西安交大光纤通信实验3
- 格式:ppt
- 大小:353.50 KB
- 文档页数:15
光纤通信实验报告实验1.1了解和掌握了光纤的结构、分类和特性参数.能够快速准确的区分单模或者多模类型的光纤。
实验1.21.关闭系统电源.将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为1550nm的光信道).注意收集好器件的防尘帽。
2.打开系统电源.液晶菜单选择“码型变换实验—CMI码PN”。
确认.即在P101铆孔输出32KHZ的15位m序列。
3.示波器测试P101铆孔波形.确认有相应的波形输出。
4.用信号连接线连接P101、P203两铆孔.示波器A通道测试TX1550测试点.确认有相应的波形输出.调节 W205 即改变送入光发端机信号(TX1550)幅度.最大不超过5V。
即将m序列电信号送入1550nm光发端机.并转换成光信号从TX1550法兰接口输出。
5.示波器B通道测试光收端机输出电信号的P204试点.看是否有与TX1550测试点一样或类似的信号波形。
6.按“返回”键.选择“码型变换实验—CMI码设置”并确认。
改变SW101拨码器设置(往上为1.往下为0).以同样的方法测试.验证P204和TX1550测试点波形是否跟着变化。
7.轻轻拧下TX1550或RX1550法兰接口的光跳线.观测P204测试点的示波器B通道是否还有信号波形?重新接好.此时是否出现信号波形。
8.以上实验都是在同一台实验箱上自环测试.如果要求两实验箱间进行双工通信.如何设计连接关系.设计出实验方案.并进行实验。
9.关闭系统电源.拆除各光器件并套好防尘帽。
实验2.11.关闭系统电源.按照图2.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模尾纤、光功率计连接好(TX1550通过尾纤接到光功率计).注意收集好器件的防尘帽。
2.打开系统电源.液晶菜单选择“码型变换实验-- CMI码设置” 确认.即在P101铆孔输出32KHZ的SW101拨码器设置的8比特周期性序列.如10001000。
3.示波器测试P101铆孔波形.确认有相应的波形输出。
光纤通信基础实验指导光纤通信是一种基于光传输的信息传输技术,它利用光纤作为传输媒介,通过光信号的传输实现高速、低衰减的数据通信。
在现代通信领域中,光纤通信已经成为一种重要的通信方式。
为了更好地理解光纤通信的原理和技术,进行实验是非常重要的。
实验一:光纤传输特性实验在这个实验中,我们将通过实验来了解光纤的传输特性,包括衰减特性和色散特性。
首先,准备一根光纤和光源。
将光源连接到光纤的一端,然后在光纤的另一端连接一个光检测器。
通过改变光源的强度和频率,观察光检测器接收到的光信号的变化,并记录实验数据。
通过这个实验,我们可以了解光纤传输的衰减特性和色散特性,以及光源强度和频率对光信号传输的影响。
实验二:光纤通信系统实验在这个实验中,我们将构建一个简单的光纤通信系统,包括光源、光纤和光检测器。
首先,连接光源和光检测器到光纤的两端,然后通过调节光源的强度和频率,发送一个光信号,并在光检测器端接收光信号。
记录实验数据并分析光信号的传输质量。
通过这个实验,我们可以了解光纤通信系统的工作原理和性能特点,以及光信号在光纤传输过程中的损耗和衰减情况。
实验三:光纤通信网络实验在这个实验中,我们将构建一个简单的光纤通信网络,包括多个光源、光纤和光检测器。
通过调节多个光源的强度和频率,实现多个光信号的传输和接收,并通过光纤通信网络传输数据。
记录实验数据并分析光信号在光纤通信网络中的传输效果。
通过这个实验,我们可以了解光纤通信网络的构建和数据传输原理,以及多个光信号在光纤通信网络中的同步传输和接收过程。
在这些实验中,我们可以通过实际操作和数据记录,深入了解光纤通信的基础知识和技术,为进一步学习和应用光纤通信提供基础支持。
希望通过这些实验,能够帮助大家更好地理解光纤通信的原理和应用。
前言1.实验总体目标光纤通信原理综合实验系统主要是为从事光纤通信专业的教学提供先进的实验手段,该设备中的系统功能电路组成、通信过程与实际设备近可能一致,并在此基础上增设特殊的测试环境,使学生通过实验能够比较容易的掌握光端机(电终端和光终端)组成的基本原理、关键技术以及常用技术指标测量方法,促进对光纤通信技术理论知识的掌握和理解。
⒉适用专业通信工程、电子信息⒊先修课程模拟电子、数字电子、通信原理、数字通信原理以及光纤通信原理⒋实验课时分配⒌在通信实验室完成实验,需要有光纤通信实验平台、光纤无源实验平台、电源、信号发生器以及示波器等基本仪器设备。
⒍实验总体要求实验前应该认真阅读实验指导书,明确实验目的,了解实验原理和内容,掌握实验步骤以及注意事项,做好实验记录,实验结束后对实验数据进行整理,对实验现象进行分析,并写出实验报告。
⒎本实验的重点、难点及教学方法建议在实验之前需要认真学习和理解该文件中所涉及到的电路和相关知识。
目录绪论实验系统概述 (1)实验一无源光器件特性测量 ..................................................... 错误!未定义书签。
实验二PDH终端呼叫处理通信系统综合实验............................ 错误!未定义书签。
实验三光纤通信链路连接和在线光信号监测实验 (36)附一:跳线器默认状态图附二:测试孔位置图绪论实验系统概述1.1 概述“光纤通信多功能综合实验系统”由光无源器件实验平台、模拟图像传输系统、计算机数据传输系统、光终端机、电终端机以及误码测试模块、OTDR功能等几大部分组成。
“光纤通信多功能综合实验系统”所涉及的技术在光无源器件实验平台有波分复用、扰模器、回波损耗、插入损耗等技术;模拟图像传输系统与计算机数据传输系统有模拟图像传输和计算机数据传输与接口等技术;在光终端机部分有:HDB3编译码、同步数据接口、数据扰码与解扰码、CMI编译码、5B6B编译码、误码检测、光终端定时和单芯双向光路传输、波分复用、OTDR/OCDMA等技术;在电终端机部分有:2/4线用户接口、DTMF检测、PCM编码、数字复接解复接(E1传输技术)和电终端定时技术等。
OptiSystem实验一、OptiSystem简介OptiSystem是一款创新的光通讯系统模拟软件包,它集设计、测试和优化各种类型宽带光网络物理层的虚拟光连接等功能于一身,从长距离通讯系统到LANS 和MANS都适用。
OptiSystem有一个基于实际光纤通讯系统模型的系统级模拟器,并具有强大的模拟环境和真实的器件和系统的分级定义。
它的性能可以通过附加的用户器件库和完整的界面进行扩展,从而成为一系列广泛使用的工具。
全面的图形用户界面提供光子器件设计、器件模型和演示。
丰富的有源和无源器件库,包括实际的、波长相关的参数。
参数扫描和优化允许用户研究特定的器件技术参数对系统性能的影响。
OptiSystem满足了急速发展的光子市场对于一个强有力而易于使用的光系统设计工具的需求,深受系统设计者、光通信工程师、研究人员的青睐。
OptiSystem软件允许对物理层任何类型的虚拟光连接和宽带光网络的分析,从远距离通讯到MANS和LANS都适用。
它可广泛应用下列场合:1.物理层的器件级到系统级的光通讯系统设计;2.CATV或者TDM⁄WDM网络设计;3.SONET⁄SDH的环形设计;4.传输装置、信道、放大器和接收器的设计;5.色散图设计;6.不同接受模式下误码率(BER)和系统代价(Penalty)的评估;7.放大系统的BER和连接预算计算。
实验1 OptiSystem快速入门:以“激光外调制”为例一、实验目的1、掌握软件的简单操作2、了解软件的元件库3、掌握建立新的project(新的工作界面)4、掌握搭建系统:将元件从元件库中拖入project、连线、搭建系统5、掌握设置参数6、掌握软件的运行、观察结果、导出数据二、实验过程1.建立一个新文件。
(File>New)2.将光学器件从数据库里拖入主窗口进行布局.3.光标移至有锁链图标出现时,进行连线。
(如图1所示)4.设置连续波激光器参数。
(1)点击frequency>mode, 出现下拉菜单,选中script。
光纤通信实验的步骤与要点光纤通信是一种基于光传输信号的通信方式,被广泛应用于现代通信领域。
为了深入理解光纤通信的原理和技术,并能够进行相关的实验,本文将介绍光纤通信实验的一般步骤与要点。
一、实验准备在进行光纤通信实验之前,首先需要进行一些准备工作。
如准备光纤通信设备和实验器材、了解相关的实验原理和技术、熟悉实验装置的使用方法等。
同时,实验者还需了解相关的安全知识,例如在实验过程中如何正确使用光纤设备、如何避免光纤受损等。
二、实验步骤与要点1. 光纤的连接与固定在进行光纤通信实验时,首先需要将光纤进行连接和固定。
连接光纤的目的是实现信号的传输,而固定光纤则是为了保护光纤的完整性和稳定性。
在连接光纤时,要确保光纤的端面光洁,避免在接触处产生反射或散射。
固定光纤时,可以使用专用的光纤固定装置或者适当的固定夹具。
同时,要注意避免光纤受到外界的机械拉伸或扭曲,以免影响信号的传输效果。
2. 光源与检测器的连接光源与检测器是光纤通信实验中必不可少的组成部分。
光源可以是激光器、LED等,而检测器可以是光电二极管、光电倍增管等。
在将光源与检测器连接时,要确保连接的稳定性和正确性。
同时,要根据实验的要求选择合适的光源和检测器,并将其连接至实验装置中。
3. 光纤通信实验的参数设置在进行光纤通信实验过程中,需要对一些参数进行设置,以确保实验的顺利进行。
其中,包括发送功率、接收灵敏度、波长等参数的设置。
这些参数的设置要根据实验的特点和要求进行调整,以达到最佳的实验效果。
4. 光纤通信的探测与调试在光纤通信实验中,常常需要进行信号的探测与调试,以确保信号的稳定传输和正确接收。
这一步骤包括对发送端和接收端的光功率进行检测和调整、对光纤通信系统进行优化等。
通过探测与调试,可以及时发现并解决光纤通信中可能遇到的问题,从而保证实验的准确性和可靠性。
5. 光纤通信实验的数据分析与结果处理在进行光纤通信实验后,需要对实验数据进行分析和结果处理。
光纤通信实验报告
实验目的:通过实际操作,了解光纤通信的基本原理和技术特点,
掌握光纤通信系统的组成和工作过程,以及光纤连接的方法。
实验仪器:光纤通信实验箱、光纤收发器、光纤跳线、示波器、光
功率计等。
实验步骤:
1. 搭建光纤通信实验箱,将光纤收发器连接至实验箱主机。
2. 用光纤跳线将实验箱主机与光功率计连接,以便实时监测光功率
的变化。
3. 调节实验箱主机的光发射功率和接收灵敏度,使其达到最佳状态。
4. 在示波器上观察传输信号的波形,分析信号的稳定性和传输质量。
5. 采用不同的光纤连接方法,比较它们对信号传输的影响,验证光
纤连接的重要性。
实验结果与分析:
经过实验操作,我们可以明显地感受到光纤通信系统的高速传输、
低损耗、抗干扰等优点。
同时,我们也发现光纤连接的质量对信号传
输有着至关重要的影响,需要谨慎处理光纤的清洁、固定和连接方式,以确保信号传输的稳定性和可靠性。
实验总结:
通过本次实验,我们深入了解了光纤通信的基本原理和技术特点,掌握了光纤通信系统的组成和工作过程,以及光纤连接的方法。
同时也加深了对光纤通信技术在现代通信领域中的广泛应用和重要性的认识,为我们今后的学习和研究打下了坚实的基础。
希望通过持续的实践和探索,我们能够进一步提升对光纤通信技术的理解和应用水平,为推动通信技术的发展做出更大的贡献。
实验1 电光、光电转换传输实验一、实验目的1.了解本实验系统的基本组成结构;2.初步了解完整光通信的基本组成结构;3.掌握光通信的通信原理。
二、实验仪器1.光纤通信实验箱2.20M双踪示波器3.FC-FC单模尾纤 1根4.信号连接线 2根三、基本原理本实验系统重要由两大部分组成:电端机部分、光信道部分。
电端机又分为电信号发射和电信号接受两子部分,光信道又可分为光发射端机、光纤、光接受端机三个子部分。
实验系统基本组成结构(光通信)如下图所示:图1.2.1 实验系统基本组成结构在本实验系统中,电发射部分可以是M 序列,可以是各种线路编码(CMI 、5B6B 、5B1P 等),也可以是语音编码信号或者视频信号等,光信道可以是1550nmLD+单模光纤组成,可以是1310nm 激光/探测器组成,也可以是850nmLED+多模光纤(选配)组成。
本实验系统中提供的1550nmLD 光端机是一体化结构,光端机涉及光发射端机TX (集成了调制电路、自动功率控制电路、激光管、自动温度控制等),光接受端机RX (集成了光检测器、放大器、均衡和再生电路)。
其数字电信号的输入输出口,都由铜铆孔开放出来,可自行连接。
一体化数字光端机的结构示意图如下:图1.2.2 一体化数字光端机结构示意图四、实验环节1. 关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为1550nm 的光信道),注意收集好器件的防尘帽。
2. 打开系统电源,液晶菜单选择“码型变换实验—CMI 码PN ”。
确认,即在P101铆孔输出32KHZ 的15位m 序列。
3. 示波器测试P101铆孔波形,确认有相应的波形输出。
4. 用信号连接线连接P101、P203两铆孔,示波器A 通道测试TX1550测试点,确认有相应的波形输出,调节W205即改变送入光发端机信号(TX1550)幅度,最大不超过P204光接受输入光发射输出5V。
即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接口输出。
光纤通信实验报告汇总1.引言光纤通信是一种高速、大容量、远距离传输信息的通信方式。
光纤通信实验通过实践掌握了光纤通信的原理、设备以及信号传输等关键技术。
本报告旨在总结光纤通信实验的步骤、结果及对实验的反思。
2.实验目的本次光纤通信实验的目的是掌握光纤通信的基本原理,了解光纤通信系统的组成部分,并进行光纤传输实验。
3.实验步骤a)实验材料准备:光源、光电探测器、衰减器、光纤及相关连接线等。
b)搭建实验装置:按照实验要求连接光纤通信系统的各个部分,并保证连接正确稳定。
c)实验操作:利用光源发出光信号,通过光纤将信号传输到接收端。
调整衰减器来模拟光信号传输中的衰减情况,通过光电探测器接收并解析传输的信号。
d)数据记录:记录不同衰减情况下的传输距离、信号强度以及误码率等实验数据。
e)数据分析:根据实验数据,分析光信号传输中的衰减情况、传输距离对信号强度的影响以及误码率的变化。
4.实验结果实验结果表明,在光信号传输中,随着传输距离的增加,信号强度会逐渐减弱,同时误码率也会增加。
当光信号经过较长的传输距离后,信号强度降低至一定程度,误码率显著增加,导致数据传输质量下降。
实验结果与光纤通信中的衰减与失真现象相符。
5.实验反思通过本次光纤通信实验,我对光纤通信的原理、设备及信号传输等关键技术有了更深入的了解。
同时,我也体会到了光信号传输中的衰减现象对数据传输质量的影响。
在今后的实验中,我会更加注意实验操作的准确性,确保实验结果的可靠性。
同时,我还将学习更多有关光纤通信的知识,不断提升自己的实验技能。
6.总结光纤通信实验是一项重要且有趣的实验,通过实践掌握了光纤通信的基本原理与技术。
在实验过程中,我们搭建了光纤通信系统,并进行了光信号传输的相关实验。
实验结果表明,在光信号传输过程中传输距离的增加会造成信号强度减弱以及误码率的增加。
通过本次实验,我们不仅对光纤通信有了更深入的了解,还培养了团队合作能力和实验操作技能。
实验一半导体激光器P-I特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率三、实验仪器1、ZY12OFCom23BH1型光纤通信原理实验箱1台2、FC接口光功率计1台3、FC-FC单模光跳线 1根4、万用表1台5、连接导线 20根四、实验原理光源是把电信号变成光信号的器件,在光纤通信中占有重要的地位。
性能好、寿命长、使用方便的光源是保证光纤通信可靠工作的关键。
光纤通信对光源的基本要求有如下几个方面:首先,光源发光的峰值波长应在光纤的低损耗窗口之内,要求材料色散较小。
其次,光源输出功率必须足够大,入纤功率一般应在10微瓦到数毫瓦之间。
第三,光源应具有高度可靠性,工作寿命至少在10万小时以上才能满足光纤通信工程的需要。
第四,光源的输出光谱不能太宽以利于传输高速脉冲。
第五,光源应便于调制,调制速率应能适应系统的要求。
第六,电—光转换效率不应太低,否则会导致器件严重发热和缩短寿命。
第七,光源应该省电,光源的体积、重量不应太大。
作为光源,可以采用半导体激光二极管(LD,又称半导体激光器)、半导体发光二极管(LED)、固体激光器和气体激光器等。
但是对于光纤通信工程来说,除了少数测试设备与工程仪表之外,几乎无例外地采用半导体激光器和半导体发光二极管。
本实验简要地介绍半导体激光器,若需详细了解发光原理,请参看各教材。
半导体激光二极管(LD)或简称半导体激光器,它通过受激辐射发光,是一种阈值器件。
处于高能级E2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E1,这个过程称为光的受激辐射,所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。
10.1 实验目的1)通过光纤通信系统的实验,加深理解光纤通信系统的基本工作原理。
2)熟悉光纤通信设备常用业务2Mbps通道的误码特性要求以及测试方法。
3)了解电话通话质量的高低与光信通信业务误码率之间的关系。
4)掌握数字光纤系统中继距离受损耗限制时的中继距离测算。
10.2 实验内容1)学习光纤实验系统基本原理,熟悉该系统光、电接口的连接方法及注意事项。
2)理解误码测试指标要求,完成2Mbps误码测试。
3)通过正确连接光纤实验系统,完成通话实验。
4)测试误码率变化时的通话效果,了解电话通话质量与误码率之间的关系。
5)测算数字光纤通信实验系统受损耗限制时的中继距离。
10.3 实验器材1)光纤数字通信实验系统 1套2)AV2498A型光纤多用表 1台3)AV5232C 2Mbps误码测试仪 1部4)双FC法兰连接器 1只5)10dB固定光衰减器 1只6)2米FC/PC接头尾纤 2根7)BNC同轴电缆 2根8)电话机 2部9)小盒子 1个10.4 基本原理1)数字光纤通信系统面板图数字光纤实验系统面板与侧面板图分别见附图10-1与附图10-2。
2)数字光纤实验系统功能介绍该实验系统主要由音频接口单元、电信交换单元、数字复/分接单元、HDB3接口单元、线路编/译码单元及光发送/接收单元组成。
系统的功能框图见图10-3。
其中:(1)音频接口单元由二/四线转换电路和模数转换电路组成。
二/四线转换电路主要完成二、四线音频话音信号电平之间的相互转换。
模数转换电路主要完成模拟话音信号(通带:0——3.4kHz)与数字PCM编码信号之间的相互转换。
(2)电信交换单元由交换矩阵电路组成,主要完成话音信号的近端和远端交换功能。
近端指无需外部接线(如光纤连接),实验系统的两部电话通过内部交换可以拨打对方近端号码(812,814);远端指话音转换成数字信号需要经过外部传输后,实验系统的两部电话才可以相互拨打对方的远端号码(816,818)。