第二章---参数估计
- 格式:doc
- 大小:937.50 KB
- 文档页数:22
第二章 参数估计【学习目标】1、掌握矩估计的替代原则;会求已知分布中未知参数的矩估计(值)2、熟练掌握极大似然估计的思想及求法3、估计量的评价标准:无偏性、有效性、相合性的定义4、统计量的无偏性的判断;两个无偏估计的有效性判断;会用Fisher 信息量及c-R 下界进行统计量的UMVUE 充分性判断5、掌握区间估计的定义6、单个正态总体均值的区间估计(包括方差已知、方差未知);单个正态总体方差的区间估计(包括均值已知、均值未知)7、两个正态总体均值差的区间估计(方差未知);两个正态总体方差比的区间估计 8、单侧置信区间的求法 【典型例题讲解】例1、设1,,n X X 是来自均匀分布(,1)U θθ+的总体的容量为n 的样本,其中θ-∞<<+∞为未知参数,试证:θ的极大似然估计量不止一个,例如1(1)ˆXθ=,2()ˆ1n X θ=-,3(1)()11ˆ()22n XXθ=+-都是θ的极大似然估计。
解:(,1)U θθ+分布的密度函数为11()0x f x θθ≤≤+⎧=⎨⎩其他似然函数(1)()11()0n x x L θθθ≤≤≤+⎧=⎨⎩其他由于在(1)()1n x x θθ≤≤≤+上()L θ为常数,所以凡是满足:(1)()ˆˆ1n x x θθ≤≤≤+的ˆθ均为θ的极大似然估计。
从而(1)1(1)ˆX θ=满足此条件,故1(1)ˆX θ=是θ的极大似然估计;(2)由于()(1)1n X X -≤,故2()(1)()2ˆˆ11n n X X X θθ=-≤≤=+,所以2()ˆ1n Xθ=-为θ的极大似然估计;(3)由于()(1)1n X X -≤,故(1)()(1)12n X X X +-≤,(1)()()12n n X X X ++≥,从而有3(1)()(1)()(1)()31111ˆˆ()()12222n n n XXXXXXθθ=+-≤≤≤++=+,故3ˆθ也为θ的极大似然估计。
练习二 多元正态分布的参数估计2.1.试叙述多元联合分布和边际分布之间的关系。
解:多元联合分布讨论多个随机变量联合到一起的概率分布状况,12(,,)p X X X X '=的联合分布密度函数是一个p 维的函数,而边际分布讨论是12(,,)p X X X X '=的子向量的概率分布,其概率密度函数的维数小于p 。
2.2设二维随机向量12()X X '服从二元正态分布,写出其联合分布。
解:设12()X X '的均值向量为()12μμ'=μ,协方差矩阵为21122212σσσσ⎛⎫ ⎪⎝⎭,则其联合分布密度函数为1/21222112112222122121()exp ()()2f σσσσσσσσ--⎧⎫⎛⎫⎛⎫⎪⎪'=---⎨⎬ ⎪⎪⎝⎭⎝⎭⎪⎪⎩⎭x x μx μ。
2.3已知随机向量12()X X '的联合密度函数为121212222[()()()()2()()](,)()()d c x a b a x c x a x c f x x b a d c --+-----=-- 其中1a x b ≤≤,2c x d ≤≤。
求(1)随机变量1X 和2X 的边缘密度函数、均值和方差; (2)随机变量1X 和2X 的协方差和相关系数; (3)判断1X 和2X 是否相互独立。
(1)解:随机变量1X 和2X 的边缘密度函数、均值和方差;112121222[()()()()2()()]()()()d x cd c x a b a x c x a x c f x dx b a d c --+-----=--⎰12212222222()()2[()()2()()]()()()()dd c c d c x a x b a x c x a x c dx b a d c b a d c -------=+----⎰ 121222202()()2[()2()]()()()()dd c c d c x a x b a t x a t dt b a d c b a d c ------=+----⎰ 2212122222()()[()2()]1()()()()d cdc d c x a x b a t x a t b a d c b a d c b a------=+=----- 所以由于1X 服从均匀分布,则均值为2b a+,方差为()212b a -。
第二章 参数估计课后习题参考答案2.1 设总体X 服从二项分布()n X X X p p N B ,,,,11,,21 <<为其子样,求N 及p 的矩法估计。
解:()()()p Np X D Np X E -==1,令()⎪⎩⎪⎨⎧-==p Np S Np X 12解上述关于N 、p 的方程得:2.2 对容量为n 的子样,对密度函数22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩其中参数α的矩法估计。
解:122()()a E x xx dx ααα==-⎰22022()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n=+++为n 个样本的观察值。
2.3 使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) 232.50,232.48,232.15,232.52,232.53,232.30 232.48,232.05,232.45,232.60,232.47,232.30 试用矩法估计测量的真值和方差(设仪器无系统差)。
⎪⎪⎩⎪⎪⎨⎧-=-==X S p S X X p X N 2221ˆˆˆ解:()()()∑∑====-====ni i ni i S X X n X D X X n X E 12210255.014025.23212.4 设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数()10,1,<<=βββx f 的总体,试用矩法估计总体均值、总体方差及参数β。
解:()()()()4.22ˆ2,1,407.012.1101221========-===⎰⎰∑∑==X Xdx xdx x xf X E x f XX n S X n X ni i ni i ββββββββ参数:总体方差:总体均值:2.5 设n X X X ,,,21 为()1N ,μ的一个字样,求参数μ的MLE ;又若总体为()21N σ,的MLE 。
第二章多元正态分布的参数估计多元正态分布是在多个随机变量之间存在相互依赖关系时使用的一种概率分布。
它在许多统计分析和机器学习领域中都有广泛的应用。
在实际应用中,我们通常需要使用样本数据对多元正态分布的参数进行估计。
多元正态分布由均值向量和协方差矩阵两个参数来描述。
均值向量表示各个随机变量的平均值,而协方差矩阵表示各个随机变量之间的协方差。
参数估计的目标就是通过样本数据来估计这两个参数。
首先,我们需要收集一个具有充分样本量的数据集。
对于一个具有n个样本的多元正态分布,我们可以将样本数据表示为一个n行d列的矩阵X,其中每一行是一个d维的样本向量。
其中n表示样本数量,d表示随机变量的个数。
接下来,我们可以根据样本数据来估计多元正态分布的均值向量和协方差矩阵。
1.均值向量的估计:多元正态分布的均值向量可以通过样本均值向量来估计。
样本均值向量的计算公式如下:μ = (1/n) * Σxi其中μ是估计得到的均值向量,xi表示样本矩阵X的第i行。
2.协方差矩阵的估计:多元正态分布的协方差矩阵可以通过样本协方差矩阵来估计。
Σ=(1/(n-1))*(X-μ)'*(X-μ)其中Σ是估计得到的协方差矩阵,X是样本矩阵,μ是估计得到的均值向量。
需要注意的是,在计算协方差矩阵时,我们使用的是样本协方差矩阵而不是总体协方差矩阵。
这是因为样本协方差矩阵能更好地反映样本数据的真实情况。
以上就是多元正态分布的参数估计方法。
通过样本数据,我们可以使用样本均值向量和样本协方差矩阵来估计多元正态分布的参数。
这些参数估计能为我们提供关于多元正态分布的统计属性和特征,进而用于进一步的分析和应用。
《应用数理统计》吴翊李永乐第二章-参数估计课后习题参考答案(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第二章 参数估计课后习题参考答案设总体X 服从二项分布()n X X X p p N B ,,,,11,,21 <<为其子样,求N 及p 的矩法估计。
解:()()()p Np X D Np X E -==1,令()⎪⎩⎪⎨⎧-==p Np S Np X 12 解上述关于N 、p 的方程得:对容量为n 的子样,对密度函数22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩其中参数α的矩法估计。
解:122()()a E x xx dx ααα==-⎰2222()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n=+++为n 个样本的观察值。
使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) ,,,,,⎪⎪⎩⎪⎪⎨⎧-=-==X S p S X X p X N 2221ˆˆˆ,,,,,试用矩法估计测量的真值和方差(设仪器无系统差)。
解:()()()∑∑====-====ni ini i S XX nX D X X n X E 12210255.014025.2321设子样,,,,,是来自具有密度函数()10,1,<<=βββx f 的总体,试用矩法估计总体均值、总体方差及参数β。
解:()()()()4.22ˆ2,1,407.012.1101221========-===⎰⎰∑∑==X Xdx xdx x xf X E x f XX n S X n X ni i ni i ββββββββ参数:总体方差:总体均值:设n X X X ,,,21 为()1N ,μ的一个字样,求参数μ的MLE ;又若总体为()21N σ,的MLE 。
第二章 参数估计一、填空题1、总体X 的分布函数为);(θx F ,其中θ为未知参数,则对θ常用的点估计方法有 , 。
2、设总体X 的概率密度为(),(;)0,x e x f x x θθθθ--⎧≥=⎨<⎩而12,,,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为_______3、设321,,X X X 是来自总体X 的简单随机样本,且μ=)(X E ,记3211313131X X X ++=μ,3212214141X X X ++=μ 2132121X X +=μ, 3214414141X X X ++=μ则哪个是μ的有偏估计 ,哪个是μ的较有效估计 。
4、随机变量X 的分布函数);(θx F 中未知参数θ的有效估计量和极大似然估计量的关系为 。
5、随机变量X 的分布函数);(θx F 中未知参数θ的有效估计量和最优无偏估计量的关系为 。
6、称统计量),,,(21n X X X T T =为可估函数)(θg 的(弱)一致估计量是指 。
7、判断对错:设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,...,,21是来自该总体的一个样本,设用矩法求得μ的估计量为1ˆμ、用极大似然法求得μ的估计量为2ˆμ,则1ˆμ=2ˆμ。
_________________8、ˆn θ是总体未知参数θ的相合估计量的一个充分条件是_______ .解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 9、已知1021,,x x x 是来自总体X 的简单随机样本,μ=EX 。
令∑∑==+=1076181ˆi i i i x A x μ,则当=A 时,μˆ为总体均值μ的无偏估计。
10、 设总体()θ,0~U X ,现从该总体中抽取容量为10的样本,样本值为0.51.30.61.7 2.21.20.81.5 2.01.6, , , , , , , , , 则参数θ的矩估计为 。
11、 设1ˆθ与2ˆθ都是总体未知参数θ的估计,且1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差满足_______ .解:1212ˆˆˆˆ()(), ()()E E D D θθθθ=<. 12、设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。
13、在参数的区间估计),(21θθ中,当样本容量n 固定时,精度12θθ-提高时,置信度α-1 。
14、设n X X X ,,,21 是来自总体)1,(~μN X 的样本,则μ的置信度为0.95的置信区间为 。
15、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中2σ未知,则μ的置信度为0.95的置信区间为 。
16、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中μ未知,则2σ的置信度为0.95的置信区间为 。
17、设X 服从参数为λ的指数分布,)2(,,,,21>n X X X n 是来自总体X 的样本,X 为其样本均值,则X n λ2服从 分布。
18、设总体服从正态分布)1,(μN ,且μ未知,设n X X X ,...,,21为来自该总体的一个样本,记∑==ni i X n X 11,则μ的置信水平为1α-的置信区间公式是___________________________________;若已知95.01=-α,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取多大_______。
18、为估计大学生近视眼所占的百分比,用重复抽样方式抽取200名同学进行调查,结果发现有68个同学是近视眼。
则大学生近视眼所占的百分比的95%的置信区间为 。
19、设总体X 未知参数为λ,X 为样本均值, X N(0,1),则λ的一个双侧近似1-α置信区间为 。
20、设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。
21、设总体212~(,),,,...,n X N X X X μσ为样本,μ、2σ 未知,则2σ的置信度为1-α的置信区间为 。
22、设总体X 在区间]1,[+θθ上服从均匀分布,则θ的矩估计=θˆ ;D。
)ˆ(θ=23、设总体),(~2σμN X ,若μ和2σ均未知,n 为样本容量,总体均值μ的置信水平为α-1的置信区间为),(λλ+-X X ,则λ的值为________;24、在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。
但当增大置信水平时,则相应的置信区间长度总是 。
二、简述题1、描述矩估计法的原理。
2、描述极大似然估计法的原理。
3、极大似然估计法的一般步骤是什么?4、评价估计量好坏的标准有哪几个?5、什么是无偏估计?6、什么是较有效?7、什么叫有效估计量?8、判断可估函数)(θg 是有效估计量的充要条件是什么? 9、什么是最优无偏估计量?10、什么是一致最小方差无偏估计量?11、有效估计量和最优无偏估计量的关系是什么? 12、什么叫均方误差最小估计量? 13、叙述一致估计量的概念。
14、试述评价一个置信区间好坏的标准。
15、描述区间估计中样本容量、精度、置信度的关系。
三、单选题1、设总体未知参数θ的估计量θ满足()E θθ=,则θ一定是θ的( ) A 极大似然估计 B 矩估计 C 无偏估计 D 有效估计2、设总体未知参数θ的估计量θ满足()E θθ≠,则θ一定是θ的( )A 极大似然估计B 矩估计C 有偏估计D 有效估计3、设n X X X ,,,21 为来自均值为μ的总体的简单随机样本,则),,2,1(n i X i =( )A .是μ的有效估计量B .是μ的一致估计量C .是μ的无偏估计量D .不是μ的估计量4、估计量的有效性是指( ) A.估计量的抽样方差比较小 B.估计量的抽样方差比较大 C.估计量的置信区间比较宽 D.估计量的置信区间比较窄5、若置信水平保持不变,当增大样本容量时,置信区间( ) A .将变宽 B .将变窄 C .保持不变 D .宽窄无法确定6、一个95%的置信区间是指( ) A .总体参数有95%的概率落在这一区间内 B .总体参数有5%的概率未落在这一区间内C .在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D .在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数7、置信度α-1表示区间估计的( ) A .精确性 B .显著性 C .可靠性 D .准确性8、抽取一个容量为100的随机样本,其均值为x =81,标准差s =12。
总体均值μ的99%的置信区间为( )其中:58.2995.0=U 。
A 81±1.97B 81±2.35C 81±3.09D 81±3.52四、计算题 1、设1,,n X X 是来自总体X 的样本X 的密度函数为,0(),00,0x e x f x x λλλ-⎧>=>⎨≤⎩试求λ的极大似然估计量。
2、设总体X 服从参数为λ的泊松分布,求未知参数λ的矩估计量。
3、 设总体X 服从参数为λ的泊松分布,求未知参数λ的有效估计量。
4、设总体X 的概率密度为.,,0,)()(其它θθ≥⎩⎨⎧=--x e x f xθ是未知参数,n X X X ,,,21 是来自X 的样本,求θ的矩估计量1θ∧5、设n X X X ,...,,21是取自总体X 的一个样本,X 的密度函数为⎪⎩⎪⎨⎧<<=elsex xx f ,00,2)(2θθ其中 未知, >0。
试求 的矩估计和极大似然估计。
6、设n X X X ,...,,21 是取自总体X 的一个样本,X 的密度函数为⎪⎩⎪⎨⎧<<-=else x x xx f ,00),(6)(3θθθ 其中θ 未知,0>θ 试求θ的矩估计θˆ。
7、设总体X 的概率密度为.,,0,)()(其它θθ≥⎩⎨⎧=--x e x f xθ是未知参数,n X X X ,,,21 是来自X 的样本,(1)求θ的矩估计量1θ∧;(2)求θ的最大似然估计量2θ∧;(3)1θ∧和2θ∧是不是θ的无偏估计量(说明原因)?8、设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,,,21 为来自总体的一个样本,设∑==n i i X n X 11,∑=-=n i i X X n S 122)(1。
求μ与2σ的极大似然估计量9、设总体X 的概率分布为其中)30(<<θθ是未知参数,利用总体X 的如下样本值0,1,1,0,2,0,2,1,1,2(1)求θ的矩估计值;(2)求θ的最大似然估计值。
10、设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(1) 当1=α时, 求未知参数β的矩估计量; (2) 当1=α时, 求未知参数β的最大似然估计量; (3) 当2=β时, 求未知参数α的最大似然估计量.11、 设)2(,,,21>n X X X n 为来自总体N (0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1) i Y 的方差(),1,2,,i D Y i n =;(2)1Y 与n Y 的协方差).,(1n Y Y Cov(3)若21)(n Y Y c +是2σ的无偏估计量,求常数c.12、设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(1) 求θ的矩估计;(2)求θ的最大似然估计13、设总体X 的概率密度为1,021(),12(1)0,x f x x θθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他n X X X ,,,21 为来自总体X 的简单随机样本,X 是样本均值.(1)求参数θ的矩估计量θ;(2)判断24X 是否为2θ的无偏估计量,并说明理由.解:(1)101()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X =,代入上式得到θ的矩估计量为1ˆ22X θ=-.(2)222211141 (4)44[()]4()424E X EX DX EX DX DX n n θθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D X θ≥>,,所以22 (4)E X θ>.故24X 不是2θ的无偏估计量.14、设总体X 服从)0](,0[>θθ上的均匀分布,n X X X ,...,,21是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为1,0;(,)0,x f x θθθ≤≤⎧=⎨⎩其他,似然函数为1,0,1,2,,,()0,n i x i n L θθθ<<=⎧⎪=⎨⎪⎩其它显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥,所以{}12ˆmax ,,,n X X X θ=是θ的极大似然估计.15、 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,...,,21是来自X 的样本,则未知参数θ的极大似然估计量为_________.解:似然函数为 111(,,;)(1)(1)(,,)nn n i n i L x x x x x θθθθθ==+=+∏1ln ln(1)ln nii L n x θθ==++∑1ln ln 01ni i d L nx d θθ==++∑解似然方程得θ的极大似然估计为1111ln ni i x n θ==-∑.16、设总体的概率密度为101,,(;).0,x x f x θθθ-<<⎧=⎨⎩其它 (0)θ>试用来自总体的样本n X X X ,...,,21,求未知参数θ的矩估计和极大似然估计. 解:先求矩估计1101EX x dx θθμθθ===+⎰111μθμ∴=- 故θ的矩估计为1XX θ=-再求极大似然估计11111(,,;)()nn n i n i L x x x x x θθθθθ--===∏1ln ln (1)ln nii L n x θθ==+-∑1ln ln 0nii d L n x d θθ==+∑所以θ的极大似然估计为111ln ni i x n θ==-∑.17、已知分子运动的速度X 具有概率密度22(),0,0,()0,0.x x f x x αα-⎧>>=≤⎩n X X X ,...,,21为X 的简单随机样本(1)求未知参数α的矩估计和极大似然估计; (2)验证所求得的矩估计是否为α的无偏估计。