最新-高中数学教学论文 几何概型知识与常见题型梳理 精品
- 格式:doc
- 大小:310.51 KB
- 文档页数:4
考点46几何概型(1)了解随机数的意义,能运用模拟方法估计概率. (2)了解几何概型的意义.一、几何概型 1.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。
2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个. (2)每个基本事件发生的可能性相等. 3.几何概型的概率计算公式.4.必记结论(1)与长度有关的几何概型,其基本事件只与一个连续的变量有关;(2)与面积有关的几何概型,其基本事件与两个连续的变量有关,若已知图形不明确,可将两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决问题; (3)与体积有关的几何概型。
二、随机模拟用计算器或计算机模拟试验的方法为随机模拟方法或蒙特卡罗方法.()P A A 构成事件的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)这个方法的基本步骤是:(1)用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义; (2)统计代表某意义的随机数的个数M 和总的随机数个数N ; (3)计算频率作为所求概率的近似值.注意,用随机模拟方法得到的结果只能是概率的近似值或估计值,每次试验得到的结果可能不同,而所求事件的概率是一个确定的数值。
考向一 与长度有关的几何概型求解与长度有关的几何概型的问题的关键是将所有基本事件及事件包含的基本事件转化为相应长度,进而求解.此处的“长度”可以是线段的长短,也可以是时间的长短等。
注意:在寻找事件发生对应的区域时,确定边界点是问题的关键,但边界点能否取到不会影响事件的概率.典例1某学校星期一至星期五每天上午都安排五节课,每节课的时间为40分钟.第一节课上课的时间为7:50~8:30,课间休息10分钟.某同学请假后返校,若他在8:50~9:30之间到达教室,则他听第二节课的时间不少于10分钟的概率是A .B .C .D .【答案】A故所求概率为,选A .()n M f A N=AA A12132335201402=典例2 在区间上随机抽取一个数,则事件“"发生的概率为A .B .C .D .【答案】A【解析】区间的长度为2,由可得,所以所求事件的概率为P =.1.公共汽车在7:00到7:20内随机到达某站,李老师从家里赶往学校上班,7:15到达该站,则她能等到公共汽车的概率为A .B .C .D .2.在长度为10的线段AB 上任取一点C (不同于A ,B ),则以AC ,BC 为半径的圆的面积之和小于58π的概率为A .B .C .D .考向二与面积有关的几何概型求解与面积有关的几何概型的问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式,从而求得随机事件的概率.必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.“面积比”是求几何概型的一种重要的方法.[]0,2x1211l o g 12x ⎛⎫-≤+≤ ⎪⎝⎭34231314[]0,21211l o g 12x ⎛⎫-≤+≤ ⎪⎝⎭302x ≤≤33224-=13231434典例3在如图所示的扇形AOB中,∠AOB=,半圆C切AO于点D,与圆弧AB切于点B,若随机向扇形AOB内投一点,则该点落在半圆C外的概率为A.B.C.D.【答案】AS’=×R2=,则所求概率P=1-=1-,故选A.率是________。
几何概型什么是几何概型?几何概型是数学中一个重要的概念,它涉及到几何图形的分类和属性描述。
通过几何概型,我们可以更好地理解和研究各种几何图形之间的关系,并推导出它们的性质和定理。
几何概型的基本元素在几何概型中,有一些基本的元素是不可或缺的,它们包括:1.点:点是几何图形的基本单位,通常用大写字母表示,例如A、B、C等。
2.直线:直线是由无数个点组成的无限延伸的对象,通常用一个小写字母表示,例如l、m、n等。
3.线段:线段是直线上两个点之间的有限长度部分,通常用两个点的名称表示,例如AB、CD等。
4.角:角是由两条射线共享一个端点组成的图形,通常用大写字母表示,例如∠ABC。
5.圆:圆是由一条封闭的曲线所围成的图形,通常用大写字母表示,例如O。
这些基本元素是几何概型中最基本的构成部分,其他更复杂的几何图形都可以由它们组合而成。
几何概型的分类根据几何图形的性质和特点,几何概型可以分为不同的分类。
以下是一些常见的几何概型分类:1.平面几何:平面几何是研究二维几何图形的概型,它考虑的是在一个平面内的图形和属性。
例如,研究点、线段、角以及平行、垂直等关系。
2.立体几何:立体几何是研究三维几何图形的概型,它考虑的是空间内的图形和属性。
例如,研究三角形、立方体、球体等图形的体积、表面积等。
3.解析几何:解析几何是利用数学的代数方法来研究几何图形的概型,它将几何问题转化为代数方程的问题。
例如,通过坐标系和方程来描述和分析几何图形。
4.非欧几何:非欧几何是指与欧氏几何不同的几何体系,它研究的是不满足欧氏公设的几何图形。
例如,研究超几何、椭圆几何、双曲几何等。
这些不同的几何概型分类,为我们研究和理解各种几何图形提供了不同的视角和方法。
几何概型的应用领域几何概型在众多学科和领域中都有广泛应用,以下是一些典型的应用领域:1.建筑设计:在建筑设计中,几何概型被广泛用于规划建筑物的形状、结构和布局。
通过几何概型,建筑师可以分析和优化建筑物的几何属性,确保其稳定性和美观性。
几何概型知识与常有题型梳理几何概型和古典概型是随机概率中两类主要模型,是概率观察中的要点,下边就几何概型的知识与常有题型做一梳理,以期能使读者对于这一知识点做到脉络清楚,头头是道。
一基本知识解析1.几何概型的定义:假如每个事件发生的概率只与构成该事件地区的长度(面积或体积)成比率,则称这样的概率模型为几何概率模型,简称几何概型。
2.几何概型的概率公式:构成事件 A的地区长度(面积或体积)P(A)=的地区长度(面积或体;试验的所有结果所构成积)3.几何概型的特色:1)试验中所有可能出现的结果(基本领件)有无穷多个;2)每个基本事件出现的可能性相等.4.几何概型与古典概型的比较:一方面,古典概型拥有有限性,即试验结果是可数的;而几何概型则是在试验中出现无穷多个结果,且与事件的地区长度(或面积、体积等)相关,即试验结果拥有无穷性,是不行数的。
这是两者的不一样之处;另一方面,古典概型与几何概型的试验结果都拥有等可能性,这是两者的共性。
经过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型拥有无穷性和等可能性两个特色,无穷性是指在一次试验中,基本领件的个数能够是无穷的,这是划分几何概型与古典概型的要点所在;等可能性是指每一个基本领件发生的可能性是均等的,这是解题的基本前提。
所以,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比率法”,即随机事件 A 的概率能够用“事件 A 包含的基本领件所占的图形的长度、面积(体积)和角度等”与“试验的基本领件所占总长度、面积(体积)和角度等”之比来表示。
下边就几何概型常有种类题作一概括梳理。
二常有题型梳理1.长度之比种类例 1. 小欲在国庆六十周年以后从某车站搭车出门观察,已知该站发往各站的客车均每小时一班,求小等车时间不多于10 分钟的概率.例 2在长为 12cm 的线段 AB 上任取一点 M,并以线段 AM 为边作正方形,求这个正方形的2与 81cm 2面积介于 36cm之间的概率.2.面积、体积之比种类例 3. ( 08 高考 6) .在平面直角坐标系xoy 中,设D是横坐标与纵坐标的绝对值均不大于 2 的点构成的地区, E 是到原点的距离不大于 1 的点构成的地区,向 D 中任意投一点,则落入 E 中的概率为。
高中数学教学论文--几何概型学习中需重视的几个问题几何概型是高中数学新课程的新增内容,学生对这部分内容存在一些误解,对几何概型存在似是而非,模棱两可的感觉,在解题的过程中,部分同学很难找到题目的突破口。
如何引导学生学好这部分内容,值得思考。
一:准确把握几何概型的特征几何概型有两个基本特征:一是无限性,试验中所有出现的结果(基本事件)有无限个,二是等可能性,每个结果出现的可能性(概率)是均等的。
题一:在等腰直角三角形ABC 中,过直角顶点C 在ACB ∠内作射线CM 与线段AB 交于M,则AM<AC 的概率是() A:12B:C: 1 D: 34本题学生普遍存在以下两种不同的解法。
解法一:如图1所示,在等腰直角三角形ABC 中,C ∠为直角。
设过顶点C 的射线CN 与AB 交于点N ,使得AN=AC,则当点M 落在线段AN (不包括端点N )时,有AM<AC.记{}C CM Ω=过顶点作射线,使AM<AC ,由几何概型的概率计算公式,()2AN p AB Ω==。
解法二:如图1所示,过直角顶点C 的射线CN 与AB 交于点N ,使得AN=AC 。
由C 为起点作射线CM ,则射线CM 落在ACB ∠,内任一位置是随机的。
记{}C CM Ω=过顶点作射线,使AM<AC ,则事件Ω构成的区域是ACN ∠,故67.53()904ACN p ACB ∠Ω===∠。
上述两种解法在解答的过程中,都用到了几何概型的概率计算公式,却得到不同的答案,原因在哪呢?上述两种解法所考虑的对象不同,解法一考虑的对象是点M ,而解法二考虑的对象是图2 图1图3射线CM,由题意我们知道,射线CM 的变化引起了点M 的变化。
现假设射线CM 从CB 开始顺时针匀速转动到CA (如图2所示),则射线CM 落在ACB ∠内的任一位置是等可能的。
但在这个过程中,M 点落在线段AB 上的任一位置却不是等可能的。
事实上,我们假设由C 为起点的射线转过相同的角度与线段AB 分别交于点,N M ,如图3所示,则有BCN NCM ∠=∠,但BN MN >。
几何概型常见题型归类作者:杨爱平来源:《中学教学参考·理科版》2010年第03期几何概型的特点是实验的基本事件是无限多个,每一个基本事件发生的可能性是相等的,并且分布是均匀的.处理几何概型问题不仅要明确概念,掌握公式,更主要的是及时把问题转化为相应的几何图形,利用图形的几何度量来求随机事件的概率.正确选择恰当的几何概型决定了问题解决的成败,下面是常见的几何概型问题.一、与角度有关的几何概型【例1】如图1所示,设A为圆周上一定点,在圆周上等可能地任取一点B与A连结,求弦长超过半径的2倍的概率.分析:在圆周上任取一点是随机的且是等可能的,符合几何概型的条件.关键是选择恰当的几何量,确定好事件发生的分界点.图1解:设圆的半径为r,当弦长恰好为2r时,它所对的圆心角恰为90°,则要使弦长大于2r,圆心角必大于90°且小于270°.所以所求事件的概率为270°-90°360°=12.点评:本题是一个与角度有关的几何概型,关键是建立好几何图形与概率问题的联系.二、与长度有关的问题【例2】如图2所示,在面积为S的△ABC的边AB上任取一点P.则△PBC的面积大于S4的概率是().图2A.14B.12C.34D.23分析:如图2所示,设△ABC的BC边上的高为AD,在AB边上任取一点P,由点P作PE⊥BC,垂足为E,则易知当PE>14AD时,△PBC的面积大于S4,即当BPBA>14时,△PBC的面积大于S4.由几何概型的公式,得P(△PBC的面积大于S4)=341=34.故答案选C.点评:解决本题的关键是将面积的比转化为长度型的几何概率问题.三、与面积有关的问题图3【例3】如图3所示,以正方形ABCD的边长为直径作半圆,重叠部分为花瓣.现在向该正方形区域内随机地投掷一飞镖,假定飞镖落在正方形区域的每一点是等可能,并且飞镖一定落在正方形区域内.求飞镖落在花瓣内的概率.分析:飞镖落在正方形区域的每一点是等可能,符合几何概型的条件.落在每一个点都可以看成一个基本事件,此时所有的基本事件组合起来是面积,故应转化为用面积计算.花瓣正方形=12πr2×4-(2r)2(2r)2=π-22.故飞镖落在花瓣内的概率为π-22.点评:此题是用面积计算,关键是正确算出花瓣面积.四、与体积有关的问题【例4】一个球形容器的半径为3cm,里面装有纯净水,因为实验人员不小心混入了一个病毒,从中任取1mL水,含有病毒的概率是多少?分析:病毒在水中的分布可以看作是随机的,从中取得1mL水可看做构成事件的区域,球形容器内的水的体积可看做实验的所有结果构成的区域,可用体积比公式计算其概率.解析:根据题意,得球形容器内的水的体积为所以从中任取1mL水,含有病毒的概率为136π≈0.00884.点评:用体积计算概率时,要注意所求概率与取出体积的关系.事实上,水中含有病毒的概率只与杯中水的体积有关,因而只需要求得取出水样的体积与原有水的体积的比即可.图4巩固练习:1.如图4所示,在平面直角坐标系内,射线OT是60°角的终边,任作一条射线OA,求射线OA落在∠xOT内的概率.图52.一只蚂蚁在如图5所示的地板砖(除颜色不同外,其余都相同)上爬来爬去,求它最后停在阴影地板砖上的概率.3.某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).4.在1L高产夏小麦种子里面混入了一粒带麦锈病的种子,从中随机取出10mL,含有麦锈病种子的概率是多少?(责任编辑金铃)。
几何概型【知识梳理】1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个. (2)每个基本事件出现的可能性相等. 3.几何概型概率公式在几何概型中,事件A 的概率的计算公式为: P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).【常考题型】题型一、与长度有关的几何概型【例1】 (1)在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________.[解析] ∵区间[-1,2]的长度为3,由|x |≤1得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x ,|x |≤1的概率P =23.[答案] 23(2)某汽车站每隔15 min 有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过10 min 的概率.[解] 设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,则线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T =5,T 2T =10,如图所示.记“等车时间超过10 min ”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上(不含端点)时,事件A 发生.∴P (A )=T 1T 的长度T 1T 2的长度=515=13,即该乘客等车时间超过10 min 的概率是13.【类题通法】1.几何概型概率问题的一般步骤(1)选择适当的观察角度(一定要注意观察角度的等可能性);(2)把基本事件转化为与之对应的区域D ; (3)把所求随机事件A 转化为与之对应的区域I ; (4)利用概率公式计算.2.与长度有关的几何概型问题的计算公式如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为: P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.【对点训练】一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮; (2)黄灯亮; (3)不是红灯亮.解:在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型. (1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35,或P =1-P (红灯亮)=1-25=35.题型二、与面积有关的几何概型【例2】 (1)有四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖,他应当选择的游戏盘为( )(2)ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4C.π8D .1-π8[解析] (1)根据几何概型的面积比,A 中中奖概率为38,B 游戏盘的中奖概率为13,C 游戏盘的中奖概率为(2r )2-πr 2(2r )2=4-π4,D 游戏盘的中奖概率为r 2πr 2=1π,故A 游戏盘的中奖概率最大.(2)长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2÷2=π4,取到的点到O 的距离大于1的概率为1-π4.[答案] (1)A (2)B 【类题通法】1.与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为: P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.2.解与面积相关的几何概型问题的三个关键点 (1)根据题意确认是否是与面积有关的几何概型问题;(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积; (3)套用公式,从而求得随机事件的概率. 【对点训练】在平面直角坐标系xOy 中,设M 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向M 中随机投一点,则所投的点落入E 中的概率是________.解析:如图,区域M 表示边长为4的正方形ABCD 的内部(含边界),区域E 表示单位圆及其内部,因此P =π×124×4=π16.答案:π16题型三、与角度有关的几何概型【例3】 在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M .求AM <AC 的概率.[解] 如图,在AB 上取AC ′=AC ,连接CC ′,则∠ACC ′=180°-45°2=67.5°.设A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫在∠ACB 内部任意作一条射线CM ,与线段AB 交于点M ,AM <AC ,则所有可能结果的区域角度为90°,事件A 的区域角度为67.5°,∴P (A )=67.5°90°=34.【类题通法】与角度有关的几何概型概率的求法(1)如果试验的所有结果构成的区域的几何度量可用角度表示,则其概率的计算公式为 P (A )=构成事件A 的区域角度试验的全部结果构成的区域角度.(2)解决此类问题的关键是事件A 在区域角度内是均匀的,进而判定事件的发生是等可能的.【对点训练】如图,在平面直角坐标系中,射线OT 为60°角的终边,在任意角集合中任取一个角,则该角终边落在∠xOT 内的概率是( )A.16B.23C.13D.160解析:选A 如图,∵在任意角集合中任取一个角,则该角终边落在∠xOT内对应的角度为60度,而整个角集合对应的角度为圆周角,∴该角终边落在∠xOT 内的概率P =60360=16,故选A. 题型四、与体积有关的几何概型【例4】 (1)在一球内有一棱长为1的内接正方体,一点在球内运动,则此点落在正方体内部的概率为( )A.6πB.32πC.3πD.233π[解析] 由题意可得正方体的体积为V 1=1.又球的直径是正方体的对角线,故球的半径R =32.球的体积V 2=43πR 3=32π.这是一个几何概型,则此点落在正方体内的概率为P =V 1V 2=132π=233π. [答案] D(2)已知正方体ABCD -A 1B 1C 1D 1内有一个内切球O ,则在正方体ABCD -A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是________.[解析] 设正方体的棱长为2.正方体ABCD -A 1B 1C 1D 1的内切球O 的半径是其棱长的一半,其体积为V 1=43π×13=4π3.则点M 在球O 内的概率是4π323=π6.[答案] π6【类题通法】与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为 P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积.【对点训练】有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,求点P 到点O 的距离大于1的概率.解:圆柱的体积V 圆柱=π×12×2=2π是试验的全部结果构成的区域体积.以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×4π3×13=2π3,则构成事件A “P到点O 的距离大于1”的区域体积为2π-2π3=4π3,由几何概型的概率公式得P (A )=4π32π=23.【练习反馈】1.下列概率模型中,几何概型的个数为( ) ①从区间[-10,10]内任取出一个数,求取到1的概率;②从区间[-10,10]内任取出一个数,求取到绝对值不大于1的数的概率; ③从区间[-10,10]内任取出一个整数,求取到大于1而小于2的数的概率;④向一个边长为4 cm 的正方形ABCD 内投一点P ,求点P 离中心不超过1 cm 的概率. A .1 B .2 C .3D .4解析:选B ①不是几何概型,虽然区间[-10,10]有无限多个点,但取到“1”只是一个数字,不能构成区域长度;②是几何概型,因为区间[-10,10]和[-1,1]上有无限多个数可取(满足无限性),且在这两个区间内每个数被取到的机会是相等的(满足等可能性);③不是几何概型,因为区间[-10,10]上的整数只有21个(是有限的),不满足无限性特征;④是几何概型,因为在边长为4 cm 的正方形和半径为1 cm 的圆内均有无数多个点,且这两个区域内的任何一个点都有相等可能被投到,故满足无限性和等可能性.2.如图所示,在一个边长为a ,b (a >b >0)的矩形内画一个梯形,梯形上、下底长分别为a 3与a2,高为b .向该矩形内随机地投一点,则所投的点落在梯形内部的概率为( )A.112B.14C.512D.712解析:选C S 矩形=ab ,S 梯形=12(13a +12a )b =512ab .故所投的点在梯形内部的概率为P =S 梯形S 矩形=512ab ab =512.3.方程x 2+x +n =0(n ∈(0,1))有实根的概率为________解析:由于方程x 2+x +n =0(n ∈(0,1))有实根,∴Δ≥0,即1-4n ≥0,∴n ≤14,又n ∈(0,1),∴有实根的概率为P =141-0=14.答案:144.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为________.解析:大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型.设取出2毫升水样中有大肠杆菌为事件A ,则事件A 构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P (A )=2400=0.005.答案:0.0055.已知一只蚂蚁在边长为4的正三角形内爬行,求此蚂蚁到三角形三个顶点的距离均超过1的概率.解:设正三角形ABC 的边长为4,其面积为4 3.分别以A ,B ,C 为圆心,1为半径在△ABC 中作扇形,除去三个扇形剩下的部分即表示蚂蚁距三角形三个顶点的距离均超过1的区域,其面积为43-3×12×π3×12=43-π2,故所求概率P =43-π243=1- 3 π24.。
几何概型考纲解读 1.根据随机数的意义,用模拟方法估计生活中的概率问题;2.根据几何概型的意义,运用几何度量求概率;3.根据几何概型,估计几何度量.[基础梳理]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)无限性:试验中所有可能出现的结果(基本事件)有无限多个. (2)等可能性:试验结果在每一个区域内均匀分布. 3.几何概型的概率公式 P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).[三基自测]1.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )答案:A2.已知A ={(x ,y )|-1≤x ≤1,0≤y ≤2},B ={}(x ,y )|1-x 2≤y .若在区域A 中随机地扔一粒豆子,则该豆子落在区域B 中的概率为( )A .1-π8B.π4C.π4-1 D.π8答案:A3.在区间[-2,3]上随机选取一个数X ,则 X ≤1的概率为( ) A.45 B.35 C.25 D.15 答案:B4.(必修3·3.3例1改编)在[0,60]上任取一个数,则x ≥50的概率为________. 答案:165.(2017·高考全国卷Ⅰ改编)求在半径为r 的圆内随机撒一粒黄豆,它落在圆内接等腰直角三角形内的概率.答案:1π考点一 与长度型有关的几何概型|方法突破命题点1 与线段长度有关的几何概型[例1] (2018·长春模拟)已知线段AC =16 cm ,先截取AB =4 cm 作为长方体的高,再将线段BC 任意分成两段作为长方体的长和宽,则长方体的体积超过128 cm 3的概率为________.[解析] 设长方体的长为x ,宽为(12-x ), 由4x (12-x )>128,得x 2-12x +32<0, ∴4<x <8,即在线段BC 内,截取点D , 满足BD ∈(4,8),其概率为8-412=13.[答案] 13命题点2 与角度有关的几何概型[例2] 如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.[解析] 如题图,因为射线OA 在坐标系内是等可能分布的,所以OA 落在∠yOT 内的概率为60360=16.[答案] 16命题点3 与时间有关的几何概型[例3] (2016·高考全国卷Ⅰ改编)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是________.[解析] 由题意得图:由图得等车时间不超过10分钟的概率为12.[答案] 12命题点4 与不等式有关的几何概型[例4] 在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.[解析] 方程x 2+2px +3p -2=0有两个负根x 1,x 2,则⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)>0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p <1或p >2.又因为p ∈[0,5],根据几何概型的概率计算公式可知 方程x 2+2px +3p -2=0有两个负根的概率为 P =1-23+5-25=23.[答案]23[方法提升][母题变式]1.将例1改为在长为12 cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20 cm 2的概率为( )A.16B.13C.23D.45[解析] 设AC =x ,则BC =12-x (0<x <12),又矩形面积S =x (12-x )>20,∴x 2-12x +20<0,解得2<x <10,∴所求概率为10-212=23.[答案] C2.将例2改为:如图,M 是半径为R 的圆周上一个定点,在圆周上等可能的任取一点N ,连接MN ,则弦MN 的长度超过2R 的概率是( )A.15 B.14 C.13D.12解析:由题意知,当MN =2R 时,∠MON =π2,所以所求概率为2×π22×π=12.答案:D3.将例3改为:一个路口的红绿灯,红灯的时间为30 s ,黄灯的时间为5 s ,绿灯的时间为40 s ,当某人到达路口时看见的是红灯的概率是( )A.15 B.25 C.35D.45解析:设事件A 表示“某人到达路口时看见的是红灯”,则事件A 对应30 s 的时间长度,而路口红绿灯亮的一个周期为30+5+40=75(s)的时间长度.根据几何概型的概率公式可得,事件A 发生的概率P (A )=3075=25.答案:B4.若例4的条件“两个负根”变为“无实根”,则结果如何? 解析:由条件知Δ=4p 2-4(3p -2)<0,解得:1<p <2, 所以没有实根的概率为P =2-15=15.答案:15考点二 与面积有关的几何概型及模拟试验|模型突破[例5] (1)已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4.记函数f (x )满足条件⎩⎪⎨⎪⎧f (2)≤12,f (-2)≤4为事件A ,则事件A 发生的概率为( )A.14 B.58C.12 D.38(2)(2018·石家庄模拟)在区间[0,1]上任取两个数,则这两个数之和小于65的概率是() A.1225 B.1625C.1725 D.1825(3)在边长为2的正方形ABCD内部任取一点M,则满足∠AMB>90°的概率为________.[解析](1)由题意,得⎩⎪⎨⎪⎧4+2b+c≤12,4-2b+c≤4,0≤b≤4,0≤c≤4,即⎩⎪⎨⎪⎧2b+c-8≤0,2b-c≥0,0≤b≤4,0≤c≤4表示的区域如图阴影部分所示,可知阴影部分的面积为8,所以所求概率为12.(2)设这两个数分别是x,y,则总的基本事件构成的区域是⎩⎪⎨⎪⎧0≤x≤1,0≤y≤1确定的平面区域,所求事件包含的基本事件构成的区域是⎩⎪⎨⎪⎧0≤x≤1,0≤y≤1,x+y<65,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫45 2=1725,所以这两个数之和小于65的概率是1725.(3)如图,如果M 点位于以AB 为直径的半圆内部,则∠AMB >90°,否则,M 点位于半圆上及空白部分,则∠AMB ≤90°,所以∠AMB >90°的概率P =12×π×1222=π8.[答案] (1)C (2)C (3)π8[模型解法]对于面积型的几何概型,关键是求其面积.(1)定型,根据题意判断是否为面积型,一般涉及区域或二元变量问题都是面积型的. (2)定量,根据条件画出图形,确定区域、求其面积. (3)求概率,利用几何概型公式求概率. [高考类题](2017·高考全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14 B.π8 C.12D.π4解析:不妨设正方形的边长为2,则正方形的面积为4,正方形的内切圆的半径为1,面积为π.由于正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,所以黑色部分的面积为π2,故此点取自黑色部分的概率为π24=π8,故选B.答案:B考点三 与体积有关的几何概型|易错突破[例6] (1)(2018·唐山模拟)已知正三棱锥S ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ABC <12V S ABC 的概率是( )A.78B.34C.12D.14(2)(2018·长沙模拟)在棱长为2的正方体ABCD A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.[解析] (1)当点P 到底面ABC 的距离小于32时,V P ABC <12V S ABC .由几何概型知,所求概率为P =1-⎝⎛⎭⎫123=78. (2)V 正=23=8,V 半球=12×43π×13=23π.V 半球V 正=2π8×3=π12,∴P =1-π12.[答案] (1)A (2)1-π12[易错提醒][纠错训练](2018·福州模拟)如图为某个四面体的三视图,若在该四面体的外接球内任取一点,则点落在四面体内的概率为( )A.913πB.113πC.913169πD.13169π解析:由三视图可知该立体图形为三棱锥,其底面是一个直角边长为32的等腰直角三角形,高为4,所以该三棱锥的体积为12,又外接球的直径2r 为以三棱锥的三个两两垂直的棱为长方体的对角线,即2r =42+(32)2+(32)2=213,所以球的体积为5213π3,所以点落在四面体内的概率为125213π3=913169π.答案:C1.[考点二](2016·高考全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4nm B.2n m C.4m nD.2m n解析:设由⎩⎪⎨⎪⎧0≤x n ≤10≤y n ≤1构成的正方形的面积为S ,x 2n +y 2n <1构成的图形的面积为S ′,所以S ′S =14π1=m n ,所以π=4mn,故选C.答案:C2.[考点一](2016·高考全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )A.710B.58C.38D.310解析:记“至少需要等待15秒才出现绿灯”为事件A ,则P (A )=2540=58.答案:B3.[考点二](2013·高考四川卷)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14 B.12 C.34D.78解析:设通电x 秒后第一串彩灯闪亮,y 秒后第二串彩灯闪亮.依题意得0≤x ≤4,0≤y ≤4,其对应区域的面积为S =4×4=16.又两串彩灯闪亮的时刻相差不超过2秒,即|x -y |≤2,如图,易知阴影区域的面积为S ′=16-12×2×2-12×2×2=12,∴P =S ′S =1216=34.答案:C4.[考点一](2017·高考江苏卷)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.解析:由6+x -x 2≥0,得-2≤x ≤3,即D =[-2,3], ∴P (x ∈D )=3-(-2)5-(-4)=59.答案:595.[考点二](2014·高考福建卷)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.解析:∵y =e x 与y =ln x 互为反函数,故直线y =x 两侧的阴影部分面积相等,只需计算其中一部分即可.如图,S 1=⎠⎛01e x d x =e x| 1=e 1-e 0=e -1.∴S 总阴影=2S 阴影=2(e ×1-S 1)=2[e -(e -1)]=2,故所求概率为P =2e2.答案:2e 2。
10.6 几何概型[知识梳理] 1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的两个基本特点3.几何概型的概率公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).2.教材衍化(1)(必修A3P 137例2)在区间[10,20]内的所有实数中,随机取一个实数a ,则这个实数a <13的概率是( )A.13B.17C.310D.710(2)(必修A3P 142A 组T 2)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )3.小题热身(1)(2018·承德质检)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.78(2)(2017·贵阳质检)如图所示,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.题型1 与长度(角度)有关的几何概型典例1(2016·全国卷Ⅰ)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34典例2(2015·重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.1.与长度有关的几何概型(1)如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.(2)与时间、不等式及其解有关的概率问题与时间、不等式及其解有关的概率问题可依据转化与化归思想将其转化为与长度有关的几何概型,利用几何概型概率公式进行求解.见典例1,2.2.与角度有关的几何概型当涉及射线的转动,扇形中有关落点区域问题时,应以角的大小作为区域度量来计算概率,且不可用线段的长度代替,这是两种不同的度量手段.冲关针对训练1.(2017·江西赣州十四县联考)已知定义在区间[-3,3]上的单调函数f (x )满足:对任意的x ∈[-3,3],都有f [f (x )-2x ]=6,则在[-3,3]上随机取一个实数x ,使得f (x )的值不小于4的概率为( )A.16B.56C.13D.122.如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ︵,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.题型2 与面积有关的几何概型 角度1 与随机模拟相关的几何概型典例 (2016·全国卷Ⅱ)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( )A.4n mB.2n mC.4m nD.2m n角度2 与线性规划有关的几何概型典例(2014·湖北高考)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18B.14C.34D.78角度3 与定积分有关的几何概型典例 (2015·福建高考)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于________.方法技巧1.与平面几何、解析几何等知识交汇问题的解题思路 利用平面几何、解析几何等相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率.见角度1典例.2.与线性规划交汇问题的解题思路先根据约束条件作出可行域,再确定形状,求面积大小,进而代入公式求概率.见角度2典例.3.与定积分交汇问题的解题思路先确定基本事件对应区域的形状构成,再将其面积转化为某定积分的计算,并求其大小,进而代入公式求概率.见角度3典例.冲关针对训练1.在区间[1,5]和[2,4]上分别取一个数,记为a ,b ,则方程x 2a 2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为( )A.12B.1532C.1732D.31322.欧阳修的《卖油翁》中写到:“(翁)乃取一葫芦,置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴的直径忽略不计),则正好落入孔中的概率是________.题型3 与体积有关的几何概型典例1(2018·兰州名校检测)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A.4π81B.81-4π81C.127D.827典例2已知正三棱锥S -ABC 的底面边长为4,高为3,则在正三棱锥内任取一点P ,则点P 满足V 三棱锥P -ABC <12V 三棱锥S -ABC 的概率是________.与体积有关的几何概型问题如果试验的结果所构成的区域的几何度量可用空间几何体的体积表示,则其概率的计算公式为:P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积.求解的关键是计算事件的总体积以及事件A 的体积.冲关针对训练1.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12 C.π6 D .1-π62.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,在正方体内随机取点M ,则使四棱锥M -ABCD 的体积小于16的概率为________.1.(2017·全国卷Ⅰ)如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14B.π8C.12D.π42.(2015·陕西高考)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( )A.34+12πB.14-12πC.12-1πD.12+1π3.(2018·湖北华师一附中联考)在区间[0,4]上随机取两个实数x ,y ,使得x +2y ≤8的概率为( )A.14B.316C.916D.344.(2014·福建高考)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.[基础送分 提速狂刷练]2.(2018·绵阳模拟)在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A .14B .12C .34 D.233.已知实数a 满足-3<a <4,函数f (x )=lg (x 2+ax +1)的值域为R 的概率为P 1,定义域为R 的概率为P 2,则( )A .P 1>P 2B .P 1=P 2C .P 1<P 2D .P 1与P 2的大小不确定4.(2017·湖南长沙四县联考)如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的底面圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .1-π4 B.π12 C.π4 D .1-π125.(2017·铁岭模拟)已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( )A.16B.13C.12D.236.(2018·沧州七校联考)用一平面截一半径为5的球面得到一个圆,则此圆面积小于9π的概率是( )A.45B.15C.13D.127.(2017·福建宁德一模)若从区间(0,e),(e 为自然对数的底数,e =2.71828…)内随机选取两个数,则这两个数之积小于e 的概率为( )A.2eB.1e C .1-2e D .1-1e8.(2017·河南三市联考)在区间[-π,π]内随机取两个数分别为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2有零点的概率为( )A .1-π8B .1-π4C .1-π2D .1-3π49.(2018·江西模拟)向面积为S 的平行四边形ABCD 中任投一点M ,则△MCD 的面积小于S3的概率为( )A.13B.35C.23D.34 二、填空题11. 如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,则BM <1的概率是________.12.一个长方体空屋子,长、宽、高分别为5米、4米、3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是________.。
几何概型知识与常见题型梳理
几何概型和古典概型是随机概率中两类主要模型,是概率考查中的重点,下面就几何概型的知识与常见题型做一梳理,以期能使读者对于这一知识点做到脉络清晰,条理分明。
一 基本知识剖析
1.几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型。
2.几何概型的概率公式: P (A )=
积)
的区域长度(面积或体试验的全部结果所构成积)
的区域长度(面积或体构成事件A ;
3.几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本
事件出现的可能性相等.
4.几何概型与古典概型的比较:一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的。
这是二者的不同之处;另一方面,古典概型与几何概型的试验结果都具有等可能性,这是二者的共性。
通过以上对于几何概型的基本知识点的梳理,我们不难看出其要核是:要抓住几何概型具有无限性和等可能性两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提。
因此,用几何概型求解的概率问题和古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示。
下面就几何概型常见类型题作一归纳梳理。
二 常见题型梳理 1.长度之比类型
例1. 小赵欲在国庆六十周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率.
分析:因为客车每小时一班,而小赵在0~60分钟之间任何一个时刻到车站等车是等可能的, 所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,且属于几何概型中的长度类型.
解析:设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,而事件的总体是整个一小时,即60分钟,因此,由几何概型的概率公式,得P(A)=
605060-=61,即此人等车时间不多于10分钟的概率为6
1
.
例2 在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方形的面
积介于36cm 2 与81cm 2
之间的概率.
分析:正方形的面积只与边长有关,因此,此题可以转化为在12cm 长的线段AB 上任取一点M ,求使得AM 的长度介于6cm 与9cm 之间的概率.
解析:记“面积介于36cm 2 与81cm 2
之间”为事件A ,事件A 的概率等价于“长度介于6cm 与9cm 之间”的概率,所以,P(A)=
9612-=1
4
小结:本例的难点不是在于几何概型与古典概型的区别,而是将正方形的面积关系转化为边长的关系,从而将问题归为几何概型中的长度类型,这是本例的关键之处。
同时又体现了数学上的化归思想的作用。
2.面积、体积之比类型
例3. (18江苏高考6).在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。
解析:如图:区域D 表示边长为4的正方形ABCD 的内部(含边界),而区域E 表示单位圆及其内部,因此2
144
16
P ππ
⨯==
⨯。
答案
16
π
点评:本小题中的试验结果是区域中的部分点集,其结果是不可数的,属于几何概型中典型的面积之比。
3.角度之比型
例4.如图所示,在等腰直角ABC 中,过直角顶点C 在ACB ∠内部做一条射线CM ,与
线段AB 交于点M ,求AM AC <的概率。
分析:当A M A C =时,有ACM AMC ∠=∠,故欲使AM AC <,应有ACM AMC ∠<∠,
即所作的射线应落在ACM AMC ∠=∠时ACM ∠的内部。
解析:在AB 上取AD AC =,连接CD ,则00
01804567.52
ACD -∠=
=,记“在内部作一条射线CM ,与线段AB 交于点M ,AM AC <”为事件A ,则0067.53
()904
P A ==,所以,所求概率为3
4。
点评:本题所求事件的本质是在ACB ∠内部做一条射线CM ,所构成的区域是一个“角”
域,故应属于几何概型中的角度之比类型;本题极易易犯的错误是,用长度的比得出
12=-这一错误结果。
4.“会面”类型的几何概型
例5. 某码头接到通知,甲、乙两艘外轮都会在某天9点到10点之间的某一时刻到达该码头的同一个泊位,早到的外轮要在该泊位停靠20分钟办理完手续后才离开,求两艘外轮至少有一艘在停靠泊位时必须等待的概率。
解析:设事件A 表示两艘外轮至少有一艘在停靠泊位时必须等待,两艘外轮到的时间分别为9点到10点之间的x 分、y 分,则|x-y|≤20,0≤x,y ≤60,即
C
A B
M D
2020()|060060x y A x x y ⎧-≤-≤⎫⎧⎪⎪⎪=≤≤⎨⎨⎬⎪⎪⎪
≤≤⎩⎩⎭
,y ,以9点为原点,建立平面直角坐标系如图所示,事件A
所对应的区域如图中阴影区域所示:
所以,其概率P(A)=阴影面积/ABCD 面积=5/9。
小结:“会面”类型常见的载体是两人相约见面、轮船停靠泊位等,其关键是构建相遇的不等式(组),借助于线性规划知识,将其面积之比求出,使得问题得以解决。
5.与其他章节知识综合类
例6.已知两数m n ,是某事件发生的概率取值,则关于x
的一元二次方程2
0x m +=有实根的概率是( ) A.
12 B. 14 C. 18 D. 116
解析:事件发生的概率取值为[01],,故[01],即为两数m n ,的取值范围。
在平面直角坐标
系中,以x 轴和y 轴分别表示m n ,的值,因为(m n ,)与图中正方形内的点一一对应,即正方形内的所有点构成全部试验结果的区域.设事件A
表示方程2
0x m +=有实
根,则事件40()|0101n m A m n m n ⎧-≥⎫
⎧⎪⎪⎪
=≤≤⎨⎨⎬⎪⎪⎪
≤≤⎩⎩⎭
,,所对应的区域为图
中
的阴影部分,且阴影部分的面积为
18.故由几何概型公式得1
()8
S P A S ==阴影正方形,即关于x
的一元二次方程2
0x m +=有实根的概率为1
8
. 答案:C .
点评:将方程的根、线性规划问题以及概率知识等问题有机地结合在一起,注重在知识的交汇处命题,是近年来高考的命题趋势。
本题设计新颖,考查综合。
以上,和大家共同探讨了几何概型常见题目中最为典型的五种类型题目,即长度之比类型、面积(体积)之比类型、角度之比类型、会面问题类型和综合类型,不管解决哪种类型问题,其关键都要选择适当角度,使基本事件转化为与之对应的总体区域,所求问题转化随机事件对应的子区域,然后代入公式进行计算求解。
这其中特别要注意分析清楚,试验的基本事件应该属于与长度(包括时间长度)、面积(体积)还是角度等,这样才能寻到正确的解题方向,避免出现错误。
附变式练习: (1).已知某地铁列车每10min 一班,在车站停1min ,求乘客到达站台立即乘上车的概率。
(2).某地原来每两支路灯间相距60m ,为改善照明状况,加快新农村建设的步伐,决定在两支之间再添一支,求新添的一支灯与两端的距离都大于20m 的概率.
(3)如图所示,在直角坐标平面内,射线OT 落在0
60角的终边上,任作一条射线OA ,求射线OA 落在xOT ∠内的概率。
变式练习答案::
(1)记“乘客到达站台立即乘上车”为事件A ,由几何概型知,所求事件A 的概率为P(A)=
11
1; (2)记“灯与两端距离都大于20m ”为事件A ,由几何概型知,所求事件的概率P(A)=
2060=3
1
. (3)记“射线OA 落在xOT ∠内”为事件A ,由几何概型知,所求事件A 的概率为P(A)=
16。