°,再根据平行线的性质,由OD∥BC得∠1=∠3,∠2=∠4,加上∠3=∠4,则∠1=∠2,接着证明△AOD≌△COD,得到∠OCD=∠OAD=90°,于是可根据切线的判定定理得到DE是⊙O的切线;(2)设半径为r,则OE=AE﹣OA=6﹣r,OC=r,在Rt△OCE中利用勾股定理得到r2+(2)2=(6﹣r)2,解得r=2,再利用正切函数求出∠COE=60°,然后根据扇形面积公式和S阴影部=S△COE﹣S扇形BOC进行计算即可.分【解答】解:(1)连结OC,如图,∵AD为⊙O的切线,∴AD⊥AB,∴∠BAD=90°,∵OD∥BC,∴∠1=∠3,∠2=∠4,∵OB=OC,∴∠3=∠4,∴∠1=∠2,在△OCD和△OAD中,,∴△AOD≌△COD(SAS);∴∠OCD=∠OAD=90°,∴OC⊥DE,∴DE是⊙O的切线;(2)设半径为r,则OE=AE﹣OA=6﹣r,OC=r,在Rt△OCE中,∵OC2+CE2=OE2,∴r2+(2)2=(6﹣r)2,解得r=2,∵tan∠COE===,∴∠COE=60°,∴S阴影部分=S△COE﹣S扇形BOC=×2×2﹣=2﹣π.23.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】CE:一元一次不等式组的应用;FH:一次函数的应用.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.由题意,得解得答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(2)由题意,得解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.方案二:A地的赈灾物资运往D县42吨,运往E县58吨;B地的赈灾物资运往D县78吨,运往E县22吨.方案三:A地的赈灾物资运往D县43吨,运往E县57吨;B地的赈灾物资运往D县77吨,运往E县23吨.方案四:A地的赈灾物资运往D县44吨,运往E县56吨;B地的赈灾物资运往D县76吨,运往E县24吨.方案五:A地的赈灾物资运往D县45吨,运往E县55吨;B地的赈灾物资运往D县75吨,运往E县25吨.(3)设运送这批赈灾物资的总费用为w元.由题意,得w=220x+250+200+220(x﹣20)+200×60+210×20=﹣10x+60800.因为w随x的增大而减小,且40<x≤45,x为整数.所以,当x=41时,w有最大值.则该公司承担运送这批赈灾物资的总费用最多为:w=60390(元).24.已知:如图①,在平行四边形ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t <4).连接PQ、MQ、MC.(1)当t为何值时,PQ∥AB?(2)当t=3时,求△QMC的面积;(3)是否存在t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.【考点】LO:四边形综合题.【分析】(1)根据勾股定理求出AC,根据PQ∥AB,得出关于t的比例式,求解即可;(2)过点P作PD⊥BC于D,根据△CPD∽△CBA,列出关于t的比例式,表示出PD的长,再根据S△QMC=QC•PD,进行计算即可;(3)过点M作ME⊥BC的延长线于点E,根据△CPD∽△CBA,得出PD=(4﹣t),CD=(4﹣t),再根据△PDQ∽△QEM,得到=,即PD•EM=QE•DQ,进而得到方程(﹣t)2=(﹣t)(+t),求得t=或t=0(舍去),即可得出当t=时,PQ⊥MQ.【解答】解:(1)如图所示,AB=3cm,BC=5cm,AC⊥AB,∴Rt△ABC中,AC=4,若PQ∥AB,则有=,∵CQ=PA=t,CP=4﹣t,QB=5﹣t,∴=,即20﹣9t+t2=t2,解得t=,当t=时,PQ∥AB;(2)如图所示,过点P作PD⊥BC于点D,∴∠PDC=∠A=90°,∵∠PCD=∠BCA∴△CPD∽△CBA,∴=,当t=3时,CP=4﹣3=1,∵BA=3,BC=5,∴=,∴PD=,又∵CQ=3,PM∥BC,∴S△QMC=×3×=;(3)存在时刻t=,使PQ⊥MQ,理由如下:如图所示,过点M作ME⊥BC的延长线于点E,∵△CPD∽△CBA,∴==,∵BA=3,CP=4﹣t,BC=5,CA=4,∴==,∴PD=(4﹣t),CD=(4﹣t).∵PQ⊥MQ,∴∠PDQ=∠QEM=90°,∠PQD=∠QME,∴△PDQ∽△QEM,∴=,即PD•EM=QE•DQ.∵EM=PD=(4﹣t)=﹣t,DQ=CD﹣CQ=(4﹣t)﹣t=﹣t,QE=DE﹣DQ=5﹣[(4﹣t)﹣t]= + t,∴(﹣t)2=(﹣t)(+t),即2t2﹣3t=0,∴t=或t=0(舍去),∴当t=时,PQ⊥MQ.25.如图,直线y=x+1与y轴交于A点,过点A的抛物线y=﹣x2+bx+c与直线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)直接写出抛物线的解析式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s 与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?对于所求的t值,平行四边形BCMN是否菱形?请说明理由.【考点】HF:二次函数综合题.【分析】(1)先求得点B和点A的坐标,然后将原点坐标,点A和点B的坐标代入抛物线的解析式求解即可;(2)设点P的坐标为(t,0),则N(t,﹣t2+t+1),M(t, t+1),然后依据MN 等于M、N两点的纵坐标之差可得到S与t的函数关系式;(3)已知MN∥BC,故此当MN=NB时,四边形BCMN为平行四边形,然后列出方程组求解即可;当MC=MN时,四边形BCMN为菱形,然后分别将t=1和t=2代入求得点M的坐标,然后再求得MC的长,最后依据MC于是等于MN进行判断即可.【解答】解:(1)∵BC⊥x轴,垂足为点C,C(3,0),∴B的横坐标为3.将x=3代入y=x+1得:y=.∴B(3,).将x=0代入y=x+1得:y=1.∴A(0,1).将点A和点B的坐标代入得:,解得:b=,c=1.∴抛物线的解析式为y=﹣x2+x+1.(2)设点P的坐标为(t,0),则N(t,﹣t2+t+1),M(t, t+1).∴S=(﹣t2+t+1)﹣(t+1)=﹣t2+t.(0<t<3).(3)∵MN∥BC,∴当MN=NB时,四边形BCMN为平行四边形.∴﹣t2+t=,解得t=1或t=2.∴当t=1或t=2时,四边形BCMN为平行四边形.当t=1时,M(1,).依据两点间的距离公式可知:MC==.。