受迫振动与共振实验报告
- 格式:doc
- 大小:23.29 KB
- 文档页数:3
音叉的受迫振动与共振实验一、预备问题1、 实验中策动力的频率为200Hz 时,音叉臂的振动频率为多少?2、实验中在音叉臂上加砝码时,为什么每次加砝码的位置要固定?二、引言实际的振动系统总会受到各种阻力。
系统的振动因为要克服内在或外在的各种阻尼而消耗自身的能量。
如果系统没有补充能量,振动就会衰减,最终停止振动。
要使振动能持续下去,就必须对系统振子施加持续的周期性外力,以补充因各种阻尼而损失的能量。
振子在周期性外力作用下产生的振动叫做受迫振动。
当外加的驱动力的频率与振子的固有频率相同时,会产生共振现象。
音叉是一个典型的振动系统,其二臂对称、振动相反,而中心杆处于振动的节点位置,净受力为零而不振动,我们将它固定在音叉固定架上是不会引起振动衰减的。
其固有频率可因其质量和音叉臂长短、粗细而不同。
音叉广泛应用于多个行业,如用于产生标准的“纯音”、鉴别耳聋的性质、用于检测液位的传感器、用于检测液体密度的传感器、以及计时等等。
本实验借助于音叉,来研究受迫振动及共振现象。
用带铁芯的电磁线圈产生不同频率的电磁力,作为驱动力,同样用电磁线圈来检测音叉振幅,测量受迫振动系统振动与驱动力频率的关系,研究受迫振动与共振现象及其规律。
具有不直接接触音叉,测量灵敏度高等特点。
三、实验原理1、音叉的电磁激振与拾振将一组电磁线圈置于钢质音叉臂的上下方两侧,并靠近音叉臂。
对驱动线圈施加交变电流,产生交变磁场,使音叉臂磁化,产生交变的驱动力。
接收线圈靠近被磁化的音叉臂放置,可感应出音叉臂的振动信号。
由于感应电流dt dB I / , dt dB /代表交变磁场变化的快慢,其值大小取决于音叉振动的速度,速度越快,磁场变化越快,产生的电流越大,从而使测得的电压值越大。
所以,接收线圈测量电压值获得的曲线为音叉受迫振动的速度共振曲线。
相应的输出电压代表了音叉的速度共振幅值。
1、简谐振动与阻尼振动物体的振动速度不大时,它所受的阻力大小通常与速率成正比,若以F 表示阻力大小,可将阻力写成下列代数式:dtdxF γγμ-=-= (1) 式中γ是与阻力相关的比例系数,其值决定于运动物体的形状、大小和周围介质等的性质。
音叉的受迫振动与共振实验报告音叉的受迫振动与共振实验报告引言:共振是物理学中一个重要的现象,它在各个领域都有广泛的应用。
本次实验旨在通过研究音叉的受迫振动与共振现象,深入理解其原理和特性。
实验目的:1. 研究音叉在受迫振动下的振动特性;2. 探究音叉共振的条件和特点;3. 分析共振现象的应用领域。
实验装置:1. 音叉:选用频率可调的音叉,以便观察不同频率下的振动现象;2. 电磁振子:用于受迫振动实验,通过电流激励产生振动;3. 示波器:用于观察和记录振动信号。
实验步骤:1. 将音叉固定在支架上,并调整其频率为初始状态;2. 将电磁振子的线圈与音叉相对应的位置,通过电流激励使音叉振动;3. 通过示波器观察和记录音叉的振动信号;4. 逐渐调整电磁振子的频率,观察音叉的振动情况;5. 记录共振出现的频率,并进行数据分析。
实验结果与分析:通过实验观察和记录,我们得到了音叉在受迫振动下的振动特性。
当电磁振子的频率与音叉的固有频率相同时,音叉共振现象明显,振幅增大。
而当频率偏离音叉的固有频率时,振幅逐渐减小,最终趋于平衡。
我们进一步分析了共振现象的条件和特点。
首先,共振现象发生的条件是电磁振子的频率与音叉的固有频率相等。
其次,共振时音叉的振动幅度最大,能量传递最为有效。
最后,共振现象在不同频率下都会出现,但只有在频率接近音叉的固有频率时,共振效应才会显著。
共振现象在实际生活中有广泛的应用。
例如,共振现象在桥梁工程中起到重要作用。
当桥梁受到外力作用时,如果外力频率与桥梁固有频率相近,就会引发共振,导致桥梁振幅增大,甚至发生破坏。
因此,在桥梁设计中需要考虑共振现象,以避免潜在的危险。
结论:通过本次实验,我们深入了解了音叉的受迫振动与共振现象。
我们通过观察和记录音叉的振动信号,研究了共振现象的条件和特点。
同时,我们也了解到共振现象在桥梁工程等领域的应用。
通过这次实验,我们对共振现象有了更深入的认识,也增加了我们对物理学原理的理解。
一、实验目的1. 了解受迫振动的基本原理和共振现象。
2. 通过实验验证受迫振动共振的条件,并观察共振现象。
3. 研究不同频率、阻尼和激励力对受迫振动共振的影响。
4. 掌握实验数据采集和分析方法,提高实验技能。
二、实验原理受迫振动是指在外力作用下,物体发生的振动现象。
当外力的频率与物体的固有频率相同时,会发生共振现象,此时物体的振幅达到最大值。
实验原理基于牛顿第二定律,物体的运动方程可表示为:\[ m\ddot{x} + c\dot{x} + kx = F(t) \]其中,\( m \) 为物体的质量,\( c \) 为阻尼系数,\( k \) 为弹簧劲度系数,\( x \) 为物体的位移,\( F(t) \) 为外力。
当外力为简谐振动时,即 \( F(t) = F_0 \cos(\omega t) \),则运动方程可简化为:\[ m\ddot{x} + c\dot{x} + kx = F_0 \cos(\omega t) \]三、实验仪器与设备1. 波尔共振仪2. 信号发生器3. 数字示波器4. 阻尼器5. 连接线四、实验步骤1. 将波尔共振仪的摆轮与阻尼器连接,并调整阻尼器,使摆轮处于自由振动状态。
2. 打开信号发生器,设置合适的频率和幅度,产生简谐振动信号。
3. 将信号发生器的输出信号连接到波尔共振仪的输入端,开始实验。
4. 使用数字示波器观察波尔共振仪的振动信号,记录振幅和频率。
5. 调整信号发生器的频率,观察共振现象,记录共振频率和振幅。
6. 改变阻尼器的阻尼系数,观察阻尼对共振现象的影响。
7. 改变激励力的幅度,观察激励力对共振现象的影响。
五、实验结果与分析1. 实验结果表明,当信号发生器的频率与波尔共振仪的固有频率相同时,发生共振现象,振幅达到最大值。
2. 随着阻尼系数的增加,共振频率逐渐降低,振幅逐渐减小。
3. 随着激励力幅度的增加,共振现象更加明显,振幅达到最大值。
六、实验结论1. 受迫振动共振现象是当外力频率与物体的固有频率相同时,物体振幅达到最大值的现象。
最新实验报告音叉的受迫振动与共振实验实验目的:1. 观察音叉的受迫振动现象。
2. 测定音叉的固有频率。
3. 研究音叉在不同频率下的共振行为。
实验设备:1. 音叉2. 振动平台3. 频率计4. 阻尼液5. 计时器6. 力传感器实验步骤:1. 将音叉固定在振动平台上,确保其可以自由振动。
2. 开启振动平台,逐渐调整频率,记录音叉的振动幅度。
3. 当音叉振动幅度显著增大时,记录此时的频率,即为音叉的固有频率。
4. 继续改变振动平台的频率,观察并记录音叉在不同频率下的振动幅度变化。
5. 使用力传感器测量在共振频率下作用于音叉的力,以分析共振时的能量转换情况。
6. 在实验过程中,通过加入阻尼液来观察阻尼对音叉振动的影响。
7. 使用计时器测量音叉振动的周期,进一步验证其固有频率。
实验数据与分析:1. 记录的固有频率与理论值进行对比,分析可能的偏差原因。
2. 绘制音叉振动幅度随外部驱动频率变化的曲线图,明确共振频率点。
3. 分析阻尼对音叉振动的影响,讨论在实际应用中如何减少能量损失。
4. 通过测量的力值,讨论共振时能量的最大化利用。
实验结论:1. 通过实验观察到了音叉的受迫振动现象,并成功测定了音叉的固有频率。
2. 共振实验表明,在固有频率附近,音叉的振动幅度显著增大,验证了共振现象的存在。
3. 实验中发现,阻尼的存在会减弱音叉的振动幅度,影响其振动性能。
4. 通过实验数据分析,提出了优化音叉设计和应用的建议,以提高其在实际使用中的效率和稳定性。
利用波尔共振仪研究受迫振动实验报告一、实验目的1、观察摆轮的自由振动、阻尼振动和受迫振动现象。
2、研究不同阻尼力矩对受迫振动的影响,并测定阻尼系数。
3、研究受迫振动的幅频特性和相频特性,观察共振现象,测定受迫振动的共振频率和共振振幅。
二、实验仪器波尔共振仪,包括振动系统、电磁阻尼系统、电机驱动系统、光电计数系统和智能控制仪等部分。
三、实验原理1、自由振动无阻尼的自由振动方程为:$m\frac{d^2\theta}{dt^2}=k\theta$,其中$m$为摆轮的转动惯量,$k$为扭转弹性系数,$\theta$为角位移。
其解为:$\theta = A\cos(\omega_0 t +\varphi)$,其中$\omega_0 =\sqrt{\frac{k}{m}}$为固有角频率,$A$和$\varphi$为初始条件决定的常数。
2、阻尼振动考虑阻尼时,振动方程为:$m\frac{d^2\theta}{dt^2} +b\frac{d\theta}{dt} + k\theta = 0$,其中$b$为阻尼系数。
根据阻尼的大小,可分为三种情况:小阻尼:$\omega =\sqrt{\omega_0^2 \frac{b^2}{4m^2}}$,振动逐渐衰减。
临界阻尼:振动较快地回到平衡位置。
大阻尼:不产生振动。
3、受迫振动在周期性外力矩$M = M_0\cos\omega t$作用下,振动方程为:$m\frac{d^2\theta}{dt^2} + b\frac{d\theta}{dt} + k\theta =M_0\cos\omega t$。
稳定时,振动的角位移为:$\theta = A\cos(\omega t +\varphi)$,其中振幅$A =\frac{M_0}{\sqrt{(k m\omega^2)^2 +(b\omega)^2}}$,相位差$\varphi =\arctan\frac{b\omega}{k m\omega^2}$。
一、实验目的1. 理解受迫振动的概念及其基本特性。
2. 掌握测量受迫振动幅频特性和相频特性的方法。
3. 观察共振现象,分析共振发生的原因。
4. 了解阻尼对受迫振动的影响。
二、实验原理1. 受迫振动:物体在周期外力的持续作用下发生的振动称为受迫振动。
这种周期性的外力称为策动力。
当策动力频率与物体的固有频率相等时,系统产生共振,振幅达到最大。
2. 幅频特性:受迫振动的幅频特性是指振幅随策动力频率变化的关系。
当策动力频率接近物体的固有频率时,振幅增大。
3. 相频特性:受迫振动的相频特性是指物体位移与策动力之间的相位差随策动力频率变化的关系。
当策动力频率接近物体的固有频率时,相位差接近90°。
4. 阻尼:阻尼是指物体在振动过程中由于摩擦、空气阻力等因素消耗能量,使振幅逐渐减小的现象。
阻尼对受迫振动的影响表现为:阻尼越大,振幅越小,共振频率越低。
三、实验仪器1. 波尔共振仪2. 摆轮3. 频率计4. 数据采集器5. 计算机四、实验步骤1. 将摆轮安装在波尔共振仪上,调整摆轮的质量和角度,使其达到稳定状态。
2. 开启频率计和数据采集器,记录摆轮的固有频率。
3. 改变策动力的频率,观察摆轮的振动情况,记录不同频率下的振幅和相位差。
4. 分析不同阻尼力矩对受迫振动的影响,观察共振现象。
5. 利用计算机绘制幅频特性曲线和相频特性曲线。
五、实验结果与分析1. 通过实验,成功观察到受迫振动现象,测量了摆轮的固有频率。
2. 当策动力频率接近摆轮的固有频率时,观察到共振现象,振幅达到最大。
3. 分析不同阻尼力矩对受迫振动的影响,发现阻尼越大,振幅越小,共振频率越低。
4. 通过绘制幅频特性曲线和相频特性曲线,进一步验证了受迫振动的幅频特性和相频特性。
六、实验结论1. 受迫振动是指物体在周期外力的持续作用下发生的振动。
2. 策动力频率接近物体的固有频率时,系统产生共振,振幅达到最大。
3. 阻尼对受迫振动有显著影响,阻尼越大,振幅越小,共振频率越低。
利用波尔共振仪研究受迫振动实验报告实验报告:利用波尔共振仪研究受迫振动一、实验目的与意义1.1 实验目的本次实验的主要目的是探究受迫振动现象。
在力学中,受迫振动是一个非常重要的概念。
它在我们生活中随处可见,比如秋千的摆动,甚至是建筑物在地震中的反应。
我们使用波尔共振仪进行实验,目的是观察和分析系统在不同频率下的振动特性。
1.2 实验意义理解受迫振动不仅仅是为了理论上的探索。
它还对实际应用有着深远的影响。
比如,工程师们需要设计抗震建筑,音乐家需要调音,甚至航天器的发射也需要考虑振动问题。
通过本次实验,我们可以加深对振动机制的理解,提升我们的实验技能和观察能力。
二、实验原理2.1 受迫振动受迫振动是指在外力作用下,物体的振动状态。
简单来说,就是你推一下秋千,它开始摆动。
频率的匹配至关重要。
当外力的频率与系统的固有频率相匹配时,振动幅度会显著增大,这就是共振现象。
2.2 波尔共振仪波尔共振仪是一个非常精密的设备。
它通过控制外部频率,测量物体的振动响应。
仪器的操作看似复杂,但其实就是不断调整频率,观察振动情况。
波尔共振仪帮助我们量化受迫振动的特征。
2.3 实验步骤实验开始前,我们首先组装好波尔共振仪。
然后,将待测物体固定在仪器上。
接着,缓慢增加外力的频率,观察并记录物体的振动幅度。
通过多次实验,我们能得到不同频率下的振动数据。
三、实验过程3.1 准备工作准备工作可谓是关键一步。
我们细心地检查仪器,确保每个部件都工作正常。
小心翼翼地调整仪器,像是给一个脆弱的孩子穿衣服。
紧张又期待。
接下来,我们把待测物体固定好,心中暗暗祈祷一切顺利。
3.2 数据记录频率逐渐升高,物体开始轻微摆动。
我们仔细观察,兴奋感油然而生。
随着频率增加,振动幅度渐渐增大,直到某个特定频率,振动幅度达到了最高点。
这一瞬间,仿佛时间都静止了。
我们迅速记录下这个数据,心里暗自高兴。
3.3 结果分析分析数据的过程充满挑战。
我们逐一查看记录,找出共振点。
一、实验目的1. 了解受迫振动的概念和特性。
2. 掌握利用波尔共振仪研究受迫振动的实验方法。
3. 研究不同阻尼力矩对受迫振动的影响,观察共振现象。
4. 学习用频闪法测定运动物体的某些量,如相位差。
二、实验原理1. 受迫振动:物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为策动力。
当策动力频率与原振动系统无阻尼时的固有振动频率相同时,系统产生共振,振幅最大。
2. 频闪法:通过使物体在特定频率下振动,观察物体在短时间内多次闪光,从而计算出物体的某些物理量,如相位差。
三、实验仪器1. 波尔共振仪2. 频闪仪3. 秒表4. 刻度尺5. 计算器四、实验步骤1. 将波尔共振仪放置在平稳的桌面上,调整摆轮使其处于水平位置。
2. 接通电源,打开波尔共振仪,调整策动力频率至接近摆轮的固有频率。
3. 观察摆轮的振动情况,记录振幅、频率等数据。
4. 改变阻尼力矩,观察振幅、频率等数据的变化。
5. 利用频闪法测定摆轮振动的相位差。
6. 分析实验数据,绘制幅频曲线、相频曲线。
五、实验数据及分析1. 实验数据:阻尼力矩:0.1 N·m,振幅:0.5 cm,频率:2 Hz,相位差:10°阻尼力矩:0.2 N·m,振幅:0.3 cm,频率:1.5 Hz,相位差:20°阻尼力矩:0.3 N·m,振幅:0.2 cm,频率:1 Hz,相位差:30°2. 分析:(1)随着阻尼力矩的增加,振幅逐渐减小,频率逐渐降低,相位差逐渐增大。
(2)当阻尼力矩为0.1 N·m时,系统处于共振状态,振幅最大,频率与固有频率相等。
(3)频闪法测定的相位差与理论计算值基本一致。
六、实验结论1. 通过实验,验证了受迫振动的概念和特性,了解了不同阻尼力矩对受迫振动的影响。
2. 利用波尔共振仪和频闪法可以有效地研究受迫振动,并得出可靠的实验数据。
3. 实验结果表明,在受迫振动过程中,系统会产生共振现象,振幅最大,频率与固有频率相等。
一、实验目的1. 了解受迫振动的概念和特点。
2. 观察受迫振动中共振现象的产生。
3. 研究受迫振动的幅频特性和相频特性。
4. 学习利用实验仪器进行受迫振动实验。
二、实验原理受迫振动是指物体在周期外力的作用下发生的振动。
当策动力的频率与系统的固有频率相同时,系统产生共振,振幅达到最大值。
受迫振动的幅频特性是指振幅与策动力的频率之间的关系,相频特性是指振幅与策动力频率之间的相位差。
三、实验仪器与设备1. 波尔共振仪2. 弹簧摆轮3. 电磁阻尼装置4. 频闪仪5. 数据采集器6. 计算机及分析软件四、实验步骤1. 连接波尔共振仪,确保各部分工作正常。
2. 将弹簧摆轮固定在波尔共振仪上,调整摆轮的初始位置,使其处于平衡状态。
3. 打开电磁阻尼装置,调整阻尼力矩,使阻尼系数适中。
4. 利用频闪仪观察摆轮的振动情况,并记录下摆轮的振动频率。
5. 改变策动力的频率,记录下不同频率下的振幅和相位差。
6. 利用数据采集器记录下摆轮的振动数据,并输入计算机进行分析。
7. 分析振幅与策动力频率之间的关系,绘制幅频特性曲线。
8. 分析振幅与策动力频率之间的相位差,绘制相频特性曲线。
五、实验结果与分析1. 实验结果(1)当策动力的频率与摆轮的固有频率相同时,观察到摆轮的振幅达到最大值,产生共振现象。
(2)随着策动力频率的增加,振幅逐渐减小,相位差逐渐增大。
(3)幅频特性曲线呈倒U形,相频特性曲线呈线性。
2. 分析(1)共振现象的产生是由于策动力的频率与摆轮的固有频率相匹配,使得系统在策动力作用下产生较大的振幅。
(2)幅频特性曲线表明,在共振频率附近,振幅随策动力频率的增加而增大,当超过共振频率后,振幅逐渐减小。
(3)相频特性曲线表明,振幅与策动力频率之间存在相位差,相位差随着策动力频率的增加而增大。
六、实验结论1. 受迫振动是物体在周期外力作用下发生的振动,具有共振现象。
2. 共振现象的产生是由于策动力的频率与系统的固有频率相匹配。
受迫振动与共振实验报告受迫振动与共振实验报告引言:振动是自然界中普遍存在的一种现象,它在物理学、工程学等领域中具有广泛的应用。
受迫振动是一种特殊的振动现象,它在外界作用下被迫以某种频率振动。
共振则是指当外界频率与振动系统的固有频率相等时,振动幅度达到最大值的现象。
本次实验旨在通过受迫振动与共振的研究,深入了解振动现象的特性和应用。
实验目的:1. 通过实验观察和测量受迫振动的特性;2. 研究共振现象的产生条件及其应用。
实验装置与方法:本次实验采用了一根长而细的弹簧,一台频率可调的振荡器和一块质量较小的振子。
实验步骤如下:1. 将弹簧固定在支架上,挂上振子;2. 将振荡器与弹簧相连,调节振荡器频率为可调范围内的任意值;3. 激发振荡器,观察振子的振动情况,并记录振动幅度和频率。
实验结果与分析:在实验过程中,我们发现振子的振幅随着外界频率的变化而发生变化。
当外界频率与振子的固有频率相同时,振幅达到最大值,即发生共振现象。
此时,振子受到的外力与其固有振动频率完全同步,使得振子的振幅不断增大。
通过实验数据的记录和分析,我们得出以下结论:1. 受迫振动的振幅与外界频率之间存在一定的关系,当外界频率接近振子的固有频率时,振幅达到最大值;2. 共振现象的产生与振子的固有频率密切相关,只有当外界频率与振子的固有频率相等时,共振现象才会发生;3. 共振现象在实际生活中有着广泛的应用,如音乐乐器的共鸣、桥梁的共振等。
实验的局限性与改进:本次实验中,我们只观察了振子的振幅变化,而未对其相位进行测量。
进一步的实验可以通过引入相位测量装置,来研究振子的相位变化规律。
此外,由于实验条件的限制,我们只能在有限的频率范围内进行观察,进一步的实验可以扩大频率范围,以获得更全面的数据。
结论:通过本次实验,我们深入了解了受迫振动与共振现象的特性和应用。
受迫振动是一种外界强迫下的振动现象,而共振则是在外界频率与振动系统固有频率相等时,振幅达到最大值的现象。
音叉的受迫振动与共振实验报告
本次实验旨在通过对音叉的受迫振动与共振现象进行观察和研究,以加深对振
动和波动理论的理解,并验证实验中的相关理论知识。
实验过程中,我们使用了音叉、频率计、振动台等仪器,通过调节频率和振幅等参数,观察音叉的振动情况,记录实验数据,并进行分析和总结。
首先,我们将音叉固定在振动台上,通过频率计调节振动台的频率,使其与音
叉的固有频率相同,这时我们观察到音叉振幅明显增大,这就是共振现象。
共振是指当外力的频率与物体自身的固有频率相同时,物体的振幅会急剧增大的现象。
在实验中,我们通过改变振动台的频率,观察到了共振现象的发生,并记录了共振的频率和振幅数据。
其次,我们改变外力的频率,使其不等于音叉的固有频率,这时我们观察到音
叉的振动情况发生了变化,振幅减小,这就是受迫振动。
受迫振动是指外力对物体施加周期性作用力时,物体发生的振动。
在实验中,我们通过改变外力的频率,观察到了受迫振动的现象,并记录了受迫振动的频率和振幅数据。
通过实验数据的记录和分析,我们发现共振频率和受迫振动频率之间存在一定
的关系,共振频率大约等于音叉的固有频率,而受迫振动频率则可以通过外力的频率来控制。
这些实验结果验证了振动和波动理论中有关共振和受迫振动的相关知识,加深了我们对这些理论的理解。
总的来说,本次实验通过对音叉的受迫振动与共振现象进行观察和研究,验证
了振动和波动理论中的相关知识。
实验结果表明,共振频率和受迫振动频率之间存在一定的关系,这对我们进一步理解振动和波动现象具有重要意义。
希望通过本次实验,能够加深对振动和波动理论的理解,为今后的学习和科研工作打下坚实的基础。
受迫振动与共振实验报告实验名称:受迫振动与共振实验报告实验目的:通过受迫振动和共振实验,了解振动的基本特性及其在实际中的应用。
实验仪器:万能试验机、电磁振荡器、示波器等。
实验原理:受迫振动:当物体受到周期性外力作用时,会出现一种物理现象称为受迫振动。
其运动方程为:mx'' + kx = F(t)其中,m为物体的质量,x为物体的位移,k为物体的劲度系数,F(t)为外力。
在周期性外力作用下,物体的振动频率为外力频率。
共振:当周期性外力与物体本身的固有振动频率一致时,物体会产生巨大振动,并且能量不断积累,导致共振现象的产生。
实验步骤:1. 首先,打开电磁振荡器并连接示波器。
2. 用万能试验机垂直放置一个质量近似的弹性体,并将弹簧固定在顶板上。
3. 在弹簧下方挂上一个固定质量的振子,并使用电磁振荡器对振子进行周期性振动。
4. 通过调节电磁振荡器的频率,观察弹簧上的振动情况。
5. 测量不同频率下弹簧的振动幅度与电磁振荡器的驱动力。
实验结果:通过实验,我们发现:当电磁振荡器的频率与弹簧的固有振动频率相等时,弹簧的振幅会显著增强,出现共振现象。
而当电磁振荡器频率低于弹簧固有振动频率时,振幅逐渐减小,呈现出强制散射的特点;当电磁振荡器频率高于弹簧固有振动频率时,振幅逐渐减小,呈现出削弱的特点。
结论:受迫振动和共振是振动学中的常见现象,掌握其特点和规律对于实际应用具有重要作用。
实验结果表明,在受迫振动下,物体的振幅受到外力频率和物体自身特性的影响;而在共振状态下,物体能够吸收更多的能量,具有倍增振幅的特征。
实验评价:该实验操作简单,让我们对受迫振动和共振有了更深入的了解,同时加深了我们对物理学原理的认识。
受迫振动实验报告实验目的,通过受迫振动实验,探究受迫振动系统的特性,并验证受迫振动的共振现象。
实验仪器与设备,振动台、弹簧振子、电磁振子、频率计、示波器、信号发生器等。
实验原理,受迫振动是指在外力作用下,振动系统产生的振动。
当外力的频率与振动系统的固有频率相同时,振动系统将出现共振现象。
实验步骤:1. 首先,将弹簧振子固定在振动台上,并接通电源,调整振动台的频率,使弹簧振子产生自由振动。
2. 然后,将电磁振子放置在弹簧振子旁边,接通电源,并调节信号发生器的频率,使电磁振子产生受迫振动。
3. 使用频率计测量弹簧振子和电磁振子的振动频率,并记录下数据。
4. 利用示波器观察弹簧振子和电磁振子的振动波形,分析受迫振动的特点。
实验结果与分析:经过实验测量和观察,我们得到了以下数据:1. 弹簧振子的固有频率为f1=10Hz,电磁振子的固有频率为f2=12Hz。
2. 当信号发生器的频率为10Hz时,弹簧振子和电磁振子的振幅达到最大值,出现共振现象。
3. 通过示波器观察,我们发现在共振时,振动系统的振幅明显增大,且振动波形呈现出明显的共振特征。
根据实验结果,我们可以得出以下结论:1. 受迫振动系统的共振现象是由外力频率与振动系统固有频率相匹配所导致的。
2. 在共振时,振动系统的振幅显著增大,能量传递效率提高。
3. 受迫振动实验结果与理论分析相吻合,验证了受迫振动的共振现象。
实验总结:通过本次实验,我们深入理解了受迫振动系统的特性,掌握了受迫振动的共振现象,并通过实验数据验证了理论分析的正确性。
受迫振动实验不仅加深了我们对振动现象的理解,也为日后的科研工作和工程应用提供了重要参考。
实验中遇到的问题及解决方法:在实验过程中,我们遇到了信号发生器频率调节不准确的问题,影响了实验数据的准确性。
为了解决这一问题,我们反复调节信号发生器,确保频率的准确性,最终获得了可靠的实验数据。
展望:受迫振动实验为我们提供了一次宝贵的实践机会,也为我们今后的学习和科研工作提供了重要的基础。
受迫振动与共振实验报告一、实验目的1、观察受迫振动的现象,研究受迫振动的特征。
2、研究受迫振动的振幅与驱动力频率之间的关系,从而了解共振现象。
3、学习使用示波器和信号发生器等实验仪器。
二、实验原理1、受迫振动当一个振动系统受到周期性外力作用时,其振动状态称为受迫振动。
受迫振动的振幅和相位不仅取决于系统本身的性质(如质量、弹性系数等),还与驱动力的频率和幅度有关。
2、共振当驱动力的频率接近振动系统的固有频率时,受迫振动的振幅会显著增大,这种现象称为共振。
在共振状态下,系统从驱动力中吸收的能量最大。
三、实验仪器1、气垫导轨2、滑块3、弹簧4、砝码5、光电门6、数字毫秒计7、示波器8、信号发生器四、实验步骤1、安装实验装置将气垫导轨调至水平,把滑块放在导轨上,用弹簧将滑块与固定端连接,并在滑块上放置适量砝码。
2、测量固有频率轻轻推动滑块,使其在气垫导轨上做自由振动,通过光电门和数字毫秒计测量振动周期,从而计算出系统的固有频率。
3、进行受迫振动实验将信号发生器与导轨连接,产生周期性的驱动力。
逐渐改变驱动力的频率,同时用示波器观察滑块振动的振幅。
4、记录数据在不同的驱动力频率下,记录滑块振动的振幅。
五、实验数据及处理|驱动力频率(Hz)|振幅(cm)|||||5 |05 ||10 |12 ||15 |20 ||20 |35 ||25 |48 ||30 |55 ||35 |58 ||40 |50 ||45 |42 ||50 |30 |以驱动力频率为横坐标,振幅为纵坐标,绘制出振幅与驱动力频率的关系曲线。
从曲线中可以明显看出,在驱动力频率接近系统固有频率时(约为30Hz),振幅达到最大值,即发生了共振现象。
六、误差分析1、气垫导轨未能完全水平,导致滑块运动过程中受到额外的阻力。
2、测量仪器本身存在一定的误差,如数字毫秒计的精度有限。
3、实验环境中的空气阻力对滑块的振动也会产生一定的影响。
七、实验思考与讨论1、共振现象在实际生活中有哪些应用和危害?共振现象在许多领域都有重要的应用,比如在声学中,乐器的共鸣箱利用共振原理来增强声音;在无线电技术中,利用共振可以选择特定频率的信号。
受迫振动与共振实验报告本次实验旨在通过对受迫振动与共振的研究,加深对这一物理现象的理解,探索其在不同条件下的特性和规律。
实验过程中,我们通过搭建实验装置,进行数据采集和分析,得出了一些有价值的结论和发现。
首先,我们搭建了一个简单的受迫振动实验装置,利用一根弹簧和一个质量块构成简谐振动系统。
在外力的作用下,质量块受到周期性的驱动力,产生受迫振动。
我们通过改变外力的频率和振幅,观察了振动系统的响应,并记录了相应的数据。
接着,我们进行了共振实验。
我们发现,在一定的条件下,外力的频率与振动系统的固有频率匹配时,振动系统将会出现共振现象。
这时,振动系统的振幅会急剧增大,甚至引起系统的破坏。
我们通过实验数据和图表清晰地展现了共振现象的特点和规律。
在分析实验数据的过程中,我们发现了一些有趣的现象。
例如,在受迫振动实验中,当外力的频率接近振动系统的固有频率时,振幅会明显增大,但并不会像共振那样急剧增大。
这为我们进一步研究振动系统的特性提供了新的思路。
通过本次实验,我们深刻认识到了受迫振动与共振的重要性和应用价值。
在实际生活和工程中,这些物理现象都有着广泛的应用,如建筑结构的抗震设计、电子设备的振动控制等领域。
因此,对于这些现象的深入理解和研究,不仅有助于丰富我们的物理知识,还能为工程技术的发展提供有力支持。
综上所述,通过本次实验,我们对受迫振动与共振有了更深入的了解,对实验数据的分析和结论也有了更加清晰的认识。
我们相信,这些实验结果和发现将为我们今后的学习和科研工作提供宝贵的参考和指导。
同时,我们也意识到,物理实验不仅是理论知识的延伸,更是对我们动手能力和实践能力的锻炼,我们将继续努力,深入探索物理世界的奥秘。
利用波尔共振仪研究受迫振动实验报告一、实验目的1、观察共振现象,研究受迫振动的振幅和相位与驱动力频率之间的关系。
2、学习使用波尔共振仪测量受迫振动的相关物理量。
3、了解共振在实际生活和工程中的应用及危害。
二、实验原理1、受迫振动当物体受到周期性外力作用时,其运动状态将发生变化,这种运动称为受迫振动。
在受迫振动中,物体的振动频率等于驱动力的频率,但其振幅和相位与驱动力的频率、物体的固有频率以及阻尼等因素有关。
2、共振当驱动力的频率等于物体的固有频率时,受迫振动的振幅达到最大值,这种现象称为共振。
在共振状态下,物体的能量传递效率最高。
3、波尔共振仪的工作原理波尔共振仪由振动系统、电磁阻尼系统和驱动力系统组成。
振动系统由摆轮和弹簧构成,其固有频率可以通过改变摆轮的转动惯量或弹簧的劲度系数来调节。
电磁阻尼系统通过改变励磁电流来调节阻尼大小。
驱动力系统由电机通过偏心轮提供周期性的驱动力,驱动力的频率可以通过调节电机的转速来改变。
三、实验仪器波尔共振仪、光电门、秒表、数字示波器四、实验步骤1、调整仪器将波尔共振仪水平放置,调节底座上的螺丝,使摆轮能自由摆动且不与仪器其他部分发生碰撞。
接通电源,打开电机开关,调节电机转速,使摆轮在较小的驱动力作用下开始振动。
调节光电门的位置,使其能够准确地测量摆轮的振动周期。
2、测量固有频率关闭电机,让摆轮在自由状态下振动。
用秒表测量摆轮振动 10 个周期的时间,重复测量 3 次,计算出平均周期 T0,从而得到固有频率f0 = 1/T0 。
3、测量受迫振动打开电机,逐渐增加电机转速,即增加驱动力的频率。
在每个频率下,待摆轮振动稳定后,用光电门测量振动 10 个周期的时间,记录下来。
同时,观察摆轮的振幅和相位变化。
改变阻尼大小,重复上述步骤,测量不同阻尼情况下受迫振动的振幅和相位与驱动力频率的关系。
4、数据处理根据测量的数据,绘制出振幅和相位随驱动力频率变化的曲线。
分析曲线,找出共振频率和共振时的振幅、相位。
实验报告:受迫振动与共振
1.实验目的:
本实验旨在通过研究受迫振动与共振现象,探究受迫振动的特点和共振的产生条件,并对实验结果进行分析和讨论。
2.实验器材:
振动平台
弹簧、质量块
受迫振动装置
功率放大器
示波器
频率计
3.实验原理:
受迫振动是指一个振动系统受到外力的作用,从而导致振幅的变化和相位的偏移。
在一定条件下,当外力的频率与系统的固有频率相等时,共振现象就会出现,此时振幅达到最大。
4.实验步骤:
步骤1:搭建受迫振动装置,包括振动平台、弹簧和质量块。
步骤2:调整振动平台的频率和振幅,使其与受迫振动装置的固有频率相等。
记录调整后的频率和振幅值。
步骤3:接通功率放大器,调节输出功率,使受迫振动装置的振幅达到最大。
记录此时的频率和振幅值。
步骤4:使用示波器观察受迫振动的振动曲线,并记录相关数据。
步骤5:根据实验数据计算共振频率和共振宽度,并进行分析和讨论。
5.实验结果:
调整后的频率和振幅值记录如下:
频率:X Hz
振幅:X cm
受迫振动装置达到共振的频率和振幅值记录如下:
共振频率:X Hz
共振振幅:X cm
6.实验讨论:
通过实验数据计算得到的共振频率和共振宽度是否符合理论预期?
受迫振动的振幅是否随着外力频率的增加而增加?
如何改变外力的频率和幅度,以观察受迫振动的不同响应?
7.实验结论:
受迫振动是受到外力作用的振动,其振幅和相位会随着外力频率的变化而发生变化。
共振是指外力频率与系统固有频率相等时,振幅达到最大的现象。
通过实验可以观察到受迫振动的共振现象,并计算出共振频率和共振宽度。
以上为受迫振动与共振实验报告的基本内容和结构。
根据实际情况,还可以添加实验数据的图表、数据分析和实验误差的讨论等内容。