数值分析答案第二章参数估计习题(精)
- 格式:ppt
- 大小:878.00 KB
- 文档页数:32
1.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。
解:0120121200102021101201220211,1,2,()0,()3,()4;()()1()(1)(2)()()2()()1()(1)(2)()()6()()1()(1)(1)()()3x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------==-+-- 则二次拉格朗日插值多项式为220()()k k k L x y l x ==∑0223()4()14(1)(2)(1)(1)23537623l x l x x x x x x x =-+=---+-+=+- 5设[]2(),f x Ca b ∈且()()0,f a f b ==求证: 21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为10101010()()()x x x x L x f x f x x x x x --=+-- =()()x bx af a f b a b x a --=+--1()()0()0f a f b L x ==∴= 又 插值余项为1011()()()()()()2R x f x L x f x x x x x ''=-=--011()()()()2f x f x x x x x ''∴=--[]012012102()()1()()21()41()4x x x x x x x x x x b a --⎧⎫≤-+-⎨⎬⎩⎭=-=- 又 ∴21m ax ()()m ax ().8a x b a x bf x b a f x ≤≤≤≤''≤- 16.求一个次数不高于4次的多项式P (x ),使它满足(0)(0)0,(1)(1)0,(2)0P P P P P ''=====解:利用埃米尔特插值可得到次数不高于4的多项式0101010,10,10,1x x y y m m ======11300201001012()()()()(12)()(12)(1)j j j j j j H x y x m x x x x xx x x x x x x αβα===+--=---=+-∑∑210110102()(12)()(32)x x x x x x x x x x x α--=---=-2021()(1)()(1)x x x x x xββ=-=-22323()(32)(1)2H x x x x x x x ∴=-+-=-+设22301()()()()P x H x A x x x x =+--其中,A 为待定常数3222(2)1()2(1)P P x x x Ax x =∴=-++-14A ∴= 从而221()(3)4P x x x =-19.求4()f x x =在[,]a b 上分段埃尔米特插值,并估计误差。
数值分析习题(含答案)第一章绪论姓名学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。
1 若误差限为5105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算)解:2*103400.0-?=x ,325*10211021---?=?≤-x x 故具有3位有效数字。
2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需41*1021-?≤-ππ,3*310211021--?+≤≤?-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。
3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算)解:3*1021-?≤-aa ,2*1021-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102110211021)()(---?≤?+?≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。
2123*****10210065.01022031.1102978.0)()(---?≤=?+?≤-+-≤-b b a a a b ba ab 故b a ?至少具有2位有效数字。
4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)解:已知δ=-**xx x ,则误差为δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。
7、计算的近似值,取。
利用以下四种计算格式,试问哪一种算法误差最小。
〔1〕〔2〕〔3〕〔4〕解:计算各项的条件数由计算知,第一种算法误差最小。
解:在计算机上计算该级数的是一个收敛的级数。
因为随着的增大,会出现大数吃小数的现象。
9、通过分析浮点数集合F=〔10,3,-2,2〕在数轴上的分布讨论一般浮点数集的分布情况。
10、试导出计算积分的递推计算公式,用此递推公式计算积分的近似值并分析计算误差,计算取三位有效数字。
解:此算法是数值稳定的。
第二章习题解答1.〔1〕 R n×n中的子集“上三角阵〞和“正交矩阵〞对矩阵乘法是封闭的。
〔2〕R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。
设A是n×n的正交矩阵。
证明A-1也是n×n的正交矩阵。
证明:〔2〕A是n×n的正交矩阵∴A A-1 =A-1A=E 故〔A-1〕-1=A∴A-1〔A-1〕-1=〔A-1〕-1A-1 =E 故A-1也是n×n的正交矩阵。
设A是非奇异的对称阵,证A-1也是非奇异的对称阵。
A非奇异∴A可逆且A-1非奇异又A T=A ∴〔A-1〕T=〔A T〕-1=A-1故A-1也是非奇异的对称阵设A是单位上〔下〕三角阵。
证A-1也是单位上〔下〕三角阵。
证明:A是单位上三角阵,故|A|=1,∴A可逆,即A-1存在,记为〔b ij〕n×n由A A-1 =E,那么〔其中 j>i时,〕故b nn=1, b ni=0 (n≠j)类似可得,b ii=1 (j=1…n) b jk=0 (k>j)即A-1是单位上三角阵综上所述可得。
R n×n中的子集“正交矩阵〞,“非奇异的对称阵〞和“单位上〔下〕三角阵〞对矩阵求逆是封闭的。
2、试求齐次线行方程组Ax=0的根底解系。
A=解:A=~~~故齐次线行方程组Ax=0的根底解系为,3.求以下矩阵的特征值和特征向量。
算法1、 (,题1)用二分法求方程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】 由二分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取自然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即至少需2、(,题2) 证明方程210)(-+=x e x f x在区间[0,1]内有唯一个实根;使用二分法求这一实根,要求误差不超过21021-⨯。
【解】 由于210)(-+=x e x f x ,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-⨯+=e f ,082110)1(1>+=-⨯+=e e f ,即0)1()0(<⋅f f ,由连续函数的介值定理知,)(x f 在区间[0,1]上至少有一个零点.又010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯一实根.由二分法的误差估计式211*1021212||-++⨯=≤=-≤-εk k k a b x x ,得到1002≥k .两端取自然对数得6438.63219.322ln 10ln 2=⨯≈≥k ,因此取7=k ,即至少需二分误差1.(,题8)已知e=…,试问其近似值7.21=x ,71.22=x ,x 2=,718.23=x 各有几位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-⨯=<=-K x e ,所以7.21=x 有两位有效数字; 因为12102105.000828.0||-⨯=<=-K x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-⨯=<=-K x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
第一章习题解答1. 在下列各对数中,X 是精确值a的近似值(1) a=π,x=3.1 (2) a=1/7,x=0.143 (3) a=π/1000,x=0.0031 (4) a=100/7,x=14.3 试估计x 的绝对误差和相对误差。
解:(1) e=∣3.1-π∣≈0.0416, δr = e/∣x ∣≈0.0143 (2) e=∣0.143-1/7∣≈0.0143 δr = e/∣x ∣≈0.1 (3) e=∣0.0031-π/1000∣≈0.0279 δr = e/∣x ∣≈0.9 (4) e=∣14.3-100/7∣≈0.0143 δr = e/∣x ∣≈0.0012. 已知四个数:x 1=26.3,x 2=0.0250, x 3= 134.25,x 4=0.001。
试估计各近似数的有效位数和误差限,并估计运算μ1= x 1 x 2 x 3和μ1= x 3 x 4 /x 1的相对误差限。
解:x 1=26.3 n=3 δx 1=0.05 δr x 1=δx 1/∣x 1∣=0.19011×10-2x 2=0.0250 n=3 δx 2=0.00005 δr x 2=δx 2/∣x 2∣=0.2×10-2x 3= 134.25 n=5 δx 3=0.005 δr x 3=δx 3/∣x 3∣=0.372×10-4x 4=0.001 n=1 δx 4=0.0005 δr x 4=δx 4/∣x 4∣=0.5由公式:e r (μ)= e (μ)/∣μ∣≦1/∣μ∣Σni=1∣∂f/∂x i ∣δx ie r (μ1)≦1/∣μ1∣[x 2 x 3δx 1+ x 1 x 3δx 2 +x 1x 2δx 3] =0.34468/88.269275 =0.0039049e r (μ2)≦1/∣μ2∣[-x 3 x 4/ x 21δx 1+ x 4/ x 1δx 3 + x 3/ x 1δx 4] =0.497073. 设精确数a>0,x 是a的近似值,x 的相对误差限是0.2,求㏑x 的相对误差限。
第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
《数值分析》练习题及答案解析第一章 绪论主要考查点:有效数字,相对误差、绝对误差定义及关系;误差分类;误差控制的基本原则;。
1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和4 答案:A2. 设 2.3149541...x *=,取5位有效数字,则所得的近似值x=___________ .答案:2.31503.若近似数2*103400.0-⨯=x 的绝对误差限为5105.0-⨯,那么近似数有几位有效数字 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。
4 . 14159.3=π具有4位有效数字的近似值是多少?解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需!41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取( , )之间的任意数,都具有4位有效数字。
第二章 非线性方程求根 主要考查点:二分法N 步后根所在的区间,及给定精度下二分的次数计算;非线性方程一般迭代格式的构造,(局部)收敛性的判断,迭代次数计算; 牛顿迭代格式构造;求收敛阶;1.用二分法求方程012=--x x 的正根,要求误差小于0.05。
(二分法)解:1)(2--=x x x f ,01)0(<-=f ,01)2(>=f ,)(x f 在[0,2]连续,故[0,2]为函数的有根区间。
"(1)计算01)1(<-=f ,故有根区间为[1,2]。
(2)计算041123)23()23(2<-=--=f ,故有根区间为]2,23[。
(3)计算0165147)47()47(2>=--=f ,故有根区间为]47,23[。
(4)计算06411813)813()813(2>=--=f ,故有根区间为]813,23[。