2014年高考数学二轮复习巩固练习:5-1平面向量的概念与线性运算
- 格式:doc
- 大小:434.50 KB
- 文档页数:12
第五章平面向量、复数考试内容等级要求平面向量的概念 B平面向量的加法、减法及数乘运算 B平面向量的坐标表示 B平面向量的数量积 C平面向量的平行与垂直 B平面向量的应用 A复数的概念 B复数的四则运算 B复数的几何意义 A§5.1平面向量的概念及线性运算考情考向分析主要考查平面向量的线性运算(加法、减法、数乘向量)及其几何意义、共线向量定理,常与三角函数、解析几何交汇考查,有时也会有新定义问题;题型以填空题为主,属于中低档题目.偶尔会在解答题中作为工具出现.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或称模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位长度的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量平行或共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算|λa|=|λ||a|,当λ>0时,λa与a的方向相同;当λ<0时,λa与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb口诀:(加法三角形)首尾连,连首尾;(加法平行四边形)起点相同连对角;(减法三角形)共起点,连终点,指向被减.3.向量共线定理向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.概念方法微思考1.若b与a共线,则存在实数λ使得b=λa,对吗?提示不对,因为当a=0,b≠0时,不存在λ满足b=λa.2.如何理解数乘向量?提示λa的大小为|λa|=|λ||a|,方向要分类讨论:当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0或a为零向量时,λa为零向量,方向不确定.3.如何理解共线向量定理?提示如果a=λb,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ,使得a=λb.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量不能比较大小,但向量的模可以比较大小.( √)(2)|a |与|b |是否相等与a ,b 的方向无关.( √ ) (3)若a ∥b ,b ∥c ,则a ∥c .( × )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( × ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( √ ) (6)若两个向量共线,则其方向必定相同或相反.( × ) 题组二 教材改编2.[P72T8]已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=________,BC →=________.(用a ,b 表示) 答案 b -a -a -b解析 如图,DC →=AB →=OB →-OA →=b -a , BC →=OC →-OB →=-OA →-OB →=-a -b .3.[P73T13]在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 答案 矩形解析 如图,因为AB →+AD →=AC →, AB →-AD →=DB →, 所以|AC →|=|DB →|.由对角线长相等的平行四边形是矩形可知,平行四边形ABCD 是矩形. 题组三 易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 答案 充分不必要解析 若a +b =0,则a =-b ,所以a ∥b .若a ∥b ,则a +b =0不一定成立,故前者是后者的充分不必要条件.5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________. 答案 12解析 ∵向量a ,b 不平行,∴a +2b ≠0,又向量λa +b 与a +2b 平行,则存在唯一的实数μ,使λa +b =μ(a +2b )成立,即λa +b =μa +2μb ,则⎩⎪⎨⎪⎧λ=μ,1=2μ,解得λ=μ=12.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.答案 12解析 ∵DE →=DB →+BE →=12AB →+23BC →=12AB →+23(BA →+AC →)=-16AB →+23AC →, ∴λ1=-16,λ2=23,即λ1+λ2=12.题型一 平面向量的概念1.给出下列命题:①若两个向量相等,则它们的起点相同,终点相同; ②若a 与b 共线,b 与c 共线,则a 与c 也共线;③若A ,B ,C ,D 是不共线的四点,且AB →=DC →,则四边形ABCD 为平行四边形; ④a =b 的充要条件是|a |=|b |且a ∥b ;⑤已知λ,μ为实数,若λa =μb ,则a 与b 共线. 其中真命题的序号是________. 答案 ③解析 ①错误,两个向量起点相同,终点相同,则两个向量相等;但两个向量相等,不一定有相同的起点和终点;②错误,若b =0,则a 与c 不一定共线;③正确,因为AB →=DC →,所以|AB →|=|DC →|且AB →∥DC →;又A ,B ,C ,D 是不共线的四点,所以四边形ABCD 为平行四边形;④错误,当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,所以|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件;⑤错误,当λ=μ=0时,a 与b 可以为任意向量,满足λa =μb ,但a 与b 不一定共线. 2.给出下列四个命题:①若a ∥b ,则a =b ;②若|a |=|b |,则a =b ;③若|a |=|b |,则a ∥b ;④若a =b ,则|a |=|b |.其中正确命题的个数是________. 答案 1解析 只有④正确.思维升华向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线. 题型二 平面向量的线性运算 命题点1 向量的线性运算例1(1)在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设AB →=a ,AD →=b ,则向量BF →=________.(用向量a ,b 表示) 答案 -13a +23b解析 BF →=23BE →=23(BC →+CE →)=23⎝ ⎛⎭⎪⎫b -12a =-13a +23b . (2)(2018·全国Ⅰ改编)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则用向量AB →,AC →表示EB →为________. 答案 EB →=34AB →-14AC →解析 作出示意图如图所示. EB →=ED →+DB →=12AD →+12CB →=12×12(AB →+AC →)+12(AB →-AC →) =34AB →-14AC →. 命题点2 根据向量线性运算求参数例2(1)如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA→+μBD →(λ,μ∈R ),则λ+μ=________. 答案 34解析 ∵E 为线段AO 的中点, ∴BE →=12BA →+12BO →=12BA →+12⎝ ⎛⎭⎪⎫12BD →=12BA →+14BD →=λBA →+μBD →, ∴λ+μ=12+14=34.(2)在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤0,12 解析 由题意可求得AD =1,CD =3, ∴AB →=2DC →.∵点E 在线段CD 上,∴DE →=λDC →(0≤λ≤1). ∵AE →=AD →+DE →=AD →+λDC →, 又AE →=AD →+μAB →=AD →+2μDC →, ∴2μ=λ,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12.思维升华平面向量线性运算问题的常见类型及解题策略(1)向量加法和减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值.跟踪训练1(1)在△ABC 中,点D ,E 分别在边BC ,AC 上,且BD →=2DC →,CE →=3EA →,若AB →=a ,AC →=b ,则DE →=________.(用向量a ,b 表示)答案 -13a -512b解析 DE →=DC →+CE →=13BC →+34CA → =13(AC →-AB →)-34AC → =-13AB →-512AC →=-13a -512b .(2)在平行四边形ABCD 中,E ,F 分别为边BC ,CD 的中点,若AB →=xAE →+yAF →(x ,y ∈R ),则x -y =________. 答案 2解析 由题意得AE →=AB →+BE →=AB →+12AD →,AF →=AD →+DF →=AD →+12AB →,因为AB →=xAE →+yAF →,所以AB →=⎝ ⎛⎭⎪⎫x +y 2AB →+⎝ ⎛⎭⎪⎫x 2+y AD →,所以⎩⎪⎨⎪⎧x +y2=1,x2+y =0,解得⎩⎪⎨⎪⎧x =43,y =-23,所以x -y =2.题型三 共线定理的应用例3(1)已知D 为△ABC 的边AB 的中点.点M 在DC 上且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为________. 答案 3∶5解析 由5AM →=AB →+3AC →, 得2AM →=2AD →+3AC →-3AM →, 即2(AM →-AD →)=3(AC →-AM →),即2DM →=3MC →,故DM →=35DC →,故△ABM 与△ABC 同底且高的比为3∶5, 故S △ABM ∶S △ABC =3∶5.(2)(2018·盐城模拟)如图,经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,m ,n ∈R ,则1n +1m的值为________.答案 3解析 设OA →=a ,OB →=b ,由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a , PG →=OG →-OP →=⎝ ⎛⎭⎪⎫13-m a +13b .由P ,G ,Q 三点共线,得存在实数λ使得PQ →=λPG →,即n b -m a =λ⎝ ⎛⎭⎪⎫13-m a +13λb ,从而⎩⎪⎨⎪⎧-m =λ⎝ ⎛⎭⎪⎫13-m ,n =13λ,消去λ,得1n +1m=3.思维升华 (1)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立;若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练2如图,△ABC 中,在AC 上取一点N ,使AN =13AC ;在AB 上取一点M ,使AM =13AB ;在BN 的延长线上取点P ,使得NP =12BN ;在CM 的延长线上取点Q ,使得MQ →=λCM →时,AP →=QA →,试确定λ的值.解 ∵AP →=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC →,又AP →=QA →,∴12BM →+λMC →=12BC →,即λMC →=12MC →, ∴λ=12.1.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,真命题的个数是________. 答案 0解析 向量是既有大小又有方向的量,a 与|a |a 0模相等,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.2.在四边形ABCD 中,若AC →=AB →+AD →,则四边形ABCD 的形状是________. 答案 平行四边形解析 依题意知AC 是以AB ,AD 为相邻两边的平行四边形的对角线,所以四边形ABCD 是平行四边形.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →=________. 答案 23b +13c解析 如图,因为在△ABC 中, AB →=c ,AC →=b ,且点D 满足BD →=2DC →, 所以AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=23AC →+13AB →=23b +13c . 4.(2018·江苏省镇江一中月考)已知e 1,e 2是一对不共线的非零向量,若a =e 1+λe 2,b =-2λe 1-e 2,且a ,b 共线,则λ=________. 答案 ±22解析 ∵a ,b 共线,∴b =γa =γe 1+γλe 2=-2λe 1-e 2,故⎩⎪⎨⎪⎧γ=-2λ,γλ=-1,解得λ=±22. 5.如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB →=a ,AC →=b ,则AD →=________.(用向量a ,b 表示) 答案 12a +b解析 连结OC ,OD ,CD ,由点C ,D 是半圆弧的三等分点,可得∠AOC =∠COD =∠BOD =60°,且△OAC 和△OCD 均为边长等于圆O 半径的等边三角形,所以四边形OACD 为菱形,所以AD →=AO →+AC →=12AB →+AC →=12a +b .6.在△ABC 中,点G 满足GA →+GB →+GC →=0.若存在点O ,使得OG →=16BC →,且OA →=mOB →+nOC →,则m -n =________.答案 -1解析 ∵GA →+GB →+GC →=0, ∴OA →-OG →+OB →-OG →+OC →-OG →=0,∴OG →=13()OA →+OB →+OC →=16BC →=16()OC →-OB →,可得OA →=-12OC →-32OB →,∴m =-32,n =-12,m -n =-1.7.如图,在△ABC 中,AN →=13AC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案511解析 注意到N ,P ,B 三点共线, 因此AP →=mAB →+211AC →=mAB →+611AN →,从而m +611=1,所以m =511.8.已知e 1,e 2为平面内两个不共线的向量,MN →=2e 1-3e 2,NP →=λe 1+6e 2,若M ,N ,P 三点共线,则λ=________.答案 -4解析 因为M ,N ,P 三点共线,所以存在实数k 使得MN →=kNP →,所以2e 1-3e 2=k (λe 1+6e 2),又e 1,e 2为平面内两个不共线的向量,可得⎩⎪⎨⎪⎧ 2=kλ,-3=6k ,解得λ=-4.9.若M 是△ABC 的边BC 上的一点,且CM →=3MB →,设AM →=λAB →+μAC →,则λ的值为________.答案 34解析 由题设知CM MB=3,过M 作MN ∥AC 交AB 于N , 则MN AC =BN BA =BM BC =14, 从而AN AB =34, 又AM →=λAB →+μAC →=AN →+NM →=34AB →+14AC →, 所以λ=34. 10.已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为________.答案 {-1}解析 ∵BC →=OC →-OB →,∴x 2OA →+xOB →+OC →-OB →=0,即OC →=-x 2OA →-(x -1)OB →,∵A ,B ,C 三点共线,∴-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1.当x =0时,x 2OA →+xOB →+BC →=0,此时B ,C 两点重合,不合题意,舍去,故x =-1.11.如图所示,设O 是△ABC 内部一点,且OA →+OC →=-2OB →,求△ABC 与△AOC 的面积之比.解 取AC 的中点D ,连结OD ,则OA →+OC →=2OD →,∴OB →=-OD →,∴O 是AC 边上的中线BD 的中点,∴S △ABC =2S △OAC ,∴△ABC 与△AOC 的面积之比为2∶1.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.解 方法一 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝ ⎛⎭⎪⎫b -12a =-12k 1a +k 1b (k 1为实数), 同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝ ⎛⎭⎪⎫12b -a =-k 2a +12k 2b (k 2为实数),① 又BO →=BD →+DO →=-12a +⎝ ⎛⎭⎪⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,② 所以由①②,得-k 2a +12k 2b =-12(1+k 1)a +k 1b , 即12(1+k 1-2k 2)a +⎝ ⎛⎭⎪⎫12k 2-k 1b =0. 又a ,b 不共线,所以⎩⎪⎨⎪⎧ 12(1+k 1-2k 2)=0,12k 2-k 1=0, 解得⎩⎪⎨⎪⎧ k 1=13,k 2=23.所以BO →=-23a +13b . 所以AO →=AB →+BO →=a +⎝ ⎛⎭⎪⎫-23a +13b =13(a +b ). 方法二 延长AO 交BC 于点E (O 为△ABC 重心),则E 为BC 中点,∴AO →=23AE →=23×12(AB →+AC →)=13(a +b ). 13.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2=________.答案 58解析 DE →=12DA →+12DO →=12DA →+14DB → =12DA →+14(DA →+AB →)=14AB →-34AD →, 所以λ=14,μ=-34,故λ2+μ2=58. 14.A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的取值范围是________.答案 (1,+∞)解析 设OC →=mOD →,则m >1,因为OC →=λOA →+μOB →,所以mOD →=λOA →+μOB →,即OD →=λm OA →+μmOB →, 又知A ,B ,D 三点共线,所以λm +μm=1,即λ+μ=m , 所以λ+μ>1.15.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫2OA →+12OB →+12OC →,则△ABC 的面积和△PBC 的面积之比为________. 答案 3∶2解析 设BC 的中点为M ,则12OC →+12OB →=OM →,∴OP →=13(OM →+2OA →)=13OM →+23OA →, 即3OP →=OM →+2OA →,OP →-OM →=2OA →-2OP →,也就是MP →=2PA →,∴P ,M ,A 三点共线,且P 是AM 上靠近A 点的一个三等分点,∴S △ABC ∶S △PBC =3∶2.16.设W 是由一平面内的n (n ≥3)个向量组成的集合.若a ∈W ,且a 的模不小于W 中除a 外的所有向量和的模.则称a 是W 的极大向量.有下列命题:①若W 中每个向量的方向都相同,则W 中必存在一个极大向量;②给定平面内两个不共线向量a ,b ,在该平面内总存在唯一的平面向量c =-a -b ,使得W ={a ,b ,c }中的每个元素都是极大向量;③若W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量,且W 1,W 2中无公共元素,则W 1∪W 2中的每一个元素也都是极大向量.其中真命题的序号是________.答案 ②③解析 ①若有几个方向相同,模相等的向量,则无极大向量,故不正确;②由题意得a ,b ,c 围成闭合三角形,则任意向量的模等于除它本身外所有向量和的模,故正确;③3个向量都是极大向量,等价于3个向量之和为0,故W 1={a 1,a 2,a 3},W 2={b 1,b 2,b 3}中的每个元素都是极大向量时,W 1∪W 2中的每一个元素也都是极大向量,故正确.。
高考数学一轮复习学案:5.1 平面向量的概念及线性运算(含答案)5.1平面向量的概念及线性运算平面向量的概念及线性运算最新考纲考情考向分析1.了解向量的实际背景2.理解平面向量的概念,理解两个向量相等的含义3.理解向量的几何表示4.掌握向量加法.减法的运算,并理解其几何意义5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义6.了解向量线性运算的性质及其几何意义.主要考查平面向量的线性运算加法.减法.数乘向量及其几何意义.共线向量定理常与三角函数.解析几何交汇考查,有时也会有创新的新定义问题;题型以选择题.填空题为主,属于中低档题目偶尔会在解答题中作为工具出现.1向量的有关概念名称定义备注向量既有大小,又有方向的量;向量的大小叫做向量的长度或称模平面向量是自由向量零向量长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位长度的向量非零向量a的单位向量为a|a|平行向量共线向量方向相同或相反的非零向量0与任一向量平行或共线相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则或几何意义运算律加法求两个向量和的运算3交换律abba;4结合律abcabc减法求a与b的相反向量b的和的运算abab数乘求实数与向量a的积的运算6|a||||a|;7当0时,a与a的方向相同;当0时,a与a的方向相反;当0时,a08aa;9aaa;10abab3.共线向量定理向量aa0与b共线,当且仅当有唯一一个实数,使ba.知识拓展1一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A1A2A2A3A3A4An1AnA1An,特别地,一个封闭图形,首尾连接而成的向量和为零向量2若P为线段AB的中点,O为平面内任一点,则OP12OAOB3.OAOBOC,为实数,若点A,B,C共线,则1.题组一思考辨析1判断下列结论是否正确请在括号中打“”或“”1向量与有向线段是一样的,因此可以用有向线段来表示向量2|a|与|b|是否相等与a,b的方向无关3若ab,bc,则ac.4若向量AB与向量CD是共线向量,则A,B,C,D四点在一条直线上5当两个非零向量a,b共线时,一定有ba,反之成立6若两个向量共线,则其方向必定相同或相反题组二教材改编2P86例4已知ABCD的对角线AC和BD相交于点O,且OAa,OBb,则DC______,BC________.用a,b表示答案baab 解析如图,DCABOBOAba,BCOCOBOAOBab.3P108B组T5在平行四边形ABCD中,若|ABAD||ABAD|,则四边形ABCD的形状为________答案矩形解析如图,因为ABADAC,ABADDB,所以|AC||DB|.由对角线长相等的平行四边形是矩形可知,四边形ABCD是矩形题组三易错自纠4对于非零向量a,b,“ab0”是“ab”的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件答案A解析若ab0,则ab,所以ab.若ab,则ab0不一定成立,故前者是后者的充分不必要条件5设向量a,b不平行,向量ab 与a2b平行,则实数____________.答案12解析向量a,b不平行,a2b0,又向量ab与a2b平行,则存在唯一的实数,使aba2b 成立,即aba2b,则,12,解得12.6设D,E分别是ABC的边AB,BC上的点,AD12AB,BE23BC.若DE1AB2AC1,2为实数,则12的值为________答案12解析DEDBBE12AB23BC12AB23BAAC16AB23AC,116,223,即1212.题型一题型一平面向量的概念平面向量的概念1给出下列四个命题若|a||b|,则ab;若A,B,C,D是不共线的四点,则ABDC是四边形ABCD为平行四边形的充要条件;若ab,bc,则ac;ab的充要条件是|a||b|且ab.其中正确命题的序号是ABCD答案A解析不正确两个向量的长度相等,但它们的方向不一定相同;正确ABDC,|AB||DC|且ABDC,又A,B,C,D是不共线的四点,四边形ABCD为平行四边形,反之,若四边形ABCD为平行四边形,则ABDC且|AB||DC|,ABDC;正确ab,a,b的长度相等且方向相同,又bc,b,c的长度相等且方向相同,a,c的长度相等且方向相同,故ac;不正确当ab且方向相反时,即使|a||b|,也不能得到ab,故|a||b|且ab不是ab的充要条件,而是必要不充分条件综上所述,正确命题的序号是.故选A.2设a0为单位向量,若a为平面内的某个向量,则a|a|a0;若a与a0平行,则a|a|a0;若a与a0平行且|a|1,则aa0.上述命题中,假命题的个数是A0B1C2D3答案D解析向量是既有大小又有方向的量,a与|a|a0的模相同,但方向不一定相同,故是假命题;若a与a0平行,则a与a0的方向有两种情况一是同向,二是反向,反向时a|a|a0,故也是假命题综上所述,假命题的个数是3.思维升华向量有关概念的关键点1向量定义的关键是方向和长度2非零共线向量的关键是方向相同或相反,长度没有限制3相等向量的关键是方向相同且长度相等4单位向量的关键是长度都是一个单位长度5零向量的关键是长度是0,规定零向量与任何向量共线题型二题型二平面向量的线性运算平面向量的线性运算命题点1向量的线性运算典例1在ABC中,ABc,ACb,若点D满足BD2DC,则AD等于A.23b13cB.53c23bC.23b13cD.13b23c答案A解析BD2DC,ADABBD2DC2ACAD,3AD2ACAB,AD23AC13AB23b13c.2xx青海西宁一模如图,在ABC中,点D在BC 边上,且CD2DB,点E在AD边上,且AD3AE,则用向量AB,AC表示CE为A.29AB89ACB.29AB89ACC.29AB79ACD.29AB79AC答案B解析由平面向量的三角形法则及向量共线的性质可得CEAEAC13ADAC13AB13BCAC13AB13ACABAC29AB89AC.命题点2根据向量线性运算求参数典例1在ABC中,点M,N满足AM2MC,BNNC.若MNxAByAC,则x________,y______.答案1216解析MNMCCN13AC12CB13AC12ABAC12AB16ACxAByAC,x12,y16.2在ABC中,点D在线段BC的延长线上,且BC3CD,点O 在线段CD上与点C,D不重合,若AOxAB1xAC,则x的取值范围是A.0,12B.0,13C.12,0D.13,0答案D解析设COyBC,AOACCOACyBCACyACAByAB1yAC.BC3CD,点O在线段CD上与点C,D不重合,y0,13,AOxAB1xAC,xy,x13,0.思维升华平面向量线性运算问题的常见类型及解题策略1向量加法或减法的几何意义向量加法和减法均适合三角形法则2求已知向量的和一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则3求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值跟踪训练1如图,在正方形ABCD中,点E是DC的中点,点F是BC上的一个靠近点B的三等分点,那么EF等于A.12AB13ADB.14AB12ADC.13AB12DAD.12AB23AD答案D解析在CEF中,有EFECCF.因为点E为DC 的中点,所以EC12DC.因为点F为BC上的一个靠近点B的三等分点,所以CF23CB.所以EF12DC23CB12AB23DA12AB23AD,故选D.2如图,直线EF与平行四边形ABCD的两边AB,AD分别交于E,F两点,且与对角线AC交于点K,其中,AE25AB,AF12AD,AKAC,则的值为______答案29解析AE25AB,AF12AD,AB52AE,AD2AF.由向量加法的平行四边形法则可知,ACABAD,AKACABAD52AE2AF52AE2AF,E,F,K三点共线,5221,29.题型三题型三共线向量定理的应用共线向量定理的应用典例设两个非零向量a与b不共线1若ABab,BC2a8b,CD3ab,求证A,B,D三点共线;2试确定实数k,使kab和akb共线1证明ABab,BC2a8b,CD3ab,BDBCCD2a8b3ab2a8b3a3b5ab5AB,AB,BD共线又它们有公共点B,A,B,D三点共线2解假设kab与akb共线,则存在实数,使kabakb,即kak1b.又a,b是两个不共线的非零向量,kk10.消去,得k210,k1.引申探究若将本例1中“BC2a8b”改为“BCamb”,则m为何值时,A,B,D三点共线解BCCDamb3ab4am3b,即BD4am3b.若A,B,D三点共线,则存在实数,使BDAB.即4am3bab4,m3,解得m7.故当m7时,A,B,D三点共线思维升华1证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系当两向量共线且有公共点时,才能得出三点共线2向量a,b 共线是指存在不全为零的实数1,2,使1a2b0成立,若1a2b0,当且仅当120时成立,则向量a,b不共线跟踪训练1xx资阳模拟已知向量ABa3b,BC5a3b,CD3a3b,则AA,B,C三点共线BA,B,D三点共线CA,C,D三点共线DB,C,D三点共线答案B解析BDBCCD2a6b2a3b2AB,BD,AB共线,又有公共点B,A,B,D三点共线故选B.2已知A,B,C是直线l上不同的三个点,点O不在直线l 上,则使等式x2OAxOBBC0成立的实数x的取值集合为A0BC1D0,1答案C解析BCOCOB,x2OAxOBOCOB0,即OCx2OAx1OB,A,B,C三点共线,x2x11,即x2x0,解得x0或x1.当x0时,x2OAxOBBC0,此时B1,C两点重合,不合题意,舍去故x1.故选C.容易忽视的零向量典例下列叙述错误的是________填序号若非零向量a与b方向相同或相反,则ab与a,b之一的方向相同;|a||b||ab|a与b方向相同;向量b与向量a共线的充要条件是有且只有一个实数,使得ba;ABBA0;若ab,则ab.错解展示中两个向量的和仍是一个向量,所以ABBA0.错误答案现场纠错解析对于,当ab0时,其方向任意,它与a,b的方向都不相同对于,当a,b之一为零向量时结论不成立对于,当a0且b0时,有无数个值;当a0但b0或a0但b0时,不存在对于,由于两个向量之和仍是一个向量,所以ABBA0.对于,当0时,不管a与b的大小与方向如何,都有ab,此时不一定有ab.故均错答案纠错心得在考虑向量共线问题时,要注意考虑零向量.。
专题六 平面向量6.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示考点一 平面向量的概念及线性运算1.(2022全国乙文,3,5分)已知向量a =(2,1),b =(-2,4),则|a -b |= ( )A.2B.3C.4D.5答案D 由题意知a -b =(4,-3),所以|a -b |=√42+(−3)2=5,故选D .2.(2022新高考Ⅰ,3,5分)在△ABC 中,点D 在边AB 上,BD =2DA.记CA ⃗⃗⃗⃗⃗ =m ,CD ⃗⃗⃗⃗⃗ =n ,则CB ⃗⃗⃗⃗⃗ = ( )A.3m -2nB.-2m +3nC.3m +2nD.2m +3n答案B 由题意可知,DA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ =m -n ,又BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ =2(m -n ),所以CB ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ +DB⃗⃗⃗⃗⃗⃗ =n -2(m -n )=3n -2m ,故选B .3.(2015课标Ⅰ理,7,5分)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗ -43AC ⃗⃗⃗⃗ C.AD⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗ -13AC ⃗⃗⃗⃗ 答案 A AD⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +BC ⃗⃗⃗⃗ +CD ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗ =AB ⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-13AB ⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗ .故选A. 4.(2014课标Ⅰ文,6,5分)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗ B.12AD ⃗⃗⃗⃗ C.BC ⃗⃗⃗⃗ D.12BC⃗⃗⃗⃗ 答案 A 设AB⃗⃗⃗⃗ =a,AC ⃗⃗⃗⃗ =b,则EB ⃗⃗⃗⃗ =-12b+a,FC ⃗⃗⃗⃗ =-12a+b,从而EB ⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =(−12b +a )+(−12a +b )=12(a+b)=AD ⃗⃗⃗⃗ ,故选A.5.(2015课标Ⅱ理,13,5分)设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ= . 答案12解析 由于a ,b 不平行,所以可以以a ,b 作为一组基底,于是λa +b 与a +2b 平行等价于λ1=12,即λ=12.6.(2015北京理,13,5分)在△ABC 中,点M,N 满足AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗ ,则x = ,y = .答案12;-16解析 由AM⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗ 知M 为AC 上靠近C 的三等分点,由BN ⃗⃗⃗⃗ =NC ⃗⃗⃗⃗ 知N 为BC 的中点,作出草图如下:则有AN⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ ),所以MN ⃗⃗⃗⃗⃗ =AN ⃗⃗⃗⃗ -AM ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗ +AC ⃗⃗⃗⃗ )-23·AC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ -16AC ⃗⃗⃗⃗ , 又因为MN ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗ +y AC⃗⃗⃗⃗ ,所以x=12,y=-16. 7.(2013江苏,10,5分)设D,E 分别是△ABC 的边AB,BC 上的点,AD=12AB,BE=23BC.若DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 答案12解析 DE ⃗⃗⃗⃗ =DB ⃗⃗⃗⃗ +BE ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗ -AB ⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗ , ∵DE⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗ ,∴λ1=-16,λ2=23,故λ1+λ2=12. 考点二 平面向量的基本定理及坐标运算1.(2015课标Ⅰ文,2,5分)已知点A(0,1),B(3,2),向量AC⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4)答案 A 根据题意得AB ⃗⃗⃗⃗ =(3,1),∴BC ⃗⃗⃗⃗ =AC ⃗⃗⃗⃗ -AB⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4).故选A. 2.(2014北京文,3,5分)已知向量a =(2,4),b =(-1,1),则2a -b =( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)答案 A 由a =(2,4)知2a =(4,8),所以2a -b =(4,8)-(-1,1)=(5,7).故选A. 3.(2014广东文,3,5分)已知向量a =(1,2),b =(3,1),则b -a =( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 答案 B b -a =(3,1)-(1,2)=(2,-1).故答案为B.4.(2014福建理,8,5分)在下列向量组中,可以把向量a =(3,2)表示出来的是( )A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 答案 B 设a=k 1e 1+k 2e 2,A 选项,∵(3,2)=(k 2,2k 2),∴{k 2=3,2k 2=2,无解.B 选项,∵(3,2)=(-k 1+5k 2,2k 1-2k 2), ∴{−k 1+5k 2=3,2k 1−2k 2=2,解之得{k 1=2,k 2=1. 故B 中的e 1,e 2可把a 表示出来. 同理,C 、D 选项同A 选项,无解.5.(2021全国乙文,13,5分)已知向量a =(2,5),b =(λ,4),若a ∥b ,则λ= .答案85解题指导:利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2=x 2y 1”解题.解析由已知a ∥b 得2×4=5λ,∴λ=85.解题关键:记准两平面向量共线的充要条件是解这类问题的关键.6.(2017山东文,11,5分)已知向量a =(2,6),b =(-1,λ).若a ∥b ,则λ= . 答案 -3解析 本题考查向量平行的条件. ∵a=(2,6),b =(-1,λ),a ∥b , ∴2λ-6×(-1)=0,∴λ=-3.7.(2016课标Ⅱ文,13,5分)已知向量a =(m,4),b =(3,-2),且a ∥b ,则m= . 答案 -6解析 因为a ∥b ,所以m 3=4−2,解得m=-6. 易错警示 容易把两个向量平行与垂直的条件混淆. 评析 本题考查了两个向量平行的充要条件.8.(2014陕西,13,5分)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ= . 答案12解析∵a∥b,∴sin 2θ×1-cos2θ=0,∴2sin θcos θ-cos2θ=0,∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=1 2 .。
5-1平面向量的概念与线性运算基础巩固强化1.(文)(2011·宁波十校联考)设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( )A.P A →+PB →=0 B.PC →+P A →=0 C.PB →+PC →=0 D.P A →+PB →+PC →=0[答案] B[解析] 如图,根据向量加法的几何意义,BC →+BA →=2BP →⇔P 是AC 的中点,故P A →+PC →=0.(理)已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( )A.23B.43 C .-3 D .0[答案] D[解析] CD →=AD →-AC →,DB →=AB →-AD →.∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →. ∴32CD →=AB →-AC →, ∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23, ∴r +s =0.2.(2012·四川理,7)设a 、b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( ) A .a =-b B .a ∥bC .a =2bD .a ∥b 且|a |=|b |[答案] C[解析] 本小题考查共线向量、单位向量、向量的模等基本概念. 因a |a |表示与a 同向的单位向量,b|b |表示与b 同向的单位向量,要使a |a |=b |b |成立,则必须a 与b 同向共线,所以由a =2b 可得出a |a |=b |b |.[点评] a =-b 时,a 与b 方向相反;a ∥b 时,a 与b 方向相同或相反.因此A 、B 、D 都不能推出a |a |=b|b |.3.已知向量a =(1,3),b =(3,n ),若2a -b 与b 共线,则实数n 的值是( )A .3+2 3B .9C .6D .3-2 3[答案] B[解析] 2a -b =(-1,6-n ),∵2a -b 与b 共线,∴-1×n -(6-n )×3=0, ∴n =9.4.设平面内有四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b +d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形 [答案] D[解析] 解法一:设AC 的中点为G ,则OB →+OD →=b +d =a +c =OA →+OC →=2OG →,∴G 为BD 的中点,∴四边形ABCD 的两对角线互相平分,∴四边形ABCD 为平行四边形.解法二:AB →=OB →-OA →=b -a ,CD →=OD →-OC →=d -c =-(b -a )=-AB →, ∴AB 綊CD ,∴四边形ABCD 为平行四边形.5.设OA →=e 1,OB →=e 2,若e 1与e 2不共线,且点P 在线段AB 上,|AP ||PB |=4,如图所示,则OP →=( )A.15e 1-25e 2B.25e 1+15e 2C.15e 1+45e 2D.25e 1-15e 2 [答案] C[解析] AP →=4PB →,∴AB →=AP →+PB →=5PB →, OP →=OB →+BP →=OB →-15AB →=OB →-15(OB →-OA →)=45OB →+15OA →=15e 1+45e 2.6.P 是△ABC 内的一点,AP →=13(AB →+AC →),则△ABC 的面积与△ABP 的面积之比为( )A .2B .3 C.32 D .6[答案] B[解析] 由AP →=13(AB →+AC →),得3AP →=AB →+AC →, ∴PB →+PC →+P A →=0,∴P 是△ABC 的重心. ∴△ABC 的面积与△ABP 的面积之比为3.7.(2013·福建省惠安三中模拟)已知向量a =(2x +1,4),b =(2-x,3),若a ∥b ,则实数x 的值等于________.[答案] 12[解析] ∵a ∥b ,∴3(2x +1)-4(2-x )=0,∴x =12.8.已知点A (2,3),C (0,1),且AB →=-2BC →,则点B 的坐标为________.[答案] (-2,-1)[解析] 设点B 的坐标为(x ,y ),则有AB →=(x -2,y -3),BC →=(-x,1-y ),因为AB →=-2BC →,所以⎩⎨⎧x -2=2x ,y -3=-2(1-y ),解得x =-2,y =-1.9.(2012·东北三省四市联考)在△ABC 中,AB =2AC =2,AB →·AC →=-1,若AO →=x 1AB →+x 2AC →(O 是△ABC 的外心),则x 1+x 2的值为________.[答案] 136[解析] O 为△ABC 的外心,AO →=x 1AB →+x 2AC →,AO →·AB →=x 1AB →·AB →+x 2AC →·AB →,由向量数量积的几何意义,AO →·AB →=12|AB →|2=2,∴4x 1-x 2=2,①又AO →·AC →=x 1AB →·AC →+x 2AC →·AC →,∴-x 1+x 2=12,② 联立①②,解得x 1=56,x 2=43,∴x 1+x 2=136. 10.设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.[解析] (1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →. ∴AB →、BD →共线,又它们有公共点B ,∴A 、B 、D 三点共线. (2)解:∵k a +b 与a +k b 共线, ∴存在实数λ,使k a +b =λ(a +k b ), ∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.能力拓展提升11.(2012·珠海调研)已知△ABC 及其平面内点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .5 [答案] B[解析] 解法1:由已知条件MB →+MC →=-MA →.如图,延长AM 交BC 于D 点,则D 为BC 的中点.延长BM 交AC 于E ,延长CM 交AB 于F ,则E 、F 分别为AC 、AB 的中点,即M 为△ABC 的重心.AM →=23AD →=13(AB →+AC →),即AB →+AC →=3AM →,则m =3.解法2:∵AB →+AC →=MB →-MA →+MC →-MA →=MB →+MC →-2MA →=mAM →,∴MB →+MC →=(m -2)AM →,∵MA →+MB →+MC →=0,∴(m -2)AM →=AM →,∴m =3.12.如图,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于F ,设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为( )A .(12,12)B .(23,23)C .(13,13)D .(23,12)[答案] C[解析] 解法1:令BF →=λBE →,由题可知:AF →=AB →+BF →=AB →+λBE →=AB →+λ(12AC →-AB →)=(1-λ)AB →+12λAC →;同理,令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ(12AB →-AC →)=12μAB →+(1-μ)·AC →,平面向量基本定理知对应系数相等,可得⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23.所以AF →=13AB →+13AC →,故选C.解法2:设CF →=λCD →,∵E 、D 分别为AC 、AB 的中点, ∴BE →=BA →+AE →=-a +12b , BF →=BC →+CF →=(b -a )+λ(12a -b )=⎝ ⎛⎭⎪⎫12λ-1a +(1-λ)b , ∵BE →与BF →共线,a 、b 不共线, ∴12λ-1-1=1-λ12,∴λ=23, ∴AF →=AC →+CF →=b +23CD →=b +23⎝⎛⎭⎪⎫12a -b=13a +13b ,故x =13,y =13.13.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.[答案] 23 [解析]由图知CD →=CA →+AD →,① CD →=CB →+BD →,② 且AD →+2BD →=0.①+②×2得:3CD →=CA →+2CB →, ∴CD →=13CA →+23CB →,∴λ=23.14.(2012·吉林省延吉市质检)已知:|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R +),则mn =________.[答案] 3[解析] 设mOA →=OF →,nOB →=OE →,则OC →=OF →+OE →,∵∠AOC =30°,∴|OC →|·cos30°=|OF →|=m |OA →|=m , |OC →|·sin30°=|OE →|=n |OB →|=3n ,两式相除得:m 3n=|OC →|cos30°|OC →|sin30°=1tan30°=3,∴mn =3.15.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ).(1)若A 、B 、C 三点共线,求实数m 的值; (2)若∠ABC 为锐角,求实数m 的取值范围.[解析] (1)已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )).∴AB →=(3,1),AC →=(2-m,1-m ), ∵A 、B 、C 三点共线,∴AB →与AC →共线, ∴3(1-m )=2-m ,∴m =12.(2)由题设知BA →=(-3,-1),BC →=(-1-m ,-m ) ∵∠ABC 为锐角,∴BA →·BC →=3+3m +m >0⇒m >-34 又由(1)可知,当m =12时,∠ABC =0°故m ∈⎝ ⎛⎭⎪⎫-34,12∪⎝ ⎛⎭⎪⎫12,+∞. 16.(文)已知a =(2x -y +1,x +y -2),b =(2,-2), (1)当x 、y 为何值时,a 与b 共线?(2)是否存在实数x 、y ,使得a ⊥b ,且|a |=|b |?若存在,求出xy 的值;若不存在,说明理由.[解析] (1)∵a 与b 共线, ∴存在非零实数λ使得a =λb ,∴⎩⎨⎧2x -y +1=2λ,x +y -2=-2λ,⇒⎩⎪⎨⎪⎧x =13,y ∈R .(2)由a ⊥b ⇒(2x -y +1)×2+(x +y -2)×(-2)=0⇒x -2y +3=0.①由|a |=|b |⇒(2x -y +1)2+(x +y -2)2=8.②由①②解得⎩⎨⎧x =-1,y =1,或⎩⎪⎨⎪⎧x =53,y =73.∴xy =-1或xy =359.(理)已知点O (0,0)、A (1,2)、B (4,5),向量OP →=OA →+tAB →. (1)t 为何值时,点P 在x 轴上? (2)t 为何值时,点P 在第二象限?(3)四边形ABPO 能否为平行四边形?若能,求出t 的值;若不能,说明理由.(4)求点P 的轨迹方程.[解析] ∵OP →=OA →+tAB →=(1,2)+t (3,3) =(1+3t,2+3t ),∴P (1+3t,2+3t ). (1)∵P 在x 轴上,∴2+3t =0即t =-23.(2)由题意得⎩⎨⎧1+3t <0,2+3t >0.∴-23<t <-13.(3)∵AB →=(3,3),OP →=(1+3t,2+3t ). 若四边形ABPO 为平行四边形,则AB →=OP →,∴⎩⎨⎧1+3t =3,2+3t =3.而上述方程组无解,∴四边形ABPO 不可能为平行四边形. (4)∵OP →=(1+3t,2+3t ),设OP →=(x ,y ),则⎩⎨⎧x =1+3t ,y =2+3t .∴x -y +1=0为所求点P 的轨迹方程.1.在四边形ABCD 中,AB →=a +2b ,BC →=-4a -b ,CD →=-5a -3b ,其中a 、b 不共线,则四边形ABCD 为( )A .梯形B .平行四边形C .菱形D .矩形[答案] A[解析] 由已知得AD →=AB →+BC →+CD →=-8a -2b ,故AD →=2BC →,由共线向量知识知AD ∥BC ,且|AD |=2|BC |,故四边形ABCD 为梯形,所以选A.2.已知|a |=3,|b |=1,且a 与b 同向共线,则a ·b 的值是( ) A .-3 B .0 C .3 D .-3或3 [答案] C[解析] ∵a 与b 同向共线,∴a ·b =|a |·|b |cos0=3,选C. 3.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三点,动点P 满足OP →=OA →+λ(AB →+AC →),λ∈[0,+∞),则点P 的轨迹一定通过△ABC 的( )A .外心B .垂心C .内心D .重心[答案] D[解析] 设AB →+AC →=AD →,则可知四边形BACD 是平行四边形,而AP →=λAD →表明A 、P 、D 三点共线.又D 在边BC 的中线所在直线上,于是点P 的轨迹一定通过△ABC 的重心.4.(2012·洛阳部分重点中学检测)如图所示,已知点G 是△ABC 的重心,过G 作直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则x ·y x +y的值为( )A .3 B.13 C .2D.12[分析] 由M 、N 、G 三点共线知,存在实数λ、μ使AG →=λAM →+μAN →,结合条件AM →=xAB →,AN →=yAC →,可将AG →用AB →,AC →表示,又G 为△ABC 的重心,AG →用AB →,AC →表示的表示式唯一,可求得x ,y 的关系式.[答案] B[解析] 法1:由点G 是△ABC 的重心,知GA →+GB →+GC →=0,得-AG →+(AB →-AG →)+(AC →-AG →)=0,则AG →=13(AB →+AC →).又M 、N 、G 三点共线(A 不在直线MN 上),于是存在λ,μ∈R ,使得AG →=λAM →+μAN→(且λ+μ=1),则AG →=λx AB →+μy AC →=13(AB →+AC →),所以⎩⎪⎨⎪⎧λ+μ=1,λx =μy =13,于是得1x +1y =3,所以x ·y x +y =11x +1y=13.法2:特殊化法,利用等边三角形,过重心作平行于底边BC 的直线,易得x ·y x +y=13.5.(2012·豫南四校调研考试)已知△ABD 是等边三角形,且AB →+12AD →=AC →,|CD →|=3,那么四边形ABCD 的面积为( )A.32B.332 C .3 3 D.932[答案] B [解析]如图,由条件知,CD →=AD →-AC →=12AD →-AB →, ∴CD →2=(12AD →-AB →)2, ∴3=14AD →2+AB →2-AD →·AB →,∵|AD →|=|AB →|,∴54|AD →|2-|AD →|·|AB →|cos60°=3, 解之得|AD →|=2.又BC →=AC →-AB →=12AD →,∴|BC →|=12|AD →|=1, ∴|BC →|2+|CD →|2=|BD →|2,∴BC ⊥CD .∴S 四边形ABCD =S △ABD +S △BCD =12×22×sin60°+12×1×3=332,故选B.6.非零向量a =(sin θ,2),b =(cos θ,1),若a 与b 共线,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.[答案]1 3[解析]∵非零向量a、b共线,∴存在实数λ,使a=λb,即(sinθ,2)=λ(cosθ,1),∴λ=2,sinθ=2cosθ,∴tanθ=2,∴tan(θ-π4)=tanθ-11+tanθ=13.。
平面向量的线性运算学习过程知识点一:向量的加法(1)定义已知非零向量,a b ,在平面内任取一点A ,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和,记作a b +,即a b +=AB +BC =AC . 求两个向量和的运算,叫做叫向量的加法.这种求向量和的方法,称为向量加法的三角形法则. 说明:①运用向量加法的三角形法则时,要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量终点 的向量即为和向量. ②两个向量的和仍然是一个向量,其大小、方向可以由三角形法则确定. ③位移的合成可以看作向量加法三角形法则的物理模型. (2)向量加法的平行四边形法则以点O 为起点作向量a OA = ,OB b =,以OA,OB 为邻边作OACB ,则以O 为起点的对角线所在向量OC 就是,a b 的和,记作a b +=OC 。
说明:①三角形法则适合于首尾相接的两向量求和,而平行四边形法则适合于同起点的两向量求和,但两共线向量求和时,则三角形法则较为合适.②力的合成可以看作向量加法平行四边形法则的物理模型.③对于零向量与任一向量00a a a a +=+=,(3)特殊位置关系的两向量的和①当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;②当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,③当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.(4)向量加法的运算律①向量加法的交换律:a +b =b +a②向量加法的结合律:(a +b ) +c =a + (b +c )知识点二:向量的减法(1)相反向量:与a 长度相同、方向相反的向量.记作 -a 。
第4章 平面向量、数系的扩充与复数的引入第1节 平面向量的概念及其线性运算1.(2014浙江,5分)记max{x ,y }=⎩⎪⎨⎪⎧x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |2解析:对于min{|a +b |,|a -b |}与min{|a |,|b |},相当于平行四边形的对角线长度的较小者与两邻边长的较小者比较,它们的大小关系不定,因此A ,B 均错;而|a +b |,|a -b |中的较大者与|a |,|b |可构成非锐角三角形的三边,因此有max{|a +b |2,|a -b |2}≥|a |2+|b |2,因此选D.答案:D2. (2014新课标全国卷Ⅰ,5分)已知A ,B ,C 为圆O 上的三点,若AO u u u r =12(AB u u u r +AC u u ur ),则AB u u u r 与AC u u ur 的夹角为________.解析:由AO u u u r =12(AB u u u r +AC u u u r ),可得O 为BC 的中点,故BC 为圆O 的直径,所以AB u u u r与AC u u u r的夹角为90°.答案:90°3.(2013重庆,5分)在平面上,1AB u u u r ⊥2AB u u u u r ,|1OB u u u r |=|2OB u u u u r|=1,AP u u u r =1AB u u u r +2AB u u u u r .若|OP uuu r |<12,则|OA u u u r |的取值范围是( )A.⎝ ⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝⎛⎦⎥⎤52,2 D.⎝⎛⎦⎥⎤72,2 解析:本题考查向量问题和圆中的最值问题,意在考查考生的转化化归以及逻辑思维能力.由题意得点B 1,B 2在以O 为圆心的单位圆上,点P 在以O 为圆心半径为12的圆内,又1AB u u u r ⊥2AB u u u u r ,AP u u u r =1AB u u u r +2AB u u u ur ,所以点A 在以B 1B 2为直径的圆上,当P 与O 点重合时,|OA u u u r |最大,为2,当P 在半径为12的圆周上时,|OA u u u r |最小,为72,故选D.答案:D4.(2013新课标全国Ⅱ,5分)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE u u u r ·BDu u u r=________.解析:本题考查平面向量的基本定理及基本运算,是基本题目,意在考查考生的运算求解能力.选向量的基底为AB u u u r ,AD u u u r ,则BD u u u r =AD u u u r -AB u u u r ,AE u u u r =AD u u u r +12AB u u u r ,那么AE u u u r ·BDu u u r =⎝ ⎛⎭⎪⎫AD u u u r +12 AB u u u r ·(AD u u u r -AB u u u r )=2.答案:25.(2013山东,4分)已知向量AB u u u r 与AC u u u r 的夹角为120°,且|AB u u u r |=3,|AC u u u r |=2.若AP u u u r =λ AB u u u r +AC u u u r ,且AP u u u r ⊥BC uuur ,则实数λ的值为________.解析:本题考查平面向量的线性运算、数量积运算、向量垂直的充要条件等基础知识.BC uuu r =AC u u u r -AB u u u r ,由于AP u u u r ⊥BC uuu r ,所以AP u u u r ·BC uuu r =0,即(λAB u u u r +AC u u u r )·(AC u u u r -AB u u u r )=-λ2AB u u u u r +2AC u u u u r +(λ-1)AB u u u r ·AC u u u r =-9λ+4+(λ-1)×3×2×⎝ ⎛⎭⎪⎫-12=0,解得λ=712. 答案:7126.(2013四川,5分)如图,在平行四边形ABCD 中,对角线AC 与BD交于点O ,AB u u u r +AD u u u r=λAO u u u r ,则λ=________.解析:本题主要考查平面向量的运算,意在考查数形结合的思想.AB u u u r +AD u u u r =AC u u ur =2AO u u u r ,故λ=2.答案:2。
课后作业(二十四) 平面向量的基本概念及线性运算一、选择题1.(2013·某某模拟)若a +c 与b 都是非零向量,则“a +b +c =0”是“b ∥(a +c )”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.下列命题中是真命题的是( )①对任意两向量a 、b ,均有:|a |-|b |<|a |+|b |;②对任意两向量a 、b ,a -b 与b -a 是相反向量;③在△ABC 中,AB →+BC →-AC →=0;④在四边形ABCD 中,(AB →+BC →)-(CD →+DA →)=0;⑤AB →-AC →=BC →.A .①②③B .②④⑤C .②③④D .②③3.设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( )A.PA →+PB →=0B.PC →+PA →=0C.PB →+PC →=0D.PA →+PB →+PC →=04.在▱ABCD 中,下列结论中错误的是( )A.AB →=DC →B.AB →+AD →=AC →C.AB →-AD →=BD →D.AD →+CB →=05.(2013·某某模拟)已知e 1≠0,λ∈R,a =e 1+λe 2,b =2e 1,则a 与b 共线的条件是( )A .λ=0B .e 2=0C .e 1∥e 2D .e 1∥e 2或λ=06.(2013·某某模拟)已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m =( )A .2B .3C .4D .5二、填空题7.如图4-1-3所示,向量a -b =________(用e 1,e 2表示).图4-1-38.若|AB →|=8,|AC →|=5,则|BC →|的取值X 围是________.9.已知向量a ,b 是两个非零向量,则在下列四个条件中,能使a 、b 共线的条件是________(将正确的序号填在横线上).①2a -3b =4e ,且a +2b =-3e ;②存在相异实数λ、μ,使λa +μb =0;③xa +yb =0(实数x ,y 满足x +y =0);④若四边形ABCD 是梯形,则AB →与CD →共线.三、解答题图4-1-410.(2013·某某模拟)如图4-1-4所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,某某数m 的值. 11.设a ,b 是不共线的两个非零向量.(1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A 、B 、C 三点共线.(2)若8a +kb 与ka +2b 共线,某某数k 的值.(3)若AB →=a +b ,BC →=2a -3b ,CD →=2a -kb ,且A 、C 、D 三点共线,求k 的值.12.设O 是平面上一定点,A ,B ,C 是平面上不共线的三点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC →|AC →|),λ∈[0,+∞).求点P 的轨迹,并判断点P 的轨迹通过下述哪一个定点: ①△ABC 的外心;②△ABC 的内心;③△ABC 的重心;④△ABC 的垂心.解析及答案一、选择题1.【解析】 若a +b +c =0,则b =-(a +c ),∴b ∥(a +c );若b ∥(a +c ),则b =λ(a +c ),当λ≠-1时,a +b +c ≠0,因此“a +b +c =0”是“b ∥(a +c )”的充分不必要条件.【答案】A2.【解析】 ①假命题.∵当b =0时,|a |-|b |=|a |+|b |.∴该命题不成立.②真命题,这是因为(a -b )+(b -a )=a +(-b )+b +(-a )=a +(-a )+b +(-b )=(a -a )+(b -b )=0, ∴a -b 与b -a 是相反向量.③真命题.∵AB →+BC →-AC →=AC →-AC →=0,∴命题成立.④假命题.∵AB →+BC →=AC →,CD →+DA →=CA →,∴(AB →+BC →)-(CD →+DA →)=AC →-CA →=AC →+AC →≠0,∴该命题不成立.⑤假命题.∵AB →-AC →=AB →+CA →=CB →≠BC →,∴该命题不成立.【答案】D3.【解析】 由BC →+BA →=2BP →知,点P 是线段AC 的中点,则PC →+PA →=0,故选B.【答案】B4.【解析】A 显然正确;由平行四边形法则知B 正确,C 中AB →-AD →=DB →=-BD →,故C 错误;D 中AD →+CB →=AD →+DA →=0,故D 正确.【答案】C5.【解析】若e 1与e 2共线,则e 2=λ′e 1,∴a =(1+λλ′)e 1,此时a ∥b ,若e 1与e 2不共线,设a =μb ,则e 1+λe 2=μ·2e 1,∴λ=0,1-2μ=0,故选D.【答案】D6.【解析】 由MA →+MB →+MC →=0易得M 是△ABC 的重心,且重心M 分中线AE 的比为AM ∶ME=2∶1,∴AB →+AC →=2AE →=mAM →=2m 3·AE →,∴2m 3=2.∴m =3. 【答案】B二、填空题7.【解析】 由图知,a -b =BA →=e 1+(-3e 2)=e 1-3e 2.【答案】e 1-3e 28.【解析】 ∵BC →=AC →-AB →,当AB →、AC →同向时,|BC →|=8-5=3,当AB →、AC →反向时,|BC→|=8+5=13,当AB →、AC →不共线时,3<|BC →|<13,综上可知3≤|BC →|≤13.【答案】 [3,13]9.【解析】 由①得10a -b =0,故①对.②对.对于③,当x =y =0时,a 与b 不一定共线,故③不对.若AB ∥CD ,则AB →与CD →共线,若AD ∥BC ,则AB →与CD →不共线,故④不对.【答案】 ①②三、解答题10.【解】 如题图所示,AP →=AB →+BP →,∵P 为BN 上一点,则BP →=kBN →,∴AP →=AB →+kBN →=AB →+k (AN →-AB →)又AN →=13NC →,即AN →=14AC →, 因此AP →=(1-k )AB →+k 4AC →, 所以1-k =m ,且k 4=211, 解得k =811, 则m =1-k =311. 11.【解】 (1)证明 AB →=OB →-OA →=a +2b ,AC →=OC →-OA →=-a -2b .所以AC →=-AB →,又因为A 为公共点,所以A 、B 、C 三点共线.(2)设8a +kb =λ(ka +2b ),所以实数k 的值为±4.(3)AC →=AB →+BC →=(a +b )+(2a -3b )=3a -2b ,因为A 、C 、D 三点共线,所以AC →与CD →共线.从而存在实数λ使AC →=λCD →,即3a -2b =λ(2a -kb ),解得λ=32,k =43, 所以k =43. 12.【解】 如图,记AM →=AB →|AB →|,AN →=AC →|AC →|,则AM →,AN →都是单位向量,∴|AM →|=|AN →|,AQ →=AM →+AN →,则四边形AMQN 是菱形,∴AQ 平分∠BAC ,∵OP →=OA →+AP →,由条件知OP →=OA →+λAQ →,∴AP →=λAQ →(λ∈[0,+∞)),∴点P 的轨迹是射线AQ ,且AQ 通过△ABC 的内心.。
第1讲平面向量的概念及其线性运算【2014年高考会这样考】1.在平面几何图形中考查向量运算的平行四边形法则及三角形法则.2.考查平面向量的几何意义及共线向量定理的应用.对应学生70考点梳理1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的加法与减法平行四边形法则(1)定义:实数λ与向量a 的积是一个向量,这种运算叫向量的数乘,记作λa ,它的长度与方向规定如下: ①|λa |=|λ||a |;②当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0.(2)运算律:设λ,μ是两个实数,则①λ(μa )=(λμ)a ;②(λ+μ)a =λa +μa ;③ λ(a +b )=λa +λb . 4.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使b =λa . 【助学·微博】 一条规律一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量. 一个结论在△ABC 中,若D 为BC 的中点,则AD→=12(AB →+AC →). 一个区别向量的平行与直线的平行不同,向量的平行包括两向量所在直线平行和重合两种情形.考点自测1.若向量a 与b 不相等,则a 与b 一定( ). A .有不相等的模 B .不共线C .不可能都是零向量D .不可能都是单位向量解析 因为所有的零向量都是相等的向量,故只有C 正确. 答案 C2.若m ∥n ,n ∥k ,则向量m 与向量k ( ). A .共线 B .不共线C .共线且同向D .不一定共线解析 当n =0时,k 与m 不共线,故选D. 答案 D3.(2012·全国)△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a ·b =0,|a |=1,|b |=2,则AD →=( ). A.13a -13b B.23a -23b C.35a -35b D.45a -45b解析 由题可知|AB |2=22+12=5,因为AC 2=AD ·AB ,所以AD =AC 2AB =455,∴AD→=45AB →=45(a -b )=45a -45b . 答案 D4.D 是△ABC 的边AB 上的中点,则向量CD →等于( ). A .-BC→+12BA → B .-BC →-12BA → C.BC→-12BA → D.BC →+12BA →解析 如图,CD→=CB →+BD →=CB→+12BA →=-BC →+12BA →. 答案 A5.设a 与b 是两个不共线向量,且向量a +λb 与2a -b 共线,则λ=________.解析 由题意知:a +λb =k (2a -b ),则有:⎩⎪⎨⎪⎧1=2k ,λ=-k ,∴k =12,λ=-12. 答案 -12对应学生71考向一 平面向量的有关概念【例1】►给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB→=DC →是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b .其中正确命题的序号是________.[审题视点] 以概念为判断依据,或通过举反例.解析 ①不正确.两个向量的长度相等,但它们的方向不一定相同. ②正确.∵AB→=DC →,∴|AB →|=|DC →|且AB →∥DC →,又∵A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则AB→∥DC →且|AB →|=|DC →|,因此,AB →=DC →.③正确.∵a =b ,∴a ,b 的长度相等且方向相同; 又b =c ,∴b ,c 的长度相等且方向相同, ] ∴a ,c 的长度相等且方向相同,故a =c .④不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. 综上所述,正确命题的序号是②③.答案 ②③准确理解向量的基本概念是解决该类问题的关键,特别是对相等向量、零向量等概念的理解要到位,充分利用反例进行否定也是行之有效的方法.【训练1】 给出下列四个命题:①a 与b 共线,b 与c 共线,则a 与c 也共线;②任意两个相等的非零向量的始点与终点是一个平行四边形的四顶点;③向量a 与b 不共线,则a 与b 都是非零向量;④有相同起点的两个非零向量不平行. 其中所有正确命题的序号是________.解析 由于零向量与任一向量都共线,命题①中的b 可能为零向量,从而不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,更不可能是一个平行四边形的四个顶点,所以命题②不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以命题④不正确;③正确.综上所述,正确命题的序号是③.答案 ③ 考向二 平面向量的线性运算【例2】►如图,在梯形ABCD 中,|AB→|=2|DC →|,M ,N 分别是DC ,AB 的中点.若AB →=e 1,AD →=e 2,用e 1,e 2表示DC →,BC →,MN →. [审题视点] 结合图形,灵活运用三角形法则和平行四边形法则进行加减运算. 解 DC→=12AB →=e 12; BC→=BA →+AC →=-AB →+AC →=AD →+DC →-AB →=AD →-12AB →=e 2-12e 1;MN →=MD →+DA →+AN →=-14AB →-AD →+12AB → =14AB →-AD →=14e 1-e 2.用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或平行四边形;③运用法则找关系;④化简结果. 【训练2】在△ABC 中,AD→=23AB →,DE ∥BC 交AC 于点E ,BC 边上的中线AM 交DE 于点N .设AB→=a ,AC →=b ,用a ,b 表示向量AE →,BC →,DE →,DN →,AM →,AN →.解⎩⎨⎧DE→∥BC →,AD →=23AB→⇒AE→=23AC →=23b , BC →=AC →-AB →=b -a .由△ADE ∽△ABC ,得DE→=23BC →=23(b -a ).又AM 是△ABC 的边BC 上的中线,DE ∥BC , ∴DN→=12DE →=13(b -a ).AM→=AB →+BM →=a +12BC →=a +12(b -a )=12(a +b ).由⎩⎪⎨⎪⎧△ADN ∽△ABM ,AD →=23AB →⇒AN →=23AM →=13(a +b ).考向三 共线向量定理的应用【例3】►设两个非零向量a 与b 不共线. (1)若AB→=a +b ,BC →=2a +8b ,CD →=3(a -b ). 求证:A ,B ,D 三点共线;(2)试确定实数k ,使k a +b 和a +k b 共线.[审题视点] (1)先证明AB →,BD →共线,再说明它们有一个公共点;(2)利用共线向量定理列出方程组求k .(1)证明 ∵AB→=a +b ,BC →=2a +8b ,CD →=3(a -b ).∴BD→=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →. ∴AB→,BD →共线,又它们有公共点B ,∴A ,B ,D 三点共线. (2)解 假设k a +b 与a +k b 共线, 则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两不共线的非零向量, ∴k -λ=λk -1=0.∴k 2-1=0.∴k =±1.共线向量定理的条件和结论是充要条件关系,既可以证明向量共线,也可以由向量共线求参数.利用两向量共线证明三点共线要强调有一个公共点.【训练3】 若a ,b 是两个不共线的非零向量,a 与b 起点相同,则当t 为何值时,a ,t b ,13(a +b )三向量的终点在同一条直线上? 解 设OA→=a ,OB →=t b ,OC →=13(a +b ),∴AC→=OC →-OA →=-23a +13b ,AB →=OB →-OA →=t b -a . 要使A ,B ,C 三点共线,只需AC→=λAB →.即-23a +13b =λt b -λa .又a 与b 为不共线的非零向量 ∴有⎩⎪⎨⎪⎧ -23=-λ,13=λt ⇒⎩⎪⎨⎪⎧λ=23,t =12.∴当t =12时,三向量终点在同一直线上.对应学生72方法优化6——准确把握平面向量的概念和运算【命题研究】通过近三年的高考试题分析,平面向量的概念和运算时常以选择题、填空题的形式出现,有时解答题的题设条件也以向量的形式给出,命题的出发点主要是以平面图形为载体,借助平面几何、解析几何等知识,考查平面向量的线性运算法则及其几何意义以及两个向量共线的充要条件,或以向量为载体求参数的值.【真题探究】►(2012·浙江)设a,b是两个非零向量.().A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|[教你审题] 思路1 根据选项逐个进行排除.思路2 将模的运算转化为数量积的形式进行分析.[一般解法] (排除法)选项A,若b=-a,则等式|a+b|=|a|-|b|成立,显然a ⊥b不成立;选项B,若a⊥b且|a|=|b|,则|a|-|b|=0,显然,|a+b|=2|a|≠0,故|a+b|=|a|-|b|不成立;选项D,若b=a,则|a|-|b|=0,显然,|a+b|=2|a|≠0,故|a+b|=|a|-|b|不成立.综上,A,B,D都不正确,故选C.[优美解法] (数量积法)把等式|a+b|=|a|-|b|两边平方,得(a+b)2=(|a|-|b|)2,即2a·b=-2|a|·|b|,而a·b=|a||b|cos〈a,b〉,所以cos〈a,b〉=-1.又因为〈a,b〉∈[0,π],所以〈a,b〉=π,即a,b为方向相反的共线向量.故C正确.[答案] C[反思] 在高考结束后,了解到部分学生做错的主要原因是:题中的条件“|a+b |=|a |-|b |”在处理过程中误认为“|a +b |=|a -b |”,从而得到“a ⊥b ”这个错误的结论.【试一试】 在△OAB 中,OA →=a ,OB →=b ,OD 是AB 边上的高,若AD →=λAB →,则实数λ=( ). A.a ·(a -b )|a -b | B.a ·(b -a )|a -b |C.a ·(a -b )|a -b |2D.a ·(b -a )|a -b |2解析 由AD→=λAB →,∴|AD →|=λ|AB →|. 又∵|AD →|=|a |cos A =|a |·a ·(a -b )|a ||b -a |=a ·(a -b )|b -a |,|AB →|=|b -a |,∴λ=a ·(a -b )|b -a |2=a ·(a -b )|a -b |2.故选C. 答案 C对应学生265A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2013·合肥检测)已知O 是△ABC 所在平面内一点,D 为BC 边的中点,且2OA →+OB →+OC →=0,那么( ).A.AO→=OD → B.AO →=2OD →C.AO→=3OD →D .2AO→=OD → 解析 由2OA →+OB →+OC →=0可知,O 是底边BC 上的中线AD 的中点,故AO →=OD→.答案 A2.已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,且四边形ABCD 为平行四边形,则 ( ). A .a -b +c -d =0 B .a -b -c +d =0 C .a +b -c -d =0D .a +b +c +d =0解析 依题意,得AB→=DC →,故AB →+CD →=0,即OB →-OA →+OD →-OC →=0,即有OA →-OB →+OC →-OD →=0,则a -b +c -d =0.选A. 答案 A3.已知平面上不共线的四点O ,A ,B ,C .若OA →+2OC →=3OB →,则|BC →||AB →|的值为 ( ).A.12B.13C.14D.16解析 由OA →+2OC →=3OB →,得OA →-OB →=2OB →-2OC →,即BA →=2CB →,所以|BC →||AB →|=12.故选A. 答案 A4.(2011·山东)设A 1,A 2,A 3,A 4是平面直角坐标系中两两不同的四点,若A 1A 3→=λA 1A 2→(λ∈R ),A 1A 4→=μA 1A 2→(μ∈R ),且1λ+1μ=2,则称A 3,A 4调和分割A 1,A 2.已知平面上的点C ,D 调和分割点A ,B ,则下列说法正确的是 ( ). A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点 C .C 、D 可能同时在线段AB 上D .C 、D 不可能同时在线段AB 的延长线上解析 若A 成立,则λ=12,而1μ=0,不可能;同理B 也不可能;若C 成立,则0<λ<1,且0<μ<1,1λ+1μ>2,与已知矛盾;若C ,D 同时在线段AB 的延长线上时,λ>1,且μ>1,1λ+1μ<2,与已知矛盾,故C ,D 不可能同时在线段AB 的延长线上,故D 正确. 答案 D二、填空题(每小题5分,共10分)5.(2013·泰安模拟)设a ,b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值为________. 解析 ∵BD→=BC →+CD →=2a -b ,又A ,B ,D 三点共线, ∴存在实数λ,使AB →=λBD →.即⎩⎪⎨⎪⎧2=2λ,p =-λ,∴p =-1. 答案 -16.如图,在矩形ABCD 中,|AB→|=1,|AD →|=2,设AB →=a ,BC→=b ,BD →=c ,则|a +b +c |=________. 解析 根据向量的三角形法则有|a +b +c |=|AB →+BC →+BD →|=|AB →+BD →+AD →|=|AD →+AD →|=2|AD →|=4. 答案 4三、解答题(共25分)7.(12分)如图,在平行四边形OADB 中,设OA→=a ,OB →=b ,BM→=13BC →,CN →=13CD →.试用a ,b 表示OM →,ON →及MN →. 解 由题意知,在平行四边形OADB 中,BM→=13BC →=16BA →=16(OA →-OB →)=16(a-b )=16a -16b ,则OM→=OB →+BM →=b +16a -16b =16a +56b . ON→=23OD →=23(OA →+OB →)=23(a +b )=23a +23b ,MN →=ON →-OM →=23(a +b )-16a -56b =12a -16b .8.(13分)(1)设两个非零向量e 1,e 2不共线,如果AB →=2e 1+3e 2,BC →=6e 1+23e 2,CD →=4e 1-8e 2,求证:A ,B ,D 三点共线. (2)设e 1,e 2是两个不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,求k 的值. (1)证明 因为BC →=6e 1+23e 2,CD →=4e 1-8e 2, 所以BD →=BC →+CD →=10e 1+15e 2.又因为AB →=2e 1+3e 2,得BD →=5AB →,即BD →∥AB →,又因为AB →,BD →有公共点B ,所以A ,B ,D 三点共线. (2)解 D B →=CB →-CD →=e 1+3e 2-2e 1+e 2=4e 2-e 1,AB →=2e 1+k e 2, 若A ,B ,D 共线,则AB →∥D B →,设D B →=λAB →,所以⎩⎨⎧-1=2λ,4=λk⇒k =-8.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·济南一模)已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13⎝ ⎛⎭⎪⎫12OA →+12OB →+2OC →,则点P 一定为三角形ABC 的 ( ).A .AB 边中线的中点B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析 设AB 的中点为M ,则12OA →+12OB →=OM →,∴OP→=13(OM →+2OC →)=13OM →+23OC →,即3OP →=OM →+2OC →,也就是MP →=2PC →,∴P ,M ,C 三点共线,且P 是CM 上靠近C 点的一个三等分点. 答案 B2.若点M 是△ABC 所在平面内的一点,且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为( ).A.15B.25C.35D.45解析 设AB 的中点为D ,由5AM →=AB →+3AC →,得3AM →-3AC →=2AD →-2AM →,即3CM →=2MD →.如图所示,故C ,M ,D 三点共线,且MD →=35CD →,也就是△ABM 与△ABC对于边AB 的两高之比为3∶5,则△ABM 与△ABC 的面积比为35,选C. 答案 C二、填空题(每小题5分,共10分)3.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为________.解析 OB→+OC →-2OA →=OB →-OA →+OC →-OA →=AB →+AC →,OB→-OC →=CB →=AB →-AC →,∴|AB →+AC →|=|AB →-AC →|. 故A ,B ,C 为矩形的三个顶点,△ABC 为直角三角形. 答案 直角三角形4.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC→=nAN →,则m +n 的值为________. 解析 ∵O 是BC 的中点, ∴AO→=12(AB →+AC →).又∵AB →=mAM →,AC →=nAN →,∴AO →=m 2AM →+n 2AN →. ∵M ,O ,N 三点共线,∴m 2+n2=1,则m +n =2. 答案 2三、解答题(共25分)5.(12分)如图所示,在△ABC 中,在AC 上取一点N ,使得AN =13AC ,在AB 上取一点M ,使得AM =13AB ,在BN 的延长线上取点P ,使得NP =12BN ,在CM 的延长线上取点Q ,使得MQ→=λCM →时,AP →=QA →,试确定λ的值.解 ∵AP→=NP →-NA →=12(BN →-CN →)=12(BN →+NC →)=12BC →,QA →=MA →-MQ →=12BM →+λMC→,又∵AP→=QA →,∴12BM →+λMC →=12BC →, 即λMC→=12MC →,∴λ=12.6.(13分)已知点G 是△ABO 的重心,M 是AB 边的中点. (1)求GA→+GB →+GO →;(2)若PQ 过△ABO 的重心G ,且OA →=a ,OB →=b ,OP →=m a ,OQ →=n b ,求证:1m +1n =3.(1)解 ∵GA→+GB →=2GM →,又2GM →=-GO →,∴GA→+GB →+GO →=-GO →+GO →=0. (2)证明 显然OM→=12(a +b ).因为G 是△ABO 的重心,所以OG →=23OM →=13(a+b ).由P ,G ,Q 三点共线,得PG →∥GQ →,所以,有且只有一个实数λ,使PG →=λGQ→.而PG →=OG →-OP →=13(a +b )-m a =⎝ ⎛⎭⎪⎫13-m a +13b ,GQ →=OQ →-OG →=n b -13(a +b )=-13a +⎝ ⎛⎭⎪⎫n -13b , 所以⎝ ⎛⎭⎪⎫13-m a +13b =λ⎣⎢⎡⎦⎥⎤-13a +⎝ ⎛⎭⎪⎫n -13b . 又因为a ,b 不共线,所以⎩⎪⎨⎪⎧13-m =-13λ,13=λ⎝ ⎛⎭⎪⎫n -13,消去λ,整理得3mn =m +n ,故1m +1n =3.。
5-1平面向量的概念与线性运算1.(文)(联考已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC →=0,那么( )A.AO →=OD →B.AO →=2OD →C.AO →=3OD → D .2AO →=OD →(理)(2012·珠海调研)已知△ABC 及其平面内点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .52.(2011·广东江门市模拟)若四边形ABCD 满足AB →+CD →=0,(AB →-AD →)·AC →=0,则该四边形一定是( )A .直角梯形B .菱形C .矩形D .正方形3.(文)如图所示,在△ABC 中,BD →=12DC →,AE →=3ED →,若AB →=a ,AC →=b ,则BE →等于( )A.13a +13b B .-12a +14b C.12a +14b D .-13a +13b文第3题 第6题 文第7题(理)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( ) A.14a +12b B.13a +23b C.12a +14b D.23a +13b 4.(2011·广东文)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( ) A.14 B.12C .1D .2 5.(文)(2011·惠州模拟)在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=λCA →+μCB →,则μλ的值为( )A .1 B.12 C .2 D.13(理)(2011·厦门模拟)已知点M 在平面ABC 内,并且对空间任一点O ,OM →=xOA →+12OB →+13OC →,则x 的值为( )A .0 B.13 C.12 D.166.设OA →=e 1,OB →=e 2,若e 1与e 2不共线,且点P 在线段AB 上,|AP PB |=4,如图所示,则OP →=( )A.15e 1-25e 2B.25e 1+15e 2C.15e 1+45e 2D.25e 1-15e 2 7.(文)(2011·山东济南市调研)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m的值为________.(理)(2011·聊城模拟)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中, λ,μ∈R ,则λ+μ=________.8.(文)(2011·合肥模拟)在平面直角坐标系中,O 为坐标原点,A 、B 、C 三点满足OC →=23OA →+13OB →,则|AC →||AB →|=________.(理)(2012·四川文)设a 、b 都是非零向量,下列四个条件中,使a |a |=b|b |成立的充分条件是( )A .|a |=|b |且a ∥bB .a =-bC .a ∥bD .a =2b9.(2012·东北三省四市联考)在△ABC 中,AB =2AC =2,AB →·AC →=-1,若AO →=x 1AB →+x 2AC →(O 是△ABC 的外心),则x 1+x 2的值为________.10.(文)如图,在平行四边形ABCD 中,M 、N 分别为DC 、BC 的中点,已知AM →=c ,AN →=d ,试用c 、d 表示AB →、AD →.(理)如图,在△ABC 中,AM AB =,AN AC =,BN 与CM 交于P 点,且AB →=a ,AC →=b ,用a ,b 表示AP →.能力拓展提升11.(2011·山东青岛质检)在数列{a n }中,a n +1=a n +a (n ∈N *,a 为常数),若平面上的三个不共线的非零向量OA →,OB →,OC →满足OC →=a 1OA →+a 2010OB →,三点A 、B 、C 共线且该直线不过O 点,则S 2010等于( )A .1005B .1006C .2010D .201212.(文)(2011·安徽安庆模拟)已知点P 是△ABC 所在平面内一点,且满足3P A →+5PB →+2PC →=0,设△ABC 的面积为S ,则△P AC 的面积为( )A.34SB.23SC.12SD.25S (理)(2011·东北三校联考)在△ABC 中,点P 是AB 上的一点,且CP →=23CA →+13CB →,Q 是BC 的中点,AQ 与CP的交点为M ,又CM →=tCP →,则t 的值为( )A.12B.23C.34D.4513.已知点A (2,3),C (0,1),且AB →=-2BC →,则点B 的坐标为________.14.已知D 为三角形ABC 的边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.15.(文)已知四点A (x,0)、B (2x,1)、C (2,x )、D (6,2x ).(1)求实数x ,使两向量AB →、CD →共线.(2)当两向量AB →与CD →共线时,A 、B 、C 、D 四点是否在同一条直线上?(理)(2011·济南模拟)已知△ABC 中,AB →=a ,AC →=b ,对于平面ABC 上任意一点O ,动点P 满足OP →=OA →+λa+λb ,则动点P 的轨迹是什么?其轨迹是否过定点,并说明理由.16.已知a =(2x -y +1,x +y -2),b =(2,-2). (1)当x 、y 为何值时,a 与b 共线?(2)是否存在实数x 、y ,使得a ⊥b ,且|a |=|b |?若存在,求出xy 的值;若不存在,说明理由.1.设平面内有四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b +d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形2.(2011·银川模拟)已知a 、b 是两个不共线的向量,AB →=λa +b ,AC →=a +μb (λ,μ∈R ),那么A 、B 、C 三点共线的充要条件是( )A .λ+μ=2B .λ-μ=1 λμ=-1 D .λμ=1 3.设两个非零向量a 与b 不共线,(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证:A 、B 、D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.4.已知点O (0,0)、A (1,2)、B (4,5),向量OP →=OA →+tAB →.(1)t 为何值时,点P 在x 轴上? (2)t 为何值时,点P 在第二象限?(3)四边形ABPO 能否为平行四边形?若能,求出t 的值;若不能,说明理由; (4)求点P 的轨迹方程.1[答案] A[解析] ∵OB →+OC →=2OD →,∴2OA →+2OD →=0,∴AO →=OD →. (理科)[答案] B[解析] 解法1:由已知条件MB →+MC →=-MA →.如图,延长AM 交BC 于D 点,则D 为BC 的中点.延长BM 交AC 于E ,延长CM 交AB 于F ,则E 、F 分别为AC 、AB 的中点,即M 为△ABC 的重心.AM →=23AD →=13(AB →+AC →),即AB →+AC →=3AM →,则m =3.解法2:∵AB →+AC →=MB →-MA →+MC →-MA →=MB →+MC →-2MA →=mAM →,∴MB →+MC →=(m -2)AM →,∵MA →+MB →+MC →=0,∴(m -2)AM →=AM →,∴m =3. 2[答案] B[解析] 由AB →+CD →=0知,AB →=DC →,即AB =CD ,AB ∥CD .∴四边形ABCD 是平行四边形. 又(AB →-AD →)·AC →=0,∴DB →·AC →=0,即AC ⊥BD , 因此四边形ABCD 是菱形,故选B. 3[答案] B[解析] ∵AE →=3ED →,∴ED →=14AD →,∵BD →=12DC →,∴BD →=13BC →,∴BE →=BD →-ED →=BD →-14AD →=BD →-14(AB →+BD →)=34BD →-14AB →=14BC →-14AB → =14AC →-12AB →=14b -12a . (理科)[答案] D[解析] 由条件易知,DF →=13DC →,∴AF →=AC →+CF →=a +23CD →=a +13(b -a )=23a +13b .故选D.4[答案] B[解析] a +λb =(1,2)+λ(1,0)=(1+λ,2),因为(a +λb )∥c ,所以4+4λ-6=0,所以λ=12.5[答案] C[解析] CD →=CA →+AD →=CA →+23AB →=CA →+23(CB →-CA →)=13CA →+23CB →,∴λ=13,μ=23,∴μλ=2.(lk)[答案] D[解析] ∵x +12+13=1,∴x =16.6[答案] C[解析] AP →=4PB →,∴AB →=AP →+PB →=5PB →,OP →=OB →+BP →=OB →-15AB →=OB →-15(OB →-OA →)=45OB →+15OA →=15e 1+45e 2.7[答案] 311[解析] (如图)因为AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →) =AB →+k (14AC →-AB →)=(1-k )AB →+k4AC →,所以1-k =m ,且k 4=211,解得k =811,m =311.(理科)[答案] 43[解析]如图,∵四边形ABCD 是平行四边形,且E 、F 分别为CD 、BC 中点. ∴AC →=AD →+AB → =(AE →-DE →)+(AF →-BF →) =(AE →+AF →)-12(DC →+BC →)=(AE →+AF →)-12AC →,∴AC →=23(AE →+AF →),∴λ=μ=23,∴λ+μ=43.8[答案] 13[解析] ∵OC →=23OA →+13OB →,23+13=1,∴A 、B 、C 三点共线, ∵AC →=OC →-OA →=13OB →-13OA →=13AB →,∴|AC →||AB →|=13. (理科)[答案] D[解析] 对于A ,|a |=|b |,且a ∥b ,可知a 与b 共线,若反向,则不能满足结论a |a |=b|b |,对于B 选项,两向量反向,而C 选项a ∥b ,同样若反向不能满足.而D 项显然满足,故选D.[点评] 注意到a |a |是与a 同向的单位向量,b |b |是与b 同向的单位向量,故a |a |=b|b |⇔a 与b 同向.9[答案] 136[解析] O 为△ABC 的外心,AO →=x 1AB →+x 2AC →,AO →·AB →=x 1AB →·AB →+x 2AC →·AB →,由向量数量积的几何意义,AO →·AB →=12|AB →|2=2,∴4x 1-x 2=2,① 又AO →·AC →=x 1AB →·AC →+x 2AC →·AC →,∴-x 1+x 2=12,②联立①②,解得x 1=56,x 2=43,∴x 1+x 2=136.10[解析] 解法一:AD →=AM →-DM →=c -12AB →,①AB →=AN →-BN →=d -12AD →,②由①②得AB →=23(2d -c ),AD →=23(2c -d ).解法二:设AB →=a ,AD →=b ,因为M 、N 分别为CD 、BC 的中点,所以BN →=12b ,DM →=12a ,于是有:⎩⎨⎧c =b +12a ,d =a +12b ,解得⎩⎨⎧a =23(2d -c ),b =23(2c -d ),即AB →=23(2d -c ),AD →=23(2c -d ).(lk)[分析] 由已知条件可求AM →、AN →,∵BN 与CM 相交于点P ,∴B 、P 、N 共线,C 、P 、M 共线,因此,可以设PN →=λBN →,PM →=μCM →,利用同一向量的两种a ,b 的线性表示及a 、b 不共线求解;也可以设BP →=λBN →,用a 、b ,λ来表示CP →与CM →,利用CP →与CM →共线及a 、b 不共线求解.解题方法很多,但无论什么方法,都要抓住“共线”来作文章.[解析] 由题意知:AM →=13AB →=13a ,AN →=14AC →=14b ,BN →=AN →-AB →=14b -a ,CM →=AM →-AC →=13a -b .设PN →=λBN →,PM →=μCM →,则PN →=λ4b -λa ,PM →=μ3a -μb .∴AP →=AN →-PN →=14b -(λ4b -λa )=λa +1-λ4b ,AP →=AM →-PM →=13a -(μ3a -μb )=1-μ3a +μb ,∴λa +1-λ4b =1-μ3a +μb ,而a ,b 不共线.∴λ=1-μ3且1-λ4=μ.∴λ=311.因此AP →=311a +211b .11[答案] A[解析] 由题意知,a 1+a 2010=1, 又数列{a n }为等差数列,所以S 2010=a 1+a 20102×2010=1005,故选A.12[答案] C [分析]由系数3+2=5,可将条件式变形为3(P A →+PB →)+2(PB →+PC →)=0,故可先构造出P A →+PB →与PB →+PC →,假设P 为P ′点,取AB 、BC 中点M 、N ,则PM →=12(P A →+PB →),PN →=12(PB →+PC →),条件式即转化为PM →与PN →的关系.∴△P AC 的面积为△ABC 面积的一半,故选C.[解析] 设AB ,BC 的中点分别为M ,N , 则PM →=12(P A →+PB →),PN →=12(PB →+PC →),∵3P A →+5PB →+2PC →=0, ∴3(P A →+PB →)=-2(PB →+PC →), ∴3PM →=-2PN →,即点P 在中位线MN 上, (lk)[答案] C[解析] ∵CP →=23CA →+13CB →,∴3CP →=2CA →+CB →,即2CP →-2CA →=CB →-CP →,∴2AP →=PB →,因此P 为AB 的一个三等分点,如图所示. ∵A ,M ,Q 三点共线, ∴CM →=xCQ →+(1-x )CA → =x2CB →+(x -1)AC →(0<x <1), ∵CB →=AB →-AC →,∴CM →=x 2AB →+(x2-1)AC →.∵CP →=CA →-P A →=-AC →+13AB →,且CM →=tCP →(0<t <1),∴x 2AB →+(x 2-1)AC →=t (-AC →+13AB →), ∴x 2=t 3且x 2-1=-t ,解得t =34,故选C. 13[答案] (-2,-1)[解析] 设点B 的坐标为(x ,y ),则有AB →=(x -2,y -3),BC →=(-x,1-y ),因为AB →=-2BC →,所以⎩⎪⎨⎪⎧x -2=2x ,y -3=-2(1-y ),解得x =-2,y =-1.14[答案] -2[解析] 如图,∵D 是BC 中点,将△ABC 补成平行四边形ABQC ,则Q 在AD 的延长线上,且|AQ |=2|AD |=2|DP |,∵P A →+BP →+CP →=BA →+CP →=0,∴BA →=PC →,又BA →=QC →,∴P 与Q 重合, 又∵AP →=λPD →=-2PD →,∴λ=-2.15[解析] (1)AB →=(x,1),CD →=(4,x ).∵AB →∥CD →,∴x 2-4=0,即x =±2.(2)当x =±2时,AB →∥CD →.当x =-2时,BC →=(6,-3),AB →=(-2,1), ∴AB →∥BC →.此时A 、B 、C 三点共线,从而,当x =-2时,A 、B 、C 、D 四点在同一条直线上. 但x =2时,A 、B 、C 、D 四点不共线.(理科)[解析] 依题意,由OP →=OA →+λa +λb , 得OP →-OA →=λ(a +b ), 即AP →=λ(AB →+AC →).如图,以AB ,AC 为邻边作平行四边形ABDC ,对角线交于O ,则AP →=λAD →,∴A 、P 、D 三点共线,即P 点的轨迹是AD 所在的直线,由图可知P 点轨迹必过△ABC 边BC 的中点(或△ABC 的重心).16[解析] (1)∵a 与b 共线,∴存在非零实数λ使得a =λb ,∴⎩⎪⎨⎪⎧ 2x -y +1=2λ,x +y -2=-2λ,⇒⎩⎪⎨⎪⎧ x =13,y ∈R .(2)由a ⊥b ⇒(2x -y +1)×2+(x +y -2)×(-2)=0⇒x -2y +3=0.①由|a |=|b |⇒(2x -y +1)2+(x +y -2)2=8.②由①②解得⎩⎪⎨⎪⎧ x =-1,y =1,或⎩⎨⎧x =53,y =73. ∴xy =-1或xy =359. 1[答案] D[解析] 解法一:设AC 的中点为G ,则OB →+OD →=b +d =a +c =OA →+OC →=2OG →,∴G 为BD 的中点,∴四边形ABCD 的两对角线互相平分,∴四边形ABCD 为平行四边形.解法二:AB →=OB →-OA →=b -a ,CD →=OD →-OC →=d -c =-(b -a )=-AB →,∴AB 綊CD ,∴四边形ABCD 为平行四边形.2[答案] D[解析] ∵A 、B 、C 三点共线,∴AB →与AC →共线,∴存在t ∈R ,使AB →=tAC →,∴λa +b =t (a +μb )=t a +tμb ,∵a ,b 不共线,∴⎩⎪⎨⎪⎧ λ=t ,1=tμ,即λμ=1. 3[解析] (1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),∴BD →=BC →+CD →=2a +8b +3(a -b )=5(a +b )=5AB →.∴AB →、BD →共线,又它们有公共点B ,∴A 、B 、D 三点共线.(2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ), ∴(k -λ)a =(λk -1)b .∵a 、b 是不共线的两个非零向量,∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1.4[解析] ∵OP →=OA →+tAB →=(1,2)+t (3,3) =(1+3t,2+3t ),∴P (1+3t,2+3t ).(1)∵P 在x 轴上,∴2+3t =0即t =-23. (2)由题意得⎩⎪⎨⎪⎧1+3t <0,2+3t >0,∴-23<t <-13. (3)∵AB →=(3,3),OP →=(1+3t,2+3t ). 若四边形ABPO 为平行四边形,则AB →=OP →, ∴⎩⎪⎨⎪⎧1+3t =3,2+3t =3,而上述方程组无解, ∴四边形ABPO 不可能为平行四边形.(4)∵OP →=(1+3t,2+3t ),设OP →=(x ,y ),则⎩⎪⎨⎪⎧ x =1+3t ,y =2+3t , ∴x -y +1=0为所求点P 的轨迹方程.。