基本不等式
- 格式:doc
- 大小:41.50 KB
- 文档页数:2
基本不等式1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是(简记:积定和最小)(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24.(简记:和定积最大)判断正误(正确的打“√”,错误的打“×”)(1)函数y =x +1x 的最小值是2.( )(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22成立的条件是ab >0.( ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值是2a .( ) 答案:(1)× (2)× (3)× (4)×(教材习题改编)设x >0,y >0,且x +y =18,则xy 的最大值为( )A .80B .77C .81D .82解析:选C.xy ≤⎝⎛⎭⎪⎫x +y 22=⎝ ⎛⎭⎪⎫1822=81,当且仅当x =y =9时等号成立,故选C.若x <0,则x +1x ( ) A .有最小值,且最小值为2 B .有最大值,且最大值为2 C .有最小值,且最小值为-2 D .有最大值,且最大值为-2解析:选D.因为x <0,所以-x >0,-x +1-x ≥21=2,当且仅当x=-1时,等号成立,所以x +1x ≤-2. 若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5(教材习题改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________.解析:设矩形的长为x m ,宽为y m ,则x +y =10,所以S =xy ≤⎝⎛⎭⎪⎫x +y 22=25,当且仅当x =y =5时取等号. 答案:25 m 2利用基本不等式求最值(高频考点)利用基本不等式求最值是高考的常考内容,题型主要为选择题、填空题.高考对利用基本不等式求最值的考查常有以下三个命题角度:(1)求不含等式条件的函数最值; (2)求含有等式条件的函数最值; (3)已知不等式恒成立求参数范围.[典例引领]角度一 求不含等式条件的函数最值(1)函数f (x )=xx 2+3x +1(x >0)的最大值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.【解析】 (1)因为x >0,则f (x )=xx 2+3x +1=1x +1x +3≤12x ·1x +3=15,当且仅当x =1x 时等号成立.(2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3≤-2+3=1. 当且仅当5-4x =15-4x,即x =1时,等号成立. 故f (x )=4x -2+14x -5的最大值为1.【答案】 (1)15 (2)1角度二 求含有等式条件的函数最值(1)(优质试题·高考山东卷)若直线xa +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.(2)已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值为________. 【解析】 (1)由题设可得1a +2b =1,因为a >0,b >0,所以2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =2+b a +4ab +2≥4+2b a ·4ab =8⎝ ⎛⎭⎪⎫当且仅当b a =4a b ,即b =2a 时,等号成立. 故2a +b 的最小值为8. (2)因为x >0,y >0,所以8=x +2y +x ·2y ≤(x +2y )+⎝ ⎛⎭⎪⎫x +2y 22, 令x +2y =t ,则8≤t +t 24,即t 2+4t -32≥0, 解得t ≥4或t ≤-8,即x +2y ≥4或x +2y ≤-8(舍去),当且仅当x =2y ,即x =2,y =1时等号成立. 【答案】 (1)8 (2)4角度三 已知不等式恒成立求参数范围已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为________.【解析】 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +axy ≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y =ax 时取等号,所以(x +y )·⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2, 于是(a +1)2≥9恒成立. 所以a ≥4. 【答案】 4利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.[通关练习]1.(优质试题·石家庄市教学质量检测(一))已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.解析:因为直线l 经过点(2,3),所以2a +3b -ab =0, 则3a +2b =1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫3a +2b =5+3b a +2ab ≥5+2 6.当且仅当3b a =2ab ,即a =3+6,b =2+6时等号成立. 答案:5+2 62.(优质试题·高考天津卷)若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.解析:因为ab >0,所以a 4+4b 4+1ab ≥24a 4b 4+1ab =4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,ab =12时取等号,故a 4+4b 4+1ab的最小值是4. 答案:43.当x ∈R 时,32x -(k +1)3x +2>0恒成立,则k 的取值范围是________.解析:由32x -(k +1)·3x +2>0,解得k +1<3x +23x . 因为3x+23x ≥22⎝⎛当且仅当3x=23x ,即x =log 32时,⎭⎪⎪⎫等号成立), 所以3x +23x 的最小值为2 2.又当x ∈R 时,3-(k +1)3+2>0恒成立,所以当x ∈R 时,k +1<⎝ ⎛⎭⎪⎫3x +23x min ,即k +1<22,即k <22-1. 答案:(-∞,22-1)利用基本不等式解决实际问题[典例引领]某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?【解】 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80 000x -200≥212x ·80 000x -200=200,当且仅当12x =80 000x ,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元. (2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝ ⎛⎭⎪⎫12x 2-200x +80 000=-12x 2+300x -80 000=-12(x -300)2-35 000,因为x ∈[400,600],所以S ∈[-80 000,-40 000].故该单位每月不获利,需要国家每月至少补贴40 000元才能不亏损.(1)利用基本不等式求解实际问题的注意事项①根据实际问题抽象出目标函数的表达式,再利用基本不等式求得函数的最值.②设变量时一般要把求最大值或最小值的变量定义为函数. ③解应用题时,一定要注意变量的实际意义及其取值范围. ④在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.(2)此类问题还常与一元二次函数(如本例(2))、一元二次不等式结合命题,求解关键是构建函数与不等关系,在实际条件下解决.某公司生产的商品A ,当每件售价为5元时,年销售10万件.(1)据市场调查,若价格每提高1元,销量相应减少1万件,要使销售收入不低于原销售收入,该商品的销售价格最多可提高多少元? (2)为了扩大该商品的影响力,公司决定对该商品的生产进行技术革新,将技术革新后生产的商品售价提高到每件x 元,公司拟投入12(x 2+x )万元作为技改费用,投入x4万元作为宣传费用.试问:技术革新后生产的该商品销售量m 至少应达到多少万件时,才能使技术革新后的该商品销售收入等于原销售收入与总投入之和? 解:(1)设商品的销售价格提高a 元, 则(10-a )(5+a )≥50,解得0≤a ≤5. 所以商品的价格最多可以提高5元.(2)由题意知,技术革新后的销售收入为mx 万元,若技术革新后的销售收入等于原销售收入与总投入之和,只需满足mx =12(x 2+x )+x4+50(x >5)即可, 此时m =12x +34+50x ≥2x 2·50x +34=434,当且仅当12x =50x ,即x =10时,取“=”.故销售量至少应达到434万件,才能使技术革新后的销售收入等于原销售收入与总投入之和.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22,ab ≤a +b2≤ a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +mx (m >0)的单调性. 易错防范(1)使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.(2)连续使用基本不等式求最值要求每次等号成立的条件一致.1.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b ≥2解析:选D.因为a 2+b 2-2ab =(a -b )2≥0,所以A 错误.对于B ,C ,当a <0,b <0时,明显错误. 对于D ,因为ab >0, 所以b a +a b ≥2b a ·a b =2.2.(优质试题·安徽省六校联考)若正实数x ,y 满足x +y =2,且1xy ≥M 恒成立,则M 的最大值为( ) A .1 B .2 C .3D .4解析:选A.因为正实数x ,y 满足x +y =2, 所以xy ≤(x +y )24=224=1, 所以1xy ≥1; 又1xy ≥M 恒成立,所以M ≤1,即M 的最大值为1.。
基本不等式完整版一、知识点总结1.基本不等式原始形式:若 $a,b\in\mathbb{R}$,则 $a^2+b^2\geq 2ab$。
2.基本不等式一般形式(均值不等式):若 $a,b\in\mathbb{R^*}$,则 $a+b\geq 2\sqrt{ab}$。
3.基本不等式的两个重要变形:1)若 $a,b\in\mathbb{R^*}$,则 $\frac{a+b}{2}\geq \sqrt{ab}$。
2)若 $a,b\in\mathbb{R^*}$,则 $ab\leq\left(\frac{a+b}{2}\right)^2$。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
4.求最值的条件:“一正,二定,三相等”。
5.常用结论:1)若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)。
2)若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)。
3)若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)。
4)若 $a,b>0$,则 $ab\leq \left(\frac{a+b}{2}\right)^2\leq \frac{a^2+b^2}{2}$。
5)若 $a,b\in\mathbb{R^*}$,则 $\frac{1}{a+b}\leq\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\leq\frac{1}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
6.柯西不等式:1)若 $a,b,c,d\in\mathbb{R}$,则$(a^2+b^2)(c^2+d^2)\geq (ac+bd)^2$。
基本不等式基本不等式是数学中一个重要的概念。
其中,重要不等式指的是a²+b²≥2ab,当且仅当a=b时等号成立。
而基本不等式则是指a+b≥2√(ab),当且仅当a=b时等号成立。
此外,还有一条基本不等式是任意两个正数的算术平均数不小于它们的几何平均数。
在利用基本不等式求函数的最大值、最小值时,需要注意函数式中各项必须都是正数,含变数的各项的积或者必须是常数,等号成立条件必须存在。
举例来说,如果0<a<b且a+b=1,则a²+b²>2ab,a+b≥2√(ab),2ab<2(1/2-a)²,a²+b²>(1/2-a)²+(1/2-b)²,因此b 最大。
又如,如果a、b、c都是正数,则(a+b+c)(1/a+1/b+1/c)≥9,即a/b+b/a+b/c+c/b+c/a+a/c≥6,证明过程中利用了基本不等式。
例3、已知$a,b,c$为不等正实数,且$abc=1$。
求证:$a+b+c<\sqrt{a}+\sqrt{b}+\sqrt{c}$。
证明:根据柯西不等式,$(1+1+1)(a+b+c)\geq(\sqrt{a}+\sqrt{b}+\sqrt{c})^2$,即$3(a+b+c)\geq(a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca})$。
因为$abc=1$,所以$2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}=2\sqrt{abc}(1/\sqrt{a}+1/\sqrt {b}+1/\sqrt{c})\leq3\sqrt[3]{abc}\cdot3=9$。
所以$3(a+b+c)\geq(a+b+c+9)$,即$2(a+b+c)\geq9$,即$a+b+c\geq\frac{9}{2}$。
又因为$a,b,c$不全相等,所以$a+b+c>\frac{9}{2}$。
基本不等式完整版(非常全面)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最4、求最值的条件:“一正,二定,三相等”5、常用结论(1)若0x >,则12x x+≥ (当且仅当1x =时取“=”)(2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)(3)若0>ab ,则2≥+ab ba (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab ba +≤+≤≤+ (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有 22212(n a a a ++⋅⋅⋅+)22212)n b b b ++⋅⋅⋅+(21122()n n a b a b a b ≥++⋅⋅⋅+二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥---5、已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a ++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域 1、求下列函数的值域(1)22213xx y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数) 1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。
4个基本不等式不等式是数学中的一种重要概念,用于描述数值之间的相对大小关系。
在数学中,我们常常会遇到各种各样的不等式,其中最基本的有四个,被称为”四个基本不等式”。
这四个基本不等式分别是:加法不等式、减法不等式、乘法不等式和除法不等式。
在本文中,我们将详细介绍这四个基本不等式及其应用。
1. 加法不等式加法不等式是最简单也是最容易理解的一种不等式。
它用于描述两个数相加后与另一个数的大小关系。
加法不等式的性质:•如果 a > b,则 a + c > b + c (对任意实数 c 成立)•如果 a > b 且 c > d,则 a + c > b + d加法不等式的应用:加法不等式常常被用于解决实际问题。
例如,假设小明去商场购买商品,他手上有100 元钱,并且他想要买一件价格为 x 元的商品。
如果 x 小于或者等于 100 元,则小明能够购买这件商品;反之,如果 x 大于 100 元,则小明将无法购买该商品。
2. 减法不等式减法不等式是加法不等式的一种推广,它用于描述两个数相减后与另一个数的大小关系。
减法不等式的性质:•如果 a > b,则 a - c > b - c (对任意实数 c 成立)•如果 a > b 且 c > d,则 a - c > b - d减法不等式的应用:减法不等式同样常常被用于解决实际问题。
例如,假设小明和小红参加了一次数学竞赛,他们分别得到了 x 分和 y 分。
如果小明得分比小红多 10 分以上,则可以说小明在这次竞赛中获胜;反之,如果小明得分比小红少于或者等于 10 分,则可以说小红在这次竞赛中获胜。
3. 乘法不等式乘法不等式是描述两个数相乘后与另一个数的大小关系的一种不等式。
乘法不等式的性质:•如果 a > b 且 c > 0,则 ac > bc•如果 a > b 且 c < 0,则 ac < bc (注意:当乘以一个负数时,不等号方向会发生改变)乘法不等式的应用:乘法不等式同样经常被应用于解决实际问题。
基本不等式6个公式
基本不等式是初中数学中常见的一类不等式,包括以下6个公式:
1. 两个非负实数的平均数大于等于它们的几何平均数:(a+b)/2≥√ab
这个公式表明,对于两个非负实数a和b,它们的平均数不会小于它们的几何平均数。
2. 两个非负实数的平方和大于等于它们的算术平均数的平方:a²+b²≥(a+b)²/4
这个公式表明,对于两个非负实数a和b,它们的平方和不会小于它们的算术平均数的平方。
3. 两个正实数的积大于等于它们的几何平均数的平方:ab≥(a+b)²/4
这个公式表明,对于两个正实数a和b,它们的积不会小于它们的几何平均数的平方。
4. 两个正实数的积大于等于它们的调和平均数的平方:ab≥4/(1/a+1/b)²
这个公式表明,对于两个正实数a和b,它们的积不会小于它们的调和平均数的
平方。
5. n个正实数的算术平均数大于等于它们的几何平均数:(a1+a2+...+an)/n≥√(a1a2...an)
这个公式表明,对于n个正实数a1、a2、...、an,它们的算术平均数不会小于它们的几何平均数。
6. n个正实数的调和平均数大于等于它们的算术平均数:n/(1/a1+1/a2+...+1/an)≥(a1+a2+...+an)/n
这个公式表明,对于n个正实数a1、a2、...、an,它们的调和平均数不会小于它们的算术平均数。
基本不等式四个公式不等式是一个有效的数学方法,用来描述两个量的差异,它的限制两个数的大小范围,有利于我们理解数字之间的关系,应用也很广泛。
基本不等式四个公式是不等式的基础,是推理计算的基础,一般在有限的条件下,由四个不等式构成,分别为:大于等于、小于等于、小于、大于式。
第一个不等式公式是大于等于式,又称为“不小于等于式”,表示两个数之间的不等式关系,它可以用来表示一个数不小于另外一个数,表达形式为:A≥B,其中A代表被比较数,B代表比较数,表示A不小于B。
例如:4≥2,表明4不小于2。
第二个不等式公式是小于等于式,又称为“不大于等于式”,表示两个数之间的不等式关系,它可以用来表示一个数不大于另外一个数,表达形式为:A≤B,其中A代表被比较数,B代表比较数,表示A不大于B。
例如:4≤5,表明4不大于5。
第三个不等式公式是小于式,又称为“不大于式”,表示两个数之间的不等式关系,它可以用来表示一个数小于另外一个数,表达形式为:A<B,其中A代表被比较数,B代表比较数,表示A小于B。
例如:3<4,表明3小于4。
第四个不等式公式是大于式,又称为“不小于式”,表示两个数之间的不等式关系,它可以用来表示一个数大于另外一个数,表达形式为:A>B,其中A代表被比较数,B代表比较数,表示A大于B。
例如:5>2,表明5大于2。
在工作中使用不等式是非常常见的,可以用于判断某人的年龄是否已满18岁、是否满足报考条件等。
在教学中,不等式也起着重要作用,有助于学生全面地掌握数学知识,更好地推理计算。
基本不等式四个公式的范围很广,可以用于科学研究、实践中的不等式推理,可以用来判断两个数之间的大小关系,也可以用来判断函数的单调性,恒等式和变换形式,对高中生、大学生和学习数学有很大帮助。
综上所述,基本不等式四个公式是不等式的基础,是推理计算的基础,它有助于学习者全面掌握数学知识,并帮助学习者正确判断数字之间的关系,从而更好地推理计算,在科学研究和实践中也具有重要的作用。
第28练 基本不等式
班级 姓名
1.不等式x +5x -1
≥2的解集为______________________.
2.下列不等式的证明过程正确的是____________
(1)若a ,b ∈R ,则a b +b a ≥2a b ·b a =2;(2)若x <0,则x +4x ≤2x ·4x
=4; (3)若x >0,则cos x +1cos x ≥2cos x ·1cos x =2;
(4)若a ,b ∈R 且ab <0,则a b +b a =-[(-b a )+(-a b )]≤-2(-b a )·(-a b )=-2.
3.已知a >0,b >0,则不等式:①a 2+b 2ab ≥2ab ;②2ab a +b ≥ab ;③(a +b )(1a +1b )≥4;④a 2+b 2ab
≥a +b 中,一定成立的是______________.
4.已知0<x <π2,且t 是大于零的常数,f (x )=1sin x +t 1-sin x
的最小值为9,则t =___ ____.
5.若不等式4x 2+9y 2≥2k xy 对一切正数x ,y 恒成立,最大整数k =___ ____.
6.关于x 的不等式(a -2)x 2+2(2-a )x +4≤0的解集为空集,则a 的取值范围为_________.
7.当x ∈(1,2]时,不等式x 2+mx +4<0恒成立,则m 的取值范围是 .
8.函数y =2+x +4x (x <0)的最大值为 .
9.y =x 2+4+1 x 2+4
的最小值为 .
10.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是 ______; a +b 的取值范围是____________________.
11.正实数x ,y 满足xy =x +y +3,则x +2y 的最小值为 .
12.已知x >0,y >0,xy =x +y ,则x +4y 的最小值为 .
13.设x ,y ∈R ,a >1,b >1,若a x =b y =2,2a +b =8,则1x +1y 的最大值 .
14.已知x >0,y >0,且1x +2y =2,则4x +y 的最小值 .
15.已知xy -4x -y =1,且x >0,y >0,则x +y 的最小值为 .。