第五章 单纯形法
- 格式:ppt
- 大小:219.00 KB
- 文档页数:29
单纯形法原理
单纯形法是线性规划中常用的一种方法,用于求解极值问题。
它的基本思想是通过不断迭代的方式,逐渐接近最优解。
单纯形法的基本步骤如下:
1. 将线性规划问题转化为标准型。
标准型的约束条件为≤,目标函数为最大化,且所有变量的取值范围为非负数。
2. 利用人为变量引入的方法,将标准型问题转化为初始单纯形表。
3. 选择合适的初始基变量,并计算出对应的基变量解。
4. 计算单纯形表中的评价函数。
如果所有评价函数中的系数都为非负数,则当前基变量解为最优解,过程结束。
否则,继续进行下一步。
5. 选择进入变量和离开变量。
进入变量是指取值为负的评价函数系数对应的变量,离开变量是指进入变量在当前基变量解中最先达到0的变量。
6. 迭代计算,通过变换基变量,逐渐接近最优解。
具体的计算方式为将进入变量对应列调整为单位向量,同时更新初始单纯形表中其它列的数值。
7. 重复步骤4至步骤6,直至得到最优解为止。
值得注意的是,单纯形法的执行依赖于初始基变量的选择,不同的初始基变量可能会得到不同的最优解。
因此,在实际应用中,需要通过灵活选择初始基变量来提高求解效果。
单纯形法原理单纯形法是一种用于求解线性规划问题的数学方法,它通过不断地移动可行解,逐步接近最优解。
单纯形法的基本思想是从一个基本可行解出发,通过有限次迭代,逐步向着最优解靠近。
这种方法的优点是能够有效地处理大规模的线性规划问题,并且在实际应用中取得了很好的效果。
单纯形法的原理可以通过以下步骤来进行解释:首先,我们需要将线性规划问题转化为标准形式,即将不等式约束转化为等式约束,并引入松弛变量。
这样,原始的线性规划问题就可以表示为一个矩阵形式Ax=b的形式,其中A是一个m×n的矩阵,x是一个n维向量,b是一个m维向量。
接下来,我们需要找到一个初始的基本可行解。
这个基本可行解对应于一个m×m的单位矩阵Im,以及一个n维的零向量。
我们可以通过将单位矩阵对应的列向量代入原始的线性规划问题中,来求解初始的基本可行解。
然后,我们需要计算出一个非基本变量的非负进入向量。
这个向量对应于目标函数的系数向量与A的转置矩阵的乘积。
通过计算这个进入向量,我们可以确定哪一个非基本变量可以进入基本变量集合,从而使得目标函数值增加。
接着,我们需要计算出一个基本变量的非正离开向量。
这个向量对应于基本变量对应的列向量与A的转置矩阵的乘积。
通过计算这个离开向量,我们可以确定哪一个基本变量可以离开基本变量集合,从而使得目标函数值继续增加。
最后,我们需要进行基本变量与非基本变量的交换,并更新基本可行解。
这个过程可以通过一系列的矩阵运算来实现,从而得到一个新的基本可行解。
然后,我们可以继续重复上述步骤,直到找到最优解为止。
通过上述步骤,我们可以看出单纯形法的原理是通过不断地移动可行解,逐步接近最优解。
这种方法的优点是能够有效地处理大规模的线性规划问题,并且在实际应用中取得了很好的效果。
总之,单纯形法是一种用于求解线性规划问题的有效方法,它的原理是通过不断地移动可行解,逐步接近最优解。
在实际应用中,单纯形法已经取得了很好的效果,能够有效地处理大规模的线性规划问题。
《管理运筹学》第四版第5章单纯形法课后习题解析《管理运筹学》第四版课后习题解析第5章单纯形法1.解:表中a 、c 、e 、f 是可⾏解,f 是基本解,f 是基本可⾏解。
2.解:(1)该线性规划的标准型如下。
max 5x 1+9x 2+0s 1+0s 2+0s 3 s.t. 0.5x 1+x 2+s 1=8 x 1+x 2-s 2=100.25x 1+0.5x 2-s 3=6 x 1,x 2,s 1,s 2,s 3≥0(2)⾄少有两个变量的值取零,因为有三个基变量、两个⾮基变量,⾮基变量取零。
(3)(4,6,0,0,-2)T(4)(0,10,-2,0,-1)T(5)不是。
因为基本可⾏解要求基变量的值全部⾮负。
(6)略 3.解:令333x x x ''-'=,z f -=改为求f max ;将约束条件中的第⼀个⽅程左右两边同时乘以-1,并在第⼆和第三个⽅程中分别引⼊松弛变量5x 和剩余变量6x ,将原线性规划问题化为如下标准型:j x '、j x ''不可能在基变量中同时出现,因为单纯性表⾥⾯j x '、j x ''相应的列向量是相同的,只有符号想法⽽已,这时候选取基向量的时候,同时包含两列会使选取的基矩阵各列线性相关,不满⾜条件。
4.解:(1)表5-10,,,,,, 24423 1863 1334 7234max 654332163321543321433214321≥'''=-''+'--=++''+'-+-=+''+'---++-=x x x x x x x x x x x x x x x x x x x x x x x x x x x f 约束条件:(2)线性规划模型如下。
max 6x 1+30x 2+25x 3 s.t. 3x 1+x 2+s 1=40 2x 2+x 3+s 2=50 2x 1+x 2-x 3+s 3=20 x 1,x 2,x 3,s 1,s 2,s 3 ≥0(3)初始解的基为(s 1,s 2,s 3)T ,初始解为(0,0,0,40,50,20)T,对应的⽬标函数值为0。
单纯形法求解原理过程第一篇:单纯形法求解原理过程单纯形法需要解决的问题:如何确定初始基本可行解;如何由一个基本可行解迭代出另一个基本可行解,同时使目标函数获得较大的下降;如何判断一个基本可行解是否为最优解。
min f(X)=-60x1-120x2 s.t.9x1+4x2+x3=360 3x1+10x2+x4=300 4x1+5x2+x5=200 xi≥0(i=1,2,3,4,5)(1)初始基本可行解的求法。
当用添加松弛变量的方法把不等式约束换成等式约束时,我们往往会发现这些松弛变量就可以作为初始基本可行解中的一部分基本变量。
例如:x1-x2+x3≤5 x1+2x2+x3≤10xi≥0 引入松弛变量x4,x5后,可将前两个不等式约束换成标准形式 x1-x2+x3+x4=5 x1+2x2+x3+x5=10xi≥0(i=1,2,3,4,5)令x1=x2=x3=0,则可立即得到一组基本可行解x1=x2=x3=0,x4=5,x5=10 同理在该实例中,从约束方程式的系数矩阵⎡94100⎤⎥A=[P1,P2,P3,P4,P5]=⎢310010⎢⎥⎢⎣45001⎥⎦中可以看出其中有个标准基,即⎡100⎤⎥B=⎢010⎢⎥⎢⎣001⎥⎦与B对应的变量x3,x4,x5为基本变量,所以可将约束方程写成X3=360-9x1-4x2 x4=300-3x1-10x2 x5=200-4x1-5x20 若令非基变量x1=x2=0,则可得到一个初始基本可行解X0 TX=[0,0,360,300,200]判别初始基本可行解是否是最优解。
此时可将上式代入到目标函数中,得: F(X)=-60x1-120x20对应的函数值为f(X)=0。
0由于上式中x1,x2系数为负,因而f(X)=0不是最小值。
因此所得的解不是最优解。
011(2)从初始基本可行解X迭代出另一个基本可行解X,并判断X 是否为最优解。
从一个基本可行解迭代出另一个基本可行解可分为两步进行:第一步,从原来的非基变量中选一个(称为进基变量)使其成为基本变量;第二步,从原来的基本变量中选一个(称为离基变量)使其成为新的非基变量。
单纯形法一、基本概念二、思路与原理三、基本步骤一、基本概念LP: Max(Min)Z = CX (1)AX=b (2)X≥ 0 (3)其中,A=(aij)m×n,一般,m<n,且R(A)=m。
1.基:已知A=(aij)m×n ,其秩为m(R(A)=m) 。
从A中任取m个线性无关的列向量构成的矩阵B,(即B是A中m×m阶非奇异子矩阵(即可逆矩阵)),则称B是线性规划问题中的一个基。
注:一个LP问题的基的个数是不唯一的,最多为:个。
2.基向量,非基向量:基B中的一列pi称为一个基向量。
A中基B之外的一列pj称为一个非基向量。
注:一个LP有m个基向量, n-m个非基向量。
3.基变量,非基变量:与基向量pi相应的变量xi称基变量;与非基向量pj相应的变量xj称非基变量。
注:一个LP有m个基向量, n-m个非基向量。
4.基本解,基本可行解,基本最优解对于一个基B,令所有的非基变量为0,求得满足(2)式的解,称作一个基本解。
注:即求解一个m元的线性方程组,由线性代数知识得知,可得到唯一的一组解。
若求得的基本解又满足(3)式,则称此基本解为基本可行解。
若基本可行解又满足(1)式,即使得目标函数达到最优值,则又称此基本可行解为基本最优解。
5.可行基,最优基与基本可行解相对应的基称作可行基;与基本最优解相对应的基称作最优基。
注:基本可行解可行基例:求出下列LP问题的所有基本解,基本可行解,基本最优解。
MaxZ = 50 x1 + 100 x2x1 + x2 ≤ 3002 x1 + x2 ≤ 400s.t. x2 ≤ 250x1 , x2 ≥ 0标准化,得:MaxZ = 50 x1 + 100 x2 + 0x3 + 0x4 + 0x5x1 + x2 + x3 = 3002 x1 + x2 + x4= 400s.t. x2 + x5= 250xj≥ 0(j=1~5)其中, 1 1 1 0 0 ,基有 -1=9个。