实验十 扭摆的受迫振动
- 格式:pdf
- 大小:67.10 KB
- 文档页数:2
受迫振动的实验报告实验报告:受迫振动一、实验目的:1. 了解受迫振动的基本概念和特性;2. 掌握受迫振动系统的建模和分析方法;3. 验证理论分析模型与实验结果的一致性。
二、实验器材和仪器:1. 受迫振动装置(包括弹簧、质量块、驱动器等);2. 实验台;3. 示波器;4. 动力计。
三、实验原理与内容:1. 受迫振动的基本概念:受迫振动是指振动系统在外界周期性作用力的驱动下发生的振动。
外力的周期性变化会使振动系统发生非简谐振动,其振幅和频率与驱动力的特性有关。
2. 实验装置和建模:实验中使用的受迫振动装置由一个弹簧和一个质量块组成。
弹簧与质量块形成振动系统,驱动器通过周期性的施加力将振动系统带入受迫振动状态。
建立受迫振动系统的模型时,可以将振动系统简化为单自由度振动系统,并假设该系统的阻尼为零。
通过对质量块的运动进行观察和分析,可以得到受迫振动系统的振幅和频率等特性。
3. 实验步骤:(1)将实验装置稳固地安装在实验台上,并将驱动器与质量块相连接;(2)调节驱动器的频率和振幅,观察质量块的振动情况;(3)记录不同驱动频率下质量块的振幅和相位差。
四、实验结果与数据处理:1. 驱动频率-振幅曲线:将驱动频率作为横坐标,振幅作为纵坐标绘制曲线图。
根据实验数据得到的曲线,可以观察到受迫振动系统的共振现象,并可以确定共振频率和振幅。
2. 驱动频率-相位差曲线:将驱动频率作为横坐标,相位差作为纵坐标绘制曲线图。
根据实验数据得到的曲线,可以判断受迫振动系统的相位差与驱动频率的关系。
3. 对比理论模型与实验数据:将实验得到的驱动频率-振幅曲线和相位差曲线与理论模型进行对比。
通过对比可以评估理论模型的准确性和适用范围。
五、实验结论与讨论:1. 根据实验结果可以得出受迫振动系统具有共振现象,在共振频率附近振幅显著增大。
2. 实验数据与理论模型的对比结果显示,理论模型能够较好地描述受迫振动系统的振幅和相位差特性。
3. 受迫振动实验可能存在的误差主要来自驱动器的精度和实验环境的影响。
阻尼振动与受迫振动实验报告一、实验目的(一)观察扭摆的阻尼振动,测定阻尼因数。
(二)研究在简谐外力矩作用下扭摆的受迫振动,描绘扭摆在不同阻尼的情况下的共振曲线(即幅频特性曲线)。
(三)描绘外加强迫力矩与受迫振动之间的位相随频率变化的特性曲线(即相频特性曲线)。
(四)观测不同阻尼对受迫振动的影响。
二、实验仪器扭摆(波尔摆)一套,秒表,数据采集器,转动传感器。
三、实验任务1、调整仪器使波耳共振仪处于工作状态。
2、测量最小阻尼时的阻尼比ζ和固有角频率ω0。
3、测量其他2种或3种阻尼状态的振幅,并求ζ、τ、Q和它们的不确定度。
4、测定受迫振动的幅频特性和相频特性曲线。
四、实验步骤1、打开电源开关,关断电机和闪光灯开关,阻尼开关置于“0”档,光电门H、I可以手动微调,避免和摆轮或者相位差盘接触。
手动调整电机偏心轮使有机玻璃转盘F上的0位标志线指示0度,亦即通过连杆E和摇杆M使摆轮处于平衡位置。
然后拨动摆轮使偏离平衡位置150至200度,松开手后,检查摆轮的自由摆动情况。
正常情况下,震动衰减应该很慢。
2、开关置于“摆轮”,拨动摆轮使偏离平衡位置150至200度后摆动,由大到小依次读取显示窗中的振幅值θj;周期选择置于“10”位置,按复位钮启动周期测量,停止时读取数据10T。
d并立即再次启动周期测量,记录每次过程中的10T的值。
d(1)逐差法计算阻尼比ζ;(2)用阻尼比和振动周期T d计算固有角频率ω0。
3、依照上法测量阻尼(2、3、4)三种阻尼状态的振幅。
求出ζ、τ、Q和它们的不确定度。
4、开启电机开关,置于“强迫力”,周期选择置于“1”,调节强迫激励周期旋钮以改变电机运动角频率ω,选择2个或3个不同阻尼比(和步骤3中一致),测定幅频和相频特性曲线,注意阻尼比较小(“0”和“1”档)时,共振点附近不要测量,以免振幅过大损伤弹簧;每次调节电机状态后,摆轮要经过多次摆动后振幅和周期才能稳定,这时再记录数据。
要求每条曲线至少有12个数据点,其中要包括共振点,即φ=π/2的点。
受迫振动研究实验报告受迫振动研究实验报告一、实验目的本实验旨在通过实验手段,探究受迫振动现象及其规律,了解振动的幅值、频率、阻尼等因素对受迫振动的影响,并掌握减振降噪的方法。
二、实验原理受迫振动是指物体在周期性驱动力作用下的往复运动。
本实验中,我们将采用电动振动台作为驱动力,使实验物体产生受迫振动。
振动台的振幅、频率和阻尼均可调,以便探究不同因素对受迫振动的影响。
三、实验步骤1.准备实验器材:电动振动台、位移传感器、力传感器、数据采集器、电脑等。
2.将位移传感器和力传感器固定在振动台上,连接数据采集器与电脑,启动数据采集系统。
3.将待测物体放置在振动台上,调整物体的质量、刚度和阻尼等参数。
4.设定振动台的振幅、频率和阻尼,启动振动台,使物体产生受迫振动。
5.通过电脑实时监测位移和力的变化情况,记录多组数据。
6.对实验数据进行处理和分析,绘制受迫振动的幅频图和相频图。
7.改变振动台的振幅、频率和阻尼,重复步骤3至6,探究不同因素对受迫振动的影响。
8.根据实验结果,分析振动的幅值、频率、阻尼等因素对受迫振动的影响,并探讨减振降噪的方法。
四、实验结果及分析1.实验结果在实验过程中,我们分别设定了不同的振幅、频率和阻尼,并记录了相应的位移和力数据。
通过对数据的处理和分析,我们得到了不同因素下的受迫振动的幅频图和相频图。
2.数据分析与结论(1)振幅对受迫振动的影响:随着振幅的增加,物体的振动幅度增大。
当振幅增大到一定程度时,物体的振动幅度将趋于稳定。
这一现象表明,当驱动力足够大时,物体的振动将达到一个稳定的极限值。
(2)频率对受迫振动的影响:随着频率的增加,物体的振动幅度减小。
当频率增大到一定程度时,物体的振动幅度将趋于零。
这一现象表明,高频率的驱动力对物体的影响较小。
(3)阻尼对受迫振动的影响:随着阻尼的增加,物体的振动幅度减小。
当阻尼增大到一定程度时,物体的振动幅度将趋于零。
这一现象表明,阻尼大的物体对外部扰动的抵抗能力较强。
一、实验目的1. 理解受迫振动的概念及其基本特性。
2. 掌握测量受迫振动幅频特性和相频特性的方法。
3. 观察共振现象,分析共振发生的原因。
4. 了解阻尼对受迫振动的影响。
二、实验原理1. 受迫振动:物体在周期外力的持续作用下发生的振动称为受迫振动。
这种周期性的外力称为策动力。
当策动力频率与物体的固有频率相等时,系统产生共振,振幅达到最大。
2. 幅频特性:受迫振动的幅频特性是指振幅随策动力频率变化的关系。
当策动力频率接近物体的固有频率时,振幅增大。
3. 相频特性:受迫振动的相频特性是指物体位移与策动力之间的相位差随策动力频率变化的关系。
当策动力频率接近物体的固有频率时,相位差接近90°。
4. 阻尼:阻尼是指物体在振动过程中由于摩擦、空气阻力等因素消耗能量,使振幅逐渐减小的现象。
阻尼对受迫振动的影响表现为:阻尼越大,振幅越小,共振频率越低。
三、实验仪器1. 波尔共振仪2. 摆轮3. 频率计4. 数据采集器5. 计算机四、实验步骤1. 将摆轮安装在波尔共振仪上,调整摆轮的质量和角度,使其达到稳定状态。
2. 开启频率计和数据采集器,记录摆轮的固有频率。
3. 改变策动力的频率,观察摆轮的振动情况,记录不同频率下的振幅和相位差。
4. 分析不同阻尼力矩对受迫振动的影响,观察共振现象。
5. 利用计算机绘制幅频特性曲线和相频特性曲线。
五、实验结果与分析1. 通过实验,成功观察到受迫振动现象,测量了摆轮的固有频率。
2. 当策动力频率接近摆轮的固有频率时,观察到共振现象,振幅达到最大。
3. 分析不同阻尼力矩对受迫振动的影响,发现阻尼越大,振幅越小,共振频率越低。
4. 通过绘制幅频特性曲线和相频特性曲线,进一步验证了受迫振动的幅频特性和相频特性。
六、实验结论1. 受迫振动是指物体在周期外力的持续作用下发生的振动。
2. 策动力频率接近物体的固有频率时,系统产生共振,振幅达到最大。
3. 阻尼对受迫振动有显著影响,阻尼越大,振幅越小,共振频率越低。
受迫振动实验报告通过实验,掌握受迫振动的基本原理,了解振动现象的特征,以及掌握测量受迫振动的方法和技巧。
二、实验原理受迫振动是指在外力作用下,振动系统产生的振动现象。
在实验中,我们将通过一个简单的受迫振动模型来研究这种现象。
模型由一个弹簧和一个质点组成,弹簧的一端固定,另一端连接质点。
当外力作用于质点时,质点将产生振动。
我们将通过改变外力的频率和振幅,来观察振动现象的变化。
三、实验步骤1、将弹簧固定在实验台上,调整弹簧的长度,使其与实验台平行。
2、将质点连接至弹簧的一端,调整质点的位置,使其悬挂在弹簧下方。
3、将振动源连接至质点上,调整振动源的频率和振幅,使其产生受迫振动。
4、通过振动传感器测量质点的振动幅度和频率,记录数据。
5、改变振动源的频率和振幅,重复步骤4,记录数据。
6、根据数据计算质点的振动周期和振动频率。
四、实验结果在实验中,我们通过改变振动源的频率和振幅,观察了质点的振动现象。
我们发现,当振动源的频率与质点的自然频率相同时,质点的振幅最大。
当振动源的频率与质点的自然频率不同时,质点的振幅会逐渐减小。
当振动源的频率过大或过小时,质点无法产生受迫振动。
我们还通过测量数据,计算了质点的振动周期和振动频率。
根据计算结果,我们可以得出质点的自然频率,并与实验结果进行比较。
通过比较,我们可以验证实验结果的准确性。
五、实验分析受迫振动是一种非常常见的现象,我们可以在日常生活中的许多场景中观察到这种现象。
例如,当我们在汽车上行驶时,车辆的振动就是一种受迫振动。
通过实验,我们可以更加深入地了解这种现象的特征和规律,从而更好地理解物理学中的振动理论。
在实验中,我们还学习了测量受迫振动的方法和技巧。
这些技能对于我们进行物理实验和科学研究都非常重要。
我们应该认真掌握这些技能,并在今后的学习和工作中加以应用。
六、实验结论通过本次实验,我们深入了解了受迫振动的基本原理和特征。
我们通过观察振动现象和测量数据,验证了物理学中的振动理论。
一、实验目的1. 了解受迫振动的概念和特点。
2. 观察受迫振动中共振现象的产生。
3. 研究受迫振动的幅频特性和相频特性。
4. 学习利用实验仪器进行受迫振动实验。
二、实验原理受迫振动是指物体在周期外力的作用下发生的振动。
当策动力的频率与系统的固有频率相同时,系统产生共振,振幅达到最大值。
受迫振动的幅频特性是指振幅与策动力的频率之间的关系,相频特性是指振幅与策动力频率之间的相位差。
三、实验仪器与设备1. 波尔共振仪2. 弹簧摆轮3. 电磁阻尼装置4. 频闪仪5. 数据采集器6. 计算机及分析软件四、实验步骤1. 连接波尔共振仪,确保各部分工作正常。
2. 将弹簧摆轮固定在波尔共振仪上,调整摆轮的初始位置,使其处于平衡状态。
3. 打开电磁阻尼装置,调整阻尼力矩,使阻尼系数适中。
4. 利用频闪仪观察摆轮的振动情况,并记录下摆轮的振动频率。
5. 改变策动力的频率,记录下不同频率下的振幅和相位差。
6. 利用数据采集器记录下摆轮的振动数据,并输入计算机进行分析。
7. 分析振幅与策动力频率之间的关系,绘制幅频特性曲线。
8. 分析振幅与策动力频率之间的相位差,绘制相频特性曲线。
五、实验结果与分析1. 实验结果(1)当策动力的频率与摆轮的固有频率相同时,观察到摆轮的振幅达到最大值,产生共振现象。
(2)随着策动力频率的增加,振幅逐渐减小,相位差逐渐增大。
(3)幅频特性曲线呈倒U形,相频特性曲线呈线性。
2. 分析(1)共振现象的产生是由于策动力的频率与摆轮的固有频率相匹配,使得系统在策动力作用下产生较大的振幅。
(2)幅频特性曲线表明,在共振频率附近,振幅随策动力频率的增加而增大,当超过共振频率后,振幅逐渐减小。
(3)相频特性曲线表明,振幅与策动力频率之间存在相位差,相位差随着策动力频率的增加而增大。
六、实验结论1. 受迫振动是物体在周期外力作用下发生的振动,具有共振现象。
2. 共振现象的产生是由于策动力的频率与系统的固有频率相匹配。
受迫振动研究实验报告受迫振动研究报告1. 实验原理1.1受迫振动本实验中采用的是伯尔共振仪,其外形如图1所示:图1铜质圆形摆轮系统作受迫振动时它受到三种力的作用:蜗卷弹簧B 提供的弹性力矩,轴承、空气和电磁阻尼力矩,电动机偏心系统经卷簧的外夹持端提供的驱动力矩。
根据转动定理,有式中,J为摆轮的转动惯量,为驱动力矩的幅值,为驱动力矩的角频率,令则式(1)可写为式中为阻尼系数,为摆轮系统的固有频率。
在小阻尼条件下,方程(2)的通解为:此解为两项之和,由于前一项会随着时间的推移而消失,这反映的是一种暂态行为,与驱动力无关。
第二项表示与驱动力同频率且振幅为的振动。
可见,虽然刚开始振动比较复杂,但是在不长的时间之后,受迫振动会到达一种稳定的状态,称为一种简谐振动。
公式为:振幅和初相位(为受迫振动的角位移与驱动力矩之间的相位差)既与振动系统的性质与阻尼情况有关,也与驱动力的频率和力矩的幅度有关,而与振动的初始条件无关(初始条件只是影响达到稳定状态所用的时间)。
与由下述两项决定:1.2共振由极值条件可以得出,当驱动力的角频率为时,受迫振动的振幅达到最大值,产生共振:共振的角频率振幅:相位差由上式可以看出,阻尼系数越小,共振的角频率越接近于系统的固有频率,共振振幅也越大,振动的角位移的相位滞后于驱动力矩的相位越接近于.下面两幅图给出了不同阻尼系数的条件下受迫振动系统的振幅的频率相应(幅频特性)曲线和相位差的频率响应(相频特性)曲线。
受迫振动的幅频特性受迫振动的相频特性1.3阻尼系数的测量(1)由振动系统作阻尼振动时的振幅比值求阻尼系数摆轮如果只受到蜗卷弹簧提供的弹性力矩,轴承、空气和电磁阻尼力矩,阻尼较小()时,振动系统作阻尼振动,对应的振动方程和方程的解为:可见,阻尼振动的振幅随时间按指数律衰减,对相隔n个周期的两振幅之比取对数,则有:实际的测量之中,可以以此来算出值。
其中,n为阻尼振动的周期数,为计时开始时振动振幅,为的n次振动时振幅,T为阻尼振动时周期。
受迫振动实验报告实验目的,通过受迫振动实验,探究受迫振动系统的特性,并验证受迫振动的共振现象。
实验仪器与设备,振动台、弹簧振子、电磁振子、频率计、示波器、信号发生器等。
实验原理,受迫振动是指在外力作用下,振动系统产生的振动。
当外力的频率与振动系统的固有频率相同时,振动系统将出现共振现象。
实验步骤:1. 首先,将弹簧振子固定在振动台上,并接通电源,调整振动台的频率,使弹簧振子产生自由振动。
2. 然后,将电磁振子放置在弹簧振子旁边,接通电源,并调节信号发生器的频率,使电磁振子产生受迫振动。
3. 使用频率计测量弹簧振子和电磁振子的振动频率,并记录下数据。
4. 利用示波器观察弹簧振子和电磁振子的振动波形,分析受迫振动的特点。
实验结果与分析:经过实验测量和观察,我们得到了以下数据:1. 弹簧振子的固有频率为f1=10Hz,电磁振子的固有频率为f2=12Hz。
2. 当信号发生器的频率为10Hz时,弹簧振子和电磁振子的振幅达到最大值,出现共振现象。
3. 通过示波器观察,我们发现在共振时,振动系统的振幅明显增大,且振动波形呈现出明显的共振特征。
根据实验结果,我们可以得出以下结论:1. 受迫振动系统的共振现象是由外力频率与振动系统固有频率相匹配所导致的。
2. 在共振时,振动系统的振幅显著增大,能量传递效率提高。
3. 受迫振动实验结果与理论分析相吻合,验证了受迫振动的共振现象。
实验总结:通过本次实验,我们深入理解了受迫振动系统的特性,掌握了受迫振动的共振现象,并通过实验数据验证了理论分析的正确性。
受迫振动实验不仅加深了我们对振动现象的理解,也为日后的科研工作和工程应用提供了重要参考。
实验中遇到的问题及解决方法:在实验过程中,我们遇到了信号发生器频率调节不准确的问题,影响了实验数据的准确性。
为了解决这一问题,我们反复调节信号发生器,确保频率的准确性,最终获得了可靠的实验数据。
展望:受迫振动实验为我们提供了一次宝贵的实践机会,也为我们今后的学习和科研工作提供了重要的基础。
受迫振动的研究实验报告实验目的,通过对受迫振动的研究,探索振动系统的特性,并验证受迫振动的理论知识。
实验仪器与设备,振动台、弹簧振子、电磁振子、频率计、示波器、电源供应器等。
实验原理,受迫振动是指在外力作用下,振动系统受到迫使而产生的振动。
当外力的频率接近振动系统的固有频率时,会出现共振现象。
在实验中,我们将通过改变外力的频率和振幅,观察振动系统的响应,从而研究受迫振动的特性。
实验步骤:1. 将弹簧振子和电磁振子分别固定在振动台上,并连接到电源供应器和频率计上。
2. 调节频率计和电源供应器,使弹簧振子和电磁振子的固有频率分别为f1和f2。
3. 分别设置外力的频率为f1、f2和f3,观察振动系统的响应,并记录数据。
4. 调节外力的振幅,重复步骤3的实验,并记录数据。
5. 对实验数据进行分析和处理,得出结论。
实验结果与分析:通过实验数据的记录和分析,我们得出以下结论:1. 当外力的频率等于弹簧振子或电磁振子的固有频率时,振动系统会出现共振现象,振幅急剧增大。
2. 外力的振幅对振动系统的响应有明显影响,振幅越大,振动系统的响应越明显。
结论,受迫振动是振动系统的一种重要现象,外力的频率和振幅对振动系统的响应有显著影响。
通过实验研究,我们可以更深入地了解受迫振动的特性,为振动系统的应用提供理论支持。
实验总结,通过本次实验,我们深入探讨了受迫振动的特性,并验证了受迫振动的理论知识。
实验结果对于进一步研究振动系统具有一定的指导意义,也为相关领域的工程应用提供了理论支持。
实验中遇到的问题与改进,在实验过程中,由于外界干扰和仪器误差等因素,可能会对实验结果产生一定影响。
在以后的实验中,我们可以进一步优化实验条件,减小误差,确保实验结果的准确性。
实验的意义与展望,受迫振动作为振动系统的重要现象,具有广泛的应用价值。
通过对受迫振动的研究,可以深入理解振动系统的特性,为相关领域的工程应用提供理论支持。
未来,我们可以进一步探索受迫振动的特性,拓展其在工程领域的应用。
受迫振动实验报告引言振动是自然界和工程领域普遍存在的现象。
在物理实验中,受迫振动作为经典的振动现象,一直受到广泛关注。
本实验通过模拟受迫振动的过程,探讨了其特性和机制。
本文将从理论背景、实验装置、实验过程、结果分析以及实验结论等方面进行探讨。
理论背景受迫振动是指在外界输入周期性外力的情况下,振动系统做的振动。
经典物理学中,受迫振动的数学模型可以用简谐振动来描述。
受迫振动系统可以分为强迫与共振两种情况。
实验装置实验中采用的装置是一个简单的弹簧振子。
振子由一个质量较小的物体连接至一根弹簧上,固定在支架上。
模拟外力的是一个电机,它连接到振子上产生周期性的拉力。
实验过程首先,我们调整了电机的频率,使其接近振子的固有频率。
通过改变电机的转速,可以实现对外力频率的调控。
然后,我们将振子拉离平衡位置,释放后观察其振动情况。
在实验过程中,我们记录了不同频率下的振幅和振动周期。
结果分析通过实验过程的观察和数据的记录,我们得到了以下实验结果:随着外力频率的变化,振幅和振动周期发生了相应的变化。
当外力频率与振子的固有频率接近时,振幅达到最大值,这种现象被称为共振。
同时,我们还观察到当外力频率与振子的固有频率不一致时,振幅变小,甚至可以消失。
这是因为外力频率与振子固有频率不匹配,导致能量无法转移,振幅逐渐衰减。
这种情况下,外力无法克服振子自身的阻尼力,振幅趋于零。
实验结论本实验通过模拟受迫振动的过程,验证了共振现象的存在,并且揭示了外力频率与振子固有频率不匹配时振幅衰减的原因。
同时,我们还认识到了振子固有频率对振幅的重要影响。
在实际应用中,理解受迫振动的特性和机制对于设计和优化各类工程物理系统,如汽车悬挂系统、摆钟等具有重要意义。
通过合理选择外力频率,可以实现最佳振动效果,减少能量损耗。
附录在实验过程中,我们还讨论了剩余的相关问题,如外力振幅和振子质量、振子长度等因素对振幅和共振频率的影响。
进一步研究和实验可以得到更加详细的结论,为受迫振动领域的研究提供更多的理论支持。
扭摆的受迫振动实验
[教学目的] 1. 研究在简谐外力矩作用下,振幅A 与驱动力频率ω的关系—幅频特性;
2. 研究驱动力矩与扭摆受迫振动之间的相位φ随驱动力矩频率ω的变化—相频特性;
3. 观察共振现象及不同阻尼情况下共振曲线的变化。
[教学内容] 1.扭摆在受到周期性驱动力矩作用时做受迫振动。
其运动方程为:
202cos d d I r c M t dt dt
θθθω++=, 根据扭摆的运动方程可知其稳态解为:
cos()A t θωϕ=+,
由此可见在稳态情况下,受迫振动的角频率与外加简谐力矩的角频率相同。
2.实验中受迫振动的振幅A 和相位φ是通过改变驱动力矩频率ω而得到的。
由角位移的振幅公式:
A =
当固有频率ω0阻尼常量β一定时,受迫振动的振幅A 随驱动力矩频率ω变化即幅频特性(幅频曲线A-ω)。
由扭摆角位移θ相对于简谐外力矩的相位差公式: 02200
2202arctan(),2arctan(),βωϕωωωωβωϕπωωωω−⎧=≤⎪−⎪⎨−⎪=−+>⎪−⎩ 当固有频率ω0阻尼常量β一定时,相位φ随驱动力矩频率ω的变化即相频特性(相频曲线φ-ω)。
3.在驱动力矩和阻尼力矩匀为零时,测定扭摆的固有频率ω0。
4.在外加驱动力矩为零时,测定阻尼常量β,1ln i i n
A nT A β+=。
若n 较大β的测量结果可较准确。
一般自然衰减10个周期。
[教学难点]
1.为得到较好的共振曲线,先粗测共振峰,初步确定共振频率。
2.实验中阻尼常量的大小是通过改变磁铁M e 的位置实现的。
要选择合适的阻尼常量β,使最大
振幅在1200左右。
3.测量点的选择是通过改变驱动力频率实现的。
因此在选取ω时应在共振峰两边合理安排测量点。
[教学要求]
1. 认识和了解扭摆共振仪装置及其工作原理。
2. 观察共振现象,测定幅频特性(A -ω曲线)和相频特性(φ-ω曲线),并从A -ω图中求出共振频率r ω,从φ-ω图中求出固有频率0ω。
3. 测定阻尼常量β。
4. 用公式r ω=检验上述结果。
5. 改变系统的阻尼常量β,用实验的方法考察阻尼常量β与A 和ω的关系.
[问题讨论]
1. 改变一次外加驱动力矩的频率ω后,能否立即测量A(ω)?
2. 固有频率是在什么条件下进行测量的?。