江苏高考数学科考试说明及典型题示例苏教版
- 格式:doc
- 大小:1.46 MB
- 文档页数:19
2013年江苏省高考说明-数学科一、命题指导思想根据普通高等学校对新生文化素质的要求,2013年普通高等学校招生全国统一考试数学学科(江苏卷)命题将依据中华人民共和国教育部颁发的《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲(课程标准实验版)》,结合江苏普通高中课程教学要求,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.1.突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,注重知识内在联系的考查,注重对中学数学中所蕴涵的数学思想方法的考查.2.重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3.注重数学的应用意识和创新意识的考查数学的应用意识的考查,要求能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够综合,灵活运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.具体考查要求如下:1.必做题部分2三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题 附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤. (三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大 致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大 致为5:4:1.四、典型题示例A.必做题部分1. 设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_____ 【解析】本题主要考查复数的基本概念,基本运算.本题属容易题. 【答案】12. 设集合}3{},4,2{},3,1,1{2=++=-=B A a a B A ,则实数a 的值为_ 【解析】本题主要考查集合的概念、运算等基础知识.本题属容易题. 【答案】1. 3. 右图是一个算法流程图,则输出的k 【解析本题属容易题. 【答案】5 4. 函数)12(log )(5+=x x f 【解析【答案】,+∞1(-)25.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤 维的长度是棉花质量的重要指标),所得数 据均在区间]40,5[中,其频率分布直方图 如图所示,则在抽测的100根中,有_ _根棉花纤维的长度小于mm 20.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题. 【答案】由频率分布直方图观察得棉花纤维长度小于mm 20的频率为 3.0501.0501.0504.0=⨯+⨯+⨯,故频数为301003.0=⨯.6. 现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中 随机抽取一个数,则它小于8的概率是 .【解析】本题主要考查等比数列的定义,古典概型.本题属容易题. 【答案】0.6.7. 如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,结束12cm AA =,则四棱锥11A BB D D -的体积为 cm 3. 【解析】本题主要考查四棱锥的体积,考查空间想象能力 和运算能力.本题属容易题. 【答案】6.8.设n S 为等差数列}{n a 的前n 项和.若11=a ,公差24,22=-=+k k S S d , 则正整数=k【解析】本题主要考查等差数列的前n 项和及其与通项的关系等基础知识.本 题属容易题. 【答案】5 9.设直线12y x b =+是曲线ln (0)y x x =>的一条切线,则实数b 的值是 . 【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】ln21-.10.函数ϕωϕω,,(),sin()(A x A x f +=是常数,)0,0>>ωA 的部分图象如图所示,则____)0(=f【解析】本题主要考查三角函数的图象与性质,考查特殊角的三角函数值.本题属中等题.【答案11. 已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则实数k 的值为【解析】本题主要考查用坐标表示的平面向量的加、减、数乘及数量积的运算等基础知识. 本题属中等题. 【答案】45=k . 12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存 在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是【解析】本题主要考查圆的方程、圆与圆的位置关系、点到直线的距离等基础知识,考查灵活运用相关知识解决问题的能力.本题属中等题 【答案】34 13. 已知函数⎩⎨⎧<≥+=0,10,1)(2x x x x f ,则满足不等式)2()1(2x f x f >-的x 的取值范围是__ 【解析】本题主要考查函数的单调性和奇偶性,简单不等式的解法,以及数形结合与分类讨论的思想;考查灵活运用有关的基础知识解决问题的能力. 本题属难题. 【答案】)12,1(--.14.满足条件2,AB AC ==的三角形ABC 的面积的最大值是____________.【解析】本题主要考查灵活运用有关的基础知识解决问题的能力.本题属难题.【答案】二、解答题15.在ABC ∆中,2C A π-=, 1sin 3B =. (1)求A sin 值;(2)设AC =,求ABC ∆的面积.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力. 本题属容易题. 【参考答案】(1)由π=++C B A 及2π=-A C ,得,22B A -=π故,40π<<A并且.sin )2cos(2cos B B A =-=π即,31sin 212=-A 得⋅=33sin A (2)由(1)得36cos =A .又由正弦定理得ABC B AC sin sin = 所以.23sin sin =⋅=B A AC BC 因为,2A C +=π所以⋅==+=36cos )2sin(sin A A C π因此,23621cos 21sin 21⨯⨯=⋅⋅=⋅⋅=∆A BC AC C BC AC S ABC .2336=⨯ 16.如图,在直三棱柱111C B A ABC -中,1111C A B A =,D E ,分别是棱1,CC BC 上的点(点D 不同于点C ),且⊥AD F DE ,为11C B 的中点.求证:(1)平面ADE ⊥平面11B BCC ; (2)直线//1F A 平面ADE .【解析】本题主要考查直线与平面、平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】 证明:(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC , 又∵AD ⊂平面ABC ,∴1CC AD ⊥.又∵1AD DE CC DE ⊥⊂,,平面111BCC B CC DE E =,,∴AD ⊥平面11BCC B ,又∵AD ⊂平面ADE , ∴平面ADE ⊥平面11BCC B .(2)∵1111A B AC =,F 为11B C 的中点,∴111A F B C ⊥.又∵1CC ⊥平面111A B C ,且1A F ⊂平面111A B C ,∴11CC A F ⊥. 又∵111 CC B C ⊂,平面11BCC B ,1111CC B C C =,∴1A F ⊥平面111A B C .由(1)知,AD ⊥平面11BCC B ,∴1A F ∥AD .又∵AD ⊂平面1, ADE A F ⊄平面ADE ,∴直线1//A F 平面ADE .17. 请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得D C B A ,,,四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,F E ,在AB 上是被切去的一个等腰直角三角形斜边的两个端点,设cm x FB AE ==. (1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值。
2018年江苏省高考(ɡāo kǎo)说明-数学科一、命题指导思想2018年普通高等学校招生全国统一考试数学学科(江苏卷)命题,将依据《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲》,结合江苏省普通高中课程标准教学要求,按照“有利于科学选拔人才、促进学生健康发展、维护社会公平”的原则,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.试卷保持较高的信度、效度以及必要的区分度和适当的难度.1.突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,支撑学科知识体系的重点内容在试卷中要占有较大的比例.注重知识内在联系的考查,不刻意追求知识的覆盖面.注重对中学数学中所蕴涵的数学思想方法的考查.2.重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解(qiújiě)能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3.注重数学的应用意识和创新意识的考查数学的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造适合的数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够发现问题、提出问题,综合与灵活地运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有初步的、感性的认识,并能解决相关的简单问题.理解(lǐjiě):要求对所列知识有较深刻的理性认识认识,并能解决有一定综合性的问题.掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题.具体考查要求如下:1.必做题部分内容要求A B C1.集合集合及其表示√子集√交集、并集、补集√2.函数概念与基本初等函数Ⅰ函数的概念√函数的基本性质√指数与对数√指数函数的图象与性质√对数函数的图象与性质√幂函数√函数与方程√函数模型及其应用√3.基本初等函数Ⅱ(三角函数)、三角恒等变换三角函数的概念√同角三角函数的基本关系式√正弦函数、余弦函数的诱导公式√正弦函数、余弦函数、正切函数的图象与性质√函数的图象与性质√两角和(差)的正弦、余弦及正切√二倍角的正弦、余弦及正切√圆的标准方程与一般方程√直线与圆、圆与圆的位置关系√17.圆锥曲线与方程中心在坐标原点的椭圆的标准方程与几何性质√中心在坐标原点的双曲线的标准方程与几何性质√顶点在坐标原点的抛物线的标准方程与几何性质√2.附加(fùjiā)题部分内容要求A B C选修系列:不含选修系列中的内容1.圆锥曲线与方程曲线与方程√顶点在坐标原点的抛物线的标准方程与几何性质√2.空间向量与立体几何空间向量的概念√空间向量共线、共面的充分必要条件√空间向量的加法、减法及数乘运算√空间向量的坐标表示√空间向量的数量积√空间向量的共线与垂直√直线的方向向量与平面的法向量√空间向量的应用√3.导数及其应用简单的复合函数的导数√4.推理与证数学归纳法的原理√明数学归纳法的简单应用√5.计数原理加法原理与乘法原理√排列与组合√二项式定理√6.概率、统计离散型随机变量及其分布列√超几何分布√条件概率及相互独立事件√次独立重复试验的模型及二项分布√离散型随机变量的均值与方差√选修系列中4个专题7.几何证明选讲相似三角形的判定与性质定理√射影定理√圆的切线的判定与性质定理√圆周角定理,弦切角定理√相交弦定理、割线定理、切割线定理√圆内接四边形的判定与性质定理√8.矩阵与变换矩阵的概念√二阶矩阵与平面向量√常见的平面变换√矩阵的复合与矩阵的乘法√二阶逆矩阵√二阶矩阵的特征值与特征向量√三、考试形式及试卷(shìjuàn)结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加(fùjiā)题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为5:4:1.四、典型题示例A.必做题部分1. 设复数满足(i 是虚数单位),则的虚部为_____【解析】本题主要考查复数的基本概念,基本运算.本题属容易题.【答案】2. 设集合,则实数的值为_【解析】本题主要考查集合的概念、交集运算等基础知识.本题属容易题.【答案】1.3. 右图是一个算法流程图,则输出的k的值是.【解析】本题主要考查算法流程图的基础知识,本题属容易题.【答案】5结束k←k +1开始k←1k2-5k+4>0N 输出kY4. 函数(hánshù)的定义域为【解析】本题主要考查对数函数的单调性,本题属容易题.【答案】5.某棉纺厂为了解一批棉花的质量,从中随机抽取了根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均在区间中,其频率分布直方图如图所示,则在抽测的100根中,有_ _根棉花纤维的长度小于.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题.【答案】由频率分布直方图观察得棉花纤维长度小于mm20的频率为,故频数为.6. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.【解析】本题主要考察古典概型、互斥事件及其发生的概率等基础知识.本题属容易题.【答案】7. 已知函数,它们的图像有一个横坐标为的交点,则的值是________.【解析】本题主要考察特殊角的三角函数值,正弦函数、余弦函数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力.本题属容易题.【答案(dáàn)】.8.在各项均为正数的等比数列中,若的值是______.【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力.本题属容易题. 【答案】4.9.在平面直角坐标系中,双曲线的右准线与它的两条渐近线分别交于,其焦点是,,则四边形的面积是______.【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦点、焦距和直线与直线的交点等基础知识.本题属中等难度题. 【答案】10.如图,在长方体中,,,则四棱锥的体积为 cm 3.【解析】本题主要考查四棱锥的体积,考查空间想象能力 和运算能力.本题属容易题. 【答案】6. 11.设直线是曲线的一条切线,则实数的值是 .【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】.12.设是定义在上且周期为2的函数,在区间上,其中.若,则的值是 .【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力.本题属中等难度题. 【答案(d á àn)】DABC13.如图,在中,D是BC的中点,E,F是AD上的两个三等分点,,,则的值是 .【解析】本题主要考查平面向量的概念、平面向量的运算以及平面向量的数量积等基础知识,考查数形结合和等价转化的思想,考查运算求解能力.本题属难题.【答案】.14. 已知正数满足:则的取值范围是.【解析】本题主要考查代数形式的变形和转化能力,考查灵活运用有关的基础知识解决问题的能力.本题属难题.【答案】二、解答题15.在ABC∆中,角.已知(1)求值;(2)求的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力.本题属容易题.【参考答案】(1)在ABC∆中,因为,故由正弦定理得,于是.所以(suǒyǐ).(2)由(1)得.所以.又因为,所以.从而.在,所以.因此由正弦定理得.16.如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【解析】本题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.本题属容易题【参考答案】证明:(1)在平面内,因为AB⊥AD,,所以.又因为平面ABC,平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以(suǒyǐ)平面ABD.因为平面ABD,所以BC⊥.又AB⊥AD,,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC,又因为AC平面ABC,所以AD⊥AC.17.如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【解析】本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知识,考查分析问题能力和运算求解能力.本题属中等难度题.【参考答案】(1)设椭圆的半焦距为c.因为椭圆E的离心率为12,两准线之间的距离为8,所以,,解得,于是,因此椭圆E的标准方程是.(2)由(1)知,,.设,因为点为第一象限的点,故.当时,与相交于,与题设不符.当时,直线的斜率为,直线的斜率为.因为(yīn wèi),,所以直线1l的斜率为,直线2l的斜率为,从而直线1l的方程:,①直线2l的方程:. ②由①②,解得,所以.因为点在椭圆上,由对称性,得,即或.又P在椭圆E上,故.由,解得;,无解.因此点P的坐标为.18. 如图:为保护河上古桥,规划建一座新桥,同时设立一个圆形保护区,规划要求,新桥BC与河岸垂直;保护区的边界为圆心在线段OA上并与BC相切的圆,且古桥两端和到该圆上任一点的距离均不少于80,经测量,点A位于点O正北方向60m处,点位于点O正东方向170m处,(为河岸),.(1)求新桥BC的长;(2)当多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力..【参考答案】解法(jiě fǎ)一:(1)如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系xOy.由条件知A(0, 60),C(170, 0),直线BC的斜率k BC=-tan∠BCO=-.又因为AB⊥BC,所以直线AB的斜率k AB=.设点B的坐标为(a,b),则k BC= k AB=解得a=80,b=120. 所以BC=.因此新桥BC的长是150 m.(2)设保护区的边界圆M的半径为r m,OM=d m,(0≤d≤60).由条件知,直线BC的方程为,即由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得故当d=10时,最大,即圆面积最大.所以当OM = 10 m时,圆形保护区的面积最大.解法二:(1)如图,延长OA, CB交于点F..所以sin∠FCO=,cos∠FCO=.因为tan∠BCO=43因为OA=60,OC=170,所以OF=OC tan∠FCO=.CF=,从而.因为OA⊥OC,所以cos∠AFB=sin∠FCO==4,5又因为(yīn wèi)AB⊥BC,所以BF=AF cos∠AFB==,从而BC=CF-BF=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60). 因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 19. 设函数,其中a 为实数.(1)若)(x f 在上是单调减函数,且在),1(+∞上有最小值,求a 的取值范围;(2)若)(x g 在上是单调增函数,试求)(x f 的零点个数,并证明你的结论.【解析】本题主要考查函数的单调性、最值、零点等基础知识,考查灵活运用数形结合、分类讨论等数学思想方法进行探索、分析与解决问题的能力.本题属难题. 【参考答案】解:(1)令f ′(x )=<0,考虑到f (x )的定义域为(0,+∞),故a>0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x -a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e.综上,有a ∈(e ,+∞).(2)当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x ,即x >ln a .因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤e -1. 结合上述两种情况,有a ≤e -1.①当a=0时,由f(1)=0以及(yǐjí)f′(x)=>0,得f(x)存在唯一的零点;②当a<0时,由于f(e a)=a-a e a=a(1-e a)<0,f(1)=-a>0,且函数f(x)在[e a,1]上的图象不间断,所以f(x)在(e a,1)上存在零点.-a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)另外,当x>0时,f′(x)=1x只有一个零点.-a=0,解得x=a-1.当0<x<a-1时,f′(x)>0,当③当0<a≤e-1时,令f′(x)=1xx>a-1时,f′(x)<0,所以,x=a-1是f(x)的最大值点,且最大值为f(a-1)=-ln a -1.当-ln a-1=0,即a=e-1时,f(x)有一个零点x=e.当-ln a-1>0,即0<a<e-1时,f(x)有两个零点.实际上,对于0<a<e-1,由于f(e-1)=-1-a e-1<0,f(a-1)>0,且函数f(x)在[e -1,a-1]上的图象不间断,所以f(x)在(e-1,a-1)上存在零点.-a>0,故f(x)在(0,a-1)上是单调增函数,所另外,当x∈(0,a-1)时,f′(x)=1x以f(x)在(0,a-1)上只有一个零点.下面考虑f(x)在(a-1,+∞)上的情况.先证f(e a-1)=a(a-2-e a-1)<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x-x2,则h′(x)=e x-2x,再设l(x)=h′(x)=e x-2x,则l′(x)=e x-2.当x>1时,l′(x)=e x-2>e-2>0,所以l(x)=h′(x)在(1,+∞)上是单调增函数.故当x>2时,h′(x)=e x-2x>h′(2)=e2-4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x-x2>h(e)=e e-e2>0.即当x>e时,e x>x2.当0<a<e-1,即a-1>e时,f(e a-1)=a-1-a e a-1=a(a-2-e a-1)<0,又f(a-1)>0,且函数f(x)在[a-1,e a-1]上的图象不间断,所以f(x)在(a-1,e a-1)上存在零点.又当x>a-1时,f′(x)=1-a<0,故f(x)在(a-1,+∞)上是单调减函数,所以f(x)在(a-1,+∞)上只x有一个零点.综合①,②,③,当a≤0或a=e-1时,f(x)的零点个数为1,当 0<a<e-1时,f(x)的零点个数为2.20. 设数列的前n项和为.若对任意的正整数n,总存在正整数m,使得,则称{}a是“H数列”.n(1)若数列{}a的前n项和,证明:{}n a是“H数列”;n(2)设{}a是等差数列,其首项,公差.若{}n a是“H数列”,求d的值;n(3)证明:对任意(rènyì)的等差数列{}a,总存在两个“H数列”和,使得n成立.【解析】本题主要考查数列的概念、等差数列等基础知识,考查探究能力与推理论证能力.本题属难题. 【参考答案】 (1)当时,当时,∴1n =时,,当2n ≥时,∴{}na 是“H 数列” (2)对,使nm Sa =,即取得, ∵0d <,∴,又,∴,∴(3)设{}na 的公差为d 令,对n *∀∈N ,,对n *∀∈N ,则,且为等差数列 {}n b 的前n 项和,令,则当1n =时1m =; 当2n =时1m =; 当时,由于n 与奇偶性不同,即非负偶数,m *∈N因此对,都可找到m *∈N ,使成立,即{}nb 为“H 数列”.{}n c 的前n项和,令,则∵对n*∈N∀∈N,是非(shìfēi)负偶数,∴m*即对n*∈N,使得成立,即{}n c为“H数列”∀∈N,都可找到m*因此命题得证.B.附加题部分1.选修几何证明选讲如图,AB是圆O的直径,为圆O上一点,过点D作圆O的切线交AB的延长线于点C,若,求证:【解析】本题主要考查三角形与圆的一些基础知识,如三角形的外接圆、圆的切线性质等,考查推理论证能力.本题属容易题.【参考答案】连结,因为AB是圆O的直径,所以因为是圆O的切线,所以,又因为所以于是≌从而即得故.AB=2BC2.选修矩阵与变换已知矩阵,,求.【解析】本题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.本题属容易题.【参考答案】设A的逆矩阵为,则,即,故,,,,从而A的逆矩阵为,所以,.3.选修(xu ǎnxi ū)坐标系与参数方程在极坐标中,已知圆经过点,圆心为直线与极轴的交点,求圆C 的极坐标方程.【解析】本题主要考查直线和圆的极坐标方程等基础知识,考查转化问题的能力。
2020年江苏省高考说明-数学科一、命题指导思想根据普通高等学校对新生文化素质的要求,2020年普通高等学校招生全国统一考试数学学科(江苏卷)命题将依据中华人民共和国教育部颁发的《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲(课程标准实验版)》,结合江苏普通高中课程教学要求,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.1.突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,注重知识内在联系的考查,注重对中学数学中所蕴涵的数学思想方法的考查.2.重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算. (5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3.注重数学的应用意识和创新意识的考查数学的应用意识的考查,要求能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够综合,灵活运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题. 具体考查要求如下:2.附加题部分(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大 致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大 致为5:4:1.四、典型题示例 A.必做题部分 1. 设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_____ 【解析】本题主要考查复数的基本概念,基本运算.本题属容易题. 【答案】12. 设集合}3{},4,2{},3,1,1{2=++=-=B A a a B A I ,则实数a 的值为_ 【解析】本题主要考查集合的概念、运算等基础知识.本题属容易题. 【答案】1. 3. 右图是一个算法流程图,则输出的k 的值是 . 【解析】本题主要考查算法流程图的基础知识, 本题属容易题. 【答案】54. 函数)12(log )(5+=x x f 的单调增区间是 【解析】本题主要考查对数函数的单调性,本题属容易题. 【答案】,+∞1(-)25.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤 维的长度是棉花质量的重要指标),所得数 据均在区间]40,5[中,其频率分布直方图 如图所示,则在抽测的100根中,有_ _根棉花纤维的长度小于mm 20.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题. 【答案】由频率分布直方图观察得棉花纤维长度小于mm 20的频率为 3.0501.0501.0504.0=⨯+⨯+⨯,故频数为301003.0=⨯.6. 现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中 随机抽取一个数,则它小于8的概率是 .结束k ←k +1开始 k ←1 k 2-5k +4>0 N 输出k Y【解析】本题主要考查等比数列的定义,古典概型.本题属容易题.【答案】0.6.7. 如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 cm 3.【解析】本题主要考查四棱锥的体积,考查空间想象能力和运算能力.本题属容易题.【答案】6.8.设n S 为等差数列}{n a 的前n 项和.若11=a ,公差24,22=-=+k k S S d , 则正整数=k【解析】本题主要考查等差数列的前n 项和及其与通项的关系等基础知识.本 题属容易题. 【答案】5 9.设直线12y x b =+是曲线ln (0)y x x =>的一条切线,则实数b 的值是 . 【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】ln21-.10.函数ϕωϕω,,(),sin()(A x A x f +=是常数,)0,0>>ωA 的部分图象如图所示,则____)0(=f【解析】本题主要考查三角函数的图象与性质,考查特殊角的三角函数值.本题属中等题. 【答案611. 已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则实数k 的值为【解析】本题主要考查用坐标表示的平面向量的加、减、数乘及数量积的运算等基础知识. 本题属中等题. 【答案】45=k . 12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存 在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 【解析】本题主要考查圆的方程、圆与圆的位置关系、点到直线的距离等基础知识,考查灵活运用相关知识解决问题的能力.本题属中等题DA BC 1C1D 1A1B【答案】34 13. 已知函数⎩⎨⎧<≥+=0,10,1)(2x x x x f ,则满足不等式)2()1(2x f x f >-的x 的取值范围是__【解析】本题主要考查函数的单调性和奇偶性,简单不等式的解法,以及数形结合与分类讨论的思想;考查灵活运用有关的基础知识解决问题的能力. 本题属难题. 【答案】)12,1(--.14.满足条件2,AB AC ==的三角形ABC 的面积的最大值是____________.【解析】本题主要考查灵活运用有关的基础知识解决问题的能力.本题属难题.【答案】二、解答题15.在ABC ∆中,2C A π-=, 1sin 3B =. (1)求A sin 值;(2)设AC =,求ABC ∆的面积.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力. 本题属容易题. 【参考答案】(1)由π=++C B A 及2π=-A C ,得,22B A -=π故,40π<<A并且.sin )2cos(2cos B B A =-=π即,31sin 212=-A 得⋅=33sin A (2)由(1)得36cos =A .又由正弦定理得ABC B AC sin sin = 所以.23sin sin =⋅=B A AC BC 因为,2A C +=π所以⋅==+=36cos )2sin(sin A A C π因此,23621cos 21sin 21⨯⨯=⋅⋅=⋅⋅=∆A BC AC C BC AC S ABC .2336=⨯16.如图,在直三棱柱111C B A ABC -中,1111C A B A =,D E ,分别是棱1,CC BC 上的点(点D 不同于点C ),且⊥AD F DE ,为11C B 的中点. 求证:(1)平面ADE ⊥平面11B BCC ;(2)直线//1F A 平面ADE .【解析】本题主要考查直线与平面、平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】 证明:(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC , 又∵AD ⊂平面ABC ,∴1CC AD ⊥.又∵1AD DE CC DE ⊥⊂,,平面111BCC B CC DE E =I ,, ∴AD ⊥平面11BCC B ,又∵AD ⊂平面ADE , ∴平面ADE ⊥平面11BCC B .(2)∵1111A B AC =,F 为11B C 的中点,∴111A F B C ⊥. 又∵1CC ⊥平面111A B C ,且1A F ⊂平面111A B C ,∴11CC A F ⊥.又∵111 CC B C ⊂,平面11BCC B ,1111CC B C C =I ,∴1A F ⊥平面111A B C . 由(1)知,AD ⊥平面11BCC B ,∴1A F ∥AD .又∵AD ⊂平面1, ADE A F ⊄平面ADE ,∴直线1//A F 平面ADE .17. 请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得D C B A ,,,四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,F E ,在AB 上是被切去的一个等腰直角三角形斜边的两个端点,设cm x FB AE ==.(1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值。
江苏2019年高考数学考试说明解读江苏2019年“高考考试说明”新鲜出炉了!从江苏省教育考试院获悉,《2019年普通高等学校招生全国统一考试(江苏卷)说明》语文、数学、英语学科,及《2019年江苏省普通高中学业水平测试(选修科目)说明》历史、地理、思想政治、物理、化学、生物学科全部出台。
这套“说明”对2019年高考的考点范围、能力要求都有明确表述,是考生参加高考的权威指南。
江苏2019年高考考试说明出炉:高考数学最新变化:(1)必做题部分在考试内容栏中有两处发生了变化:函数与方程,互斥事件及其发生的概率都从A级考点变成B级考点。
其中函数与方程的思想是中学数学里非常重要的一种思想方法,对这方面内容的考查可以区分出学生的能力,加强这方面内容的考查是必要的;互斥事件及其发生的概率这部分内容在现实生活中有广泛的应用,对于大部分学生的后继学习也有一定的影响,因此把这两部分内容的考查从A 级考点变为B级考点是很正常的,高考将会加强这两方面相关内容的考查。
(2)考试说明的另外变化是在典型示例中:填空题12题为2019年数学考卷中的12题,这说明将延续近两来江苏高考命题的风格,试题朴实平和,大部分题目源于课本,有似曾相识的感觉,给考生以亲切感。
复习建议:要练说,得练听。
听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。
我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。
当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。
平时我还通过各种趣味活动,培养幼儿边听边记,边听边想,边听边说的能力,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的能力,强化了记忆,又发展了思维,为说打下了基础。
江苏省南京市(新版)2024高考数学苏教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知复数z满足:,则的虚部等于()A.1B.C.D.第(2)题在数列的极限一节,课本中给出了计算由抛物线、轴以及直线所围成的曲边区域面积的一种方法:把区间平均分成份,在每一个小区间上作一个小矩形,使得每个矩形的左上端点都在抛物线上(如图),则当时,这些小矩形面积之和的极限就是.已知.利用此方法计算出的由曲线、轴以及直线所围成的曲边区域的面积为()A.B.C.D.第(3)题已知向量,,若与方向相反,则()A.54B.48C.D.第(4)题《九章算术·商功》:“斜解立方,得两堑堵,斜解堑堵,其一为阳马,其一为鳖臑”.意思是一个长方体沿对角面斜解(图1),得到一模一样的两个堑堵(图2),再沿一个堑堵的一个顶点和相对的棱斜解(图2),得一个四棱锥称为阳马(图3),一个三棱锥称为鳖臑(图4).若长方体的体积为,由该长方体斜解所得到的堑堵、阳马和鳖臑的体积分别为,,,则下列等式错误的是()A.B.C.D.第(5)题已知斜率为的直线与椭圆交于,两点,为坐标原点,以,为邻边作平行四边形,点恰好在上.若线段的中点在直线上,则直线的方程为()A.B.C.D.第(6)题已知实数,任取一点,则该点满足的概率是()A.B.C.D.第(7)题若数列满足,,且对任意的都有,则()A.B.C.D.第(8)题若实数,满足约束条件,则的最大值为()A.3B.7C.8D.10二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题给出下列说法,其中正确的是()A.若数据的方差为0,则此组数据的众数唯一B.已知一组数据3,4,7,9,10,11,11,13,则该组数据的第40百分位数为8C.一组样本数据的频率分布直方图是单峰的且形状是对称的,则该组数据的平均数和中位数应该大体上差不多D.经验回归直线恒过样本点的中心,且在回归直线上的样本点越多,拟合效果越好第(2)题积性函数指对于所有互质的整数和有的数论函数.则以下数论函数是积性函数的有()A.高斯函数表示不大于实数的最大整数B.最大公约数函数表示正整数与的最大公约数(是常数)C.幂次函数表示正整数质因数分解后含的幂次数(是常数)D.欧拉函数表示小于正整数的正整数中满足与互质的数的数目第(3)题如图,在正方体中,点M是棱上的动点(不含端点),则()A.过点M有且仅有一条直线与AB,都垂直B.有且仅有一个点M到AB,的距离相等C.过点M有且仅有一条直线与,都相交D.有且仅有一个点M满足平面平面三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知,关于的方程恰有三个不等实根,且函数的最小值是,则_______.第(2)题化简:__________.第(3)题已知向量满足,,的夹角为,则__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在四棱台中,底面为平行四边形,,侧棱底面为棱上的点..(1)求证:;(2)若为的中点,为棱上的点,且,求平面与平面所成角的余弦值.第(2)题在圆上任取一点,过点作轴的垂线段为垂足,线段上一点满足.记动点的轨迹为曲线(1)求曲线的方程;(2)设为原点,曲线与轴正半轴交于点,直线与曲线交于点,与轴交于点,直线与曲线交于点,与轴交于点,若,求证:直线经过定点.第(3)题已知数列的前项和,,且.数列满足,.(1)求数列,的通项公式;(2)将数列中的项按从小到大的顺序依次插入数列中,在任意的,之间插入项,从而构成一个新数列,求数列的前100项的和.第(4)题已知函数,.(1)若,直线l是的一条切线,求切线l的倾斜角的取值范围;(2)求证:对于恒成立.(参考数据:,,,,)第(5)题已知函数的一个极值点为.(1)求函数的极小值;(2)若函数,当时,,求实数的取值范围.。
2019年江苏省高考说明-数学科一、命题指导思想2019年普通高等学校招生全国统一考试数学学科(江苏卷)命题,将依据《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲》,结合江苏省普通高中课程标准教学要求,按照“有利于科学选拔人才、促进学生健康发展、维护社会公平”的原则,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.试卷保持较高的信度、效度以及必要的区分度和适当的难度.1.突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,支撑学科知识体系的重点内容在试卷中要占有较大的比例.注重知识内在联系的考查,不刻意追求知识的覆盖面.注重对中学数学中所蕴涵的数学思想方法的考查.2.重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3.注重数学的应用意识和创新意识的考查数学的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造适合的数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够发现问题、提出问题,综合与灵活地运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2中的内容以及选修系列4中专题4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这3个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有初步的、感性的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的理性认识认识,并能解决有一定综合性的问题.掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题.具体考查要求如下:1.必做题部分2.附加题部分三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题附加题部分由解答题组成,共5题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共3小题,依次考查选修系列4中4-2、4-4、4-5这3个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为5:4:1.四、典型题示例 A.必做题部分1. 设复数i 满足(34)|43|i z i -=+(i 是虚数单位),则z 的虚部为_____ 【解析】本题主要考查复数的基本概念,基本运算.本题属容易题. 【答案】452. 设集合}1{},3,{},2,1{2=+==B A a a B A 若,则实数a 的值为_ 【解析】本题主要考查集合的概念、交集运算等基础知识.本题属容易题. 【答案】1.3.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为_________.【解析】本题主要考查伪代码的基础知识,本题属容易题. 【答案】84.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤 维的长度是棉花质量的重要指标),所得数 据均在区间]40,5[中,其频率分布直方图 如图所示,则在抽测的100根中,有_ _根 棉花纤维的长度小于mm 20.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题. 【答案】由频率分布直方图观察得棉花纤维长度小于mm 20的频率为3.0501.0501.0504.0=⨯+⨯+⨯,故频数为301003.0=⨯.5. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩I ←1S ←1 While I <6I ←I +2 S ←2S End While Print S具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.【解析】本题主要考察古典概型、互斥事件及其发生的概率等基础知识.本题属容易题. 【答案】656. 已知函数)0)(2sin(cos πϕ<≤+==x x y x y 与,它们的图像有一个横坐标为3π的交点,则ϕ的值是________.【解析】本题主要考察特殊角的三角函数值,正弦函数、余弦函数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力.本题属容易题. 【答案】6π.7.在各项均为正数的等比数列{}n a 中,若64682,2,1a a a a a 则+==的值是______.【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力.本题属容易题. 【答案】4.8.在平面直角坐标系xOy 中,双曲线1322=-y x 的右准线与它的两条渐近线分别交于Q P ,,其焦点是1F ,2F ,则四边形Q PF F 21的面积是______.【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦点、焦距和直线与直线的交点等基础知识.考察运算求解能力.本题属中等难度题. 【答案】329.设D 、E 分别是△ABC 的边AB 、BC 上的点,且12,23AD AB BE BC ==.若12DE AB AC λλ=+(1λ、2λ均为实数),则1λ+2λ的值为 ▲ .【解析】本题主要考查平面向量的概念、平面向量的运算等基础知识.考察运算求解能力.本题属中等难度题.【答案】21.10.如图所示,正方体的棱长为2,以其所有面的中心为定点的多面体的体积为_________.【解析】本题主要考查简单多面体的概念、四棱锥的体积等基础知识.考察空间想象和运算求解能力.本题属中等难度题. 【答案】34.11.若函数)(12)(23R a ax x x f ∈+-=在),0(+∞内有且只有一个零点,则)(x f 在]1,1[-上的最大值与最小值的和为_________.【解析】本题主要考查利用导数研究函数性质、一元二次不等式等基础知识.考察数形结合思想,考察运算求解能力.本题属中等难度题. 【答案】-3.12.设)(x f 是定义在R 上且周期为2的函数,在区间)1,1[-上,,,1001,,|52|)(<≤<≤-⎪⎩⎪⎨⎧-+=x x x a x x f 其中R a ∈.若)29()25(f f =-,则)5(a f 的值是 .【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力.本题属中等难度题. 【答案】52-13.在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若20≤⋅PB PA ,则点P 的横坐标的取值范围是【解析】本题主要考察圆的方程、圆与圆的位置关系、向量的数量积等基础知识.考察数形结合思想,考察运算求解能力.本题属中等难度题. 【答案】]1,52[-14.在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是 .【解析】本题主要考察两角和(差)的三家函数、基本不等式等基础知识.考察等价转化思想和运算求解能力.本题属难题. 【答案】8.二、解答题15.在ABC ∆中,角c b a C B A ,,,,的对边分别为.已知.2623A B b a ===,, (1)求A cos 值; (2)求c 的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力. 本题属容易题. 【参考答案】(1)在ABC ∆中,因为A B b a 2623===,,, 故由正弦定理得A A 2sin 62sin 3=,于是362sin cos sin 2=A A A . 所以36cos =A . (2)由(1)得36cos =A .所以33cos 1sin 2=-=A A .又因为A B 2=,所以311cos 22cos cos 2=-==A B . 从而322cos 1sin 2=-=B B . 在π=++∆C B A ABC 中,因为,所以935sin cos cos sin )sin(sin =+=+=B A B A B A C .因此由正弦定理得5sin sin ==ACa c . 16.如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC.【解析】本题主要考查直线与直线、直线与平面以及平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B =,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.17.如图,在平面直角坐标系xOy 中,椭圆10:>>2222x y +=(a b )a bE的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2. (1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.【解析】本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知 识, 考查分析问题能力和运算求解能力.本题属中等难度题. 【参考答案】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=, 解得2,1a c ==,于是b ==因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为001y x -.因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --.因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00473777x y ==;220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P 的坐标为77(77. 18. 如图:为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区,规划要求,新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任一点的距离均不少于80m ,经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处,(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.. 【参考答案】 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34.设点B 的坐标为(a ,b ),则k BC =04,1703b a -=-- k AB =603,04b a -=- 解得a =80,b=120. 所以BC 22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60). 因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.19.记)()(''x g x f ,分别为函数)()(x g x f ,的导函数,若存在R x ∈0,满足)()(00x g x f =且)()(00x g x f ’‘=,则称0x 为函数)()(x g x f ,的一个“S 点”.(1)证明:函数22)()(2-+==x x x g x x f ,不存在“S 点”; (2)若函数x x g ax x f ln )(1)(2=-=,存在“S 点”,求实数a 的值;(3)已知函数xbe x g a x x f x =+=)(-)(2,.对任意的0>a ,判断是否存在0>b ,使函数)()(x g x f 与在区间),0(+∞内存在“S 点”,并说明理由.【解析】本题主要考察利用导数研究初等函数的性质,考察综合运用数学思想方法分析与解决问题的能力.本题属于难题. 【参考答案】20. 设数列{}na 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得n mS a =,则称{}na 是“H 数列”.(1)若数列{}na 的前n 项和2()nn S n *=∈N ,证明:{}na 是“H 数列”;(2)设{}na 是等差数列,其首项11a=,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}na ,总存在两个“H 数列”{}nb 和{}nc ,使得()n n n a b c n *=+∈N 成立.【解析】本题主要考查数列的概念、等差数列等基础知识,考查探究能力与推理论证能力.本题属难题. 【参考答案】 (1)当2n ≥时,111222n n n nn n aS S ---=-=-=当1n =时,112a S ==∴1n =时,11Sa =,当2n ≥时,1n n S a +=∴{}na 是“H 数列” (2)1(1)(1)22nn n n n Sna d n d --=+=+ 对n *∀∈N ,m *∃∈N 使nm Sa =,即(1)1(1)2n n n d m d -+=+-取2n =得1(1)d m d +=-,12m d =+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}na 的公差为d令111(1)(2)nba n a n a =--=-,对n *∀∈N ,11n nb b a +-=-1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)nn n bc a nd a +=+-=,且{}{}n n b c ,为等差数列{}n b 的前n 项和11(1)()2nn n Tna a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N因此对n ∀,都可找到m *∈N ,使nm Tb =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N 即对n *∀∈N ,都可找到m *∈N ,使得nm Rc =成立,即{}n c 为“H 数列”因此命题得证.B .附加题部分1.选修24-矩阵与变换 已知矩阵1002A -⎡⎤=⎢⎥⎣⎦,1206B ⎡⎤=⎢⎥⎣⎦,求1A B -. 【解析】本题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.本题属容易题. 【参考答案】 设A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则10100201a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即102201a b c d --⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,故1a =-,0b =,0c =,12d =,从而A 的逆矩阵为110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,所以,11012121060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 2.选修44-坐标系与参数方程 在极坐标中,已知圆C 经过点()24P π,,圆心为直线3sin 32ρθπ⎛⎫-=- ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.【解析】本题主要考查直线和圆的极坐标方程等基础知识,考查转化问题的能力。
2018年江苏省高考说明-数学科一、命题指导思想2018年普通高等学校招生全国统一考试数学学科(江苏卷)命题,将依据《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲》,结合江苏省普通高中课程标准教学要求,按照“有利于科学选拔人才、促进学生健康发展、维护社会公平”的原则,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.试卷保持较高的信度、效度以及必要的区分度和适当的难度.1.突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,支撑学科知识体系的重点内容在试卷中要占有较大的比例.注重知识内在联系的考查,不刻意追求知识的覆盖面.注重对中学数学中所蕴涵的数学思想方法的考查.2.重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3.注重数学的应用意识和创新意识的考查数学的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造适合的数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够发现问题、提出问题,综合与灵活地运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有初步的、感性的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的理性认识认识,并能解决有一定综合性的问题.掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题. 具体考查要求如下:1.必做题部分2.附加题部分三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为5:4:1.四、典型题示例A.必做题部分1. 设复数i满足(34)|43|i z i-=+(i是虚数单位),则z的虚部为_____【解析】本题主要考查复数的基本概念,基本运算.本题属容易题.【答案】452. 设集合}1{aaA若,则实数a的值为_=BA IB3,={},},+2,1{2=【解析】本题主要考查集合的概念、交集运算等基础知识.本题属容易题.3. 右图是一个算法流程图,则输出的k【解析本题属容易题.【答案】54. 函数ln(1)()1x f x x +=-的定义域为【解析】本题主要考查对数函数的单调性,本题属容易题. 【答案】(1,1)(1,)-⋃+∞5.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤 维的长度是棉花质量的重要指标),所得数 据均在区间]40,5[中,其频率分布直方图 如图所示,则在抽测的100根中,有_ _根 棉花纤维的长度小于mm 20.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题. 【答案】由频率分布直方图观察得棉花纤维长度小于mm 20的频率为3.0501.0501.0504.0=⨯+⨯+⨯,故频数为301003.0=⨯.6. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.【解析】本题主要考察古典概型、互斥事件及其发生的概率等基础知识.本题属容易题. 【答案】657. 已知函数)0)(2sin(cos πϕ<≤+==x x y x y 与,它们的图像有一个横坐标为3π的交点,则ϕ的值是________.【解析】本题主要考察特殊角的三角函数值,正弦函数、余弦函数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力.本题属容易题.8.在各项均为正数的等比数列{}n a 中,若64682,,1a a a a a 则+==的值是______.【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力.本题属容易题. 【答案】4.9.在平面直角坐标系xOy 中,双曲线1322=-y x 的右准线与它的两条渐近线分别交于Q P ,,其焦点是1F ,2F ,则四边形Q PF F 21的面积是______.【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦点、焦距和直线与直线的交点等基础知识.本题属中等难度题. 【答案】3210.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为cm 3.【解析】本题主要考查四棱锥的体积,考查空间想象能力 和运算能力.本题属容易题. 【答案】6.11.设直线12y x b =+是曲线ln (0)y x x =>的一条切线,则实数b 的值是 . 【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】ln 21-.12.设)(x f 是定义在R 上且周期为2的函数,在区间)1,1[-上,,,1001,,|52|)(<≤<≤-⎪⎩⎪⎨⎧-+=x x x a x x f 其中R a ∈.若)29()25(f f =-,则)5(a f 的值是 .【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力.本题属中等难度题.DABC 1C 1D1A1B13.如图,在ABC ∆中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4=⋅,1-=⋅,则⋅的值是 . 【解析】本题主要考查平面向量的概念、平面向量的运算以及平面向量的数量积等基础知识,考查数形结合和等价转化的思想,考查运算求解能力.本题属难题. 【答案】87.14. 已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则b a的取值范围是 . 【解析】本题主要考查代数形式的变形和转化能力,考查灵活运用有关的基础知识解决问题的能力.本题属难题. 【答案】[,7]e 二、解答题15.在ABC ∆中,角c b a C B A ,,,,的对边分别为.已知.2623A B b a ===,, (1)求A cos 值; (2)求c 的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力. 本题属容易题. 【参考答案】(1)在ABC ∆中,因为A B b a 2623===,,, 故由正弦定理得A A 2sin 62sin 3=,于是362sin cos sin 2=A A A . 所以36cos =A .(2)由(1)得36cos =A .所以33cos 1sin 2=-=A A .又因为A B 2=,所以311cos 22cos cos 2=-==A B . 从而322cos 1sin 2=-=B B . 在π=++∆C B A ABC 中,因为,所以935sin cos cos sin )sin(sin =+=+=B A B A B A C . 因此由正弦定理得5sin sin ==ACa c . 16.如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC.【解析】本题主要考查直线与直线、直线与平面以及平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD I 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B =I ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.17.如图,在平面直角坐标系xOy 中,椭圆10:>>2222x y +=(a b )a bE 的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.【解析】本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知 识, 考查分析问题能力和运算求解能力.本题属中等难度题. 【参考答案】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c=, 解得2,1a c ==,于是223b a c =-=因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -. 因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ① 直线2l 的方程:001(1)x y x y -=--. ② 由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --. 因为点Q 在椭圆上,由对称性,得20001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00473777x y ==;220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P 的坐标为77(77. 18. 如图:为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区,规划要求,新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任一点的距离均不少于80m ,经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处,(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力..【参考答案】 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy . 由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=-- k AB =603,04b a -=- 解得a =80,b=120. 所以BC 22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60). 因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 19. 设函数ax e x g ax x x f x -=-=)(,ln )(,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论. 【解析】本题主要考查函数的单调性、最值、零点等基础知识,考查灵活运用数形结合、分类讨论等数学思想方法进行探索、分析与解决问题的能力.本题属难题. 【参考答案】解:(1)令f ′(x )=11axa xx--=<0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x -a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e.综上,有a ∈(e ,+∞).(2)当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x ,即x >ln a .因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤e -1.结合上述两种情况,有a ≤e -1.①当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点;②当a <0时,由于f (e a )=a -a e a =a (1-e a )<0,f (1)=-a >0,且函数f (x )在[e a,1]上的图象不间断,所以f (x )在(e a,1)上存在零点.另外,当x >0时,f ′(x )=1x-a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点.③当0<a ≤e -1时,令f ′(x )=1x-a =0,解得x =a -1.当0<x <a -1时,f ′(x )>0,当x >a -1时,f ′(x )<0,所以,x =a -1是f (x )的最大值点,且最大值为f (a -1)=-ln a -1. 当-ln a -1=0,即a =e -1时,f (x )有一个零点x =e. 当-ln a -1>0,即0<a <e -1时,f (x )有两个零点.实际上,对于0<a <e -1,由于f (e -1)=-1-a e -1<0,f (a -1)>0,且函数f (x )在[e -1,a -1]上的图象不间断,所以f (x )在(e -1,a -1)上存在零点.另外,当x ∈(0,a -1)时,f ′(x )=1x-a >0,故f (x )在(0,a -1)上是单调增函数,所以f (x )在(0,a -1)上只有一个零点.下面考虑f (x )在(a -1,+∞)上的情况.先证f (e a -1)=a (a -2-e a -1)<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x -x 2,则h ′(x )=e x -2x ,再设l (x )=h ′(x )=e x -2x ,则l ′(x )=e x -2.当x >1时,l ′(x )=e x -2>e -2>0,所以l (x )=h ′(x )在(1,+∞)上是单调增函数.故当x >2时,h ′(x )=e x -2x >h ′(2)=e 2-4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时, h (x )=e x -x 2>h (e)=e e -e 2>0.即当x >e 时,e x >x 2.当0<a <e -1,即a -1>e 时,f (e a -1)=a -1-a e a -1=a (a -2-e a -1)<0,又f (a -1)>0,且函数f (x )在[a -1,e a -1]上的图象不间断,所以f (x )在(a -1,e a -1)上存在零点.又当x >a -1时,f ′(x )=1x-a <0,故f (x )在(a -1,+∞)上是单调减函数,所以f (x )在(a -1,+∞)上只有一个零点.综合①,②,③,当a ≤0或a =e -1时,f (x )的零点个数为1, 当 0<a <e -1时,f (x )的零点个数为2.20. 设数列{}na 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得n mS a =,则称{}na 是“H 数列”.(1)若数列{}na 的前n 项和2()nn S n *=∈N ,证明:{}na 是“H 数列”;(2)设{}na 是等差数列,其首项11a=,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}na ,总存在两个“H 数列”{}nb 和{}nc ,使得()n n n a b c n *=+∈N 成立.【解析】本题主要考查数列的概念、等差数列等基础知识,考查探究能力与推理论证能力.本题属难题. 【参考答案】 (1)当2n ≥时,111222n n n nn n aS S ---=-=-=当1n =时,112a S ==∴1n =时,11Sa =,当2n ≥时,1n n S a +=∴{}na 是“H 数列” (2)1(1)(1)22nn n n n Sna d n d --=+=+ 对n *∀∈N ,m *∃∈N 使nm S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d =+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}na 的公差为d令111(1)(2)nba n a n a =--=-,对n *∀∈N ,11n nb b a +-=-1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)nn n bc a nd a +=+-=,且{}{}n n b c ,为等差数列{}n b 的前n 项和11(1)()2nn n Tna a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N因此对n ∀,都可找到m *∈N ,使nm Tb =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N 即对n *∀∈N ,都可找到m *∈N ,使得nm Rc =成立,即{}n c 为“H 数列”因此命题得证.B .附加题部分1.选修14- 几何证明选讲如图,AB 是圆O 的直径,D 为圆O 上一点,过点D 作圆O 的切线交AB 的延长线于点C ,若DC DA =,求证:.2BC AB =【解析】本题主要考查三角形与圆的一些基础知识,如三角形的外接圆、圆的切线性质等,考查推理论证能力.本题属容易题.【参考答案】连结BD OD ,,因为AB 是圆O 的直径,所以OB AB ADB 2,90=︒=∠因为DC 是圆O 的切线,所以︒=∠90CDO ,又因为.DC DA =所以.C A ∠=∠于是ADB ∆≌.CDO ∆从而.CO AB =即.2BC OB OB +=得.BC OB =故.2BC AB =2.选修24-矩阵与变换 已知矩阵1002A -⎡⎤=⎢⎥⎣⎦,1206B ⎡⎤=⎢⎥⎣⎦,求1A B -. 【解析】本题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.本题属容易题. 【参考答案】 设A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则10100201a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即102201a b c d --⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,故1a =-,0b =,0c =,12d =,从而A 的逆矩阵为110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,所以,11012121060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 3.选修44-坐标系与参数方程在极坐标中,已知圆C 经过点()24P π,,圆心为直线3sin 32ρθπ⎛⎫-=- ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.【解析】本题主要考查直线和圆的极坐标方程等基础知识,考查转化问题的能力。
2013年江苏省高考说明-数学科一、命题指导思想根据普通高等学校对新生文化素质的要求,2013年普通高等学校招生全国统一考试数学学科(江苏卷)命题将依据中华人民共和国教育部颁发的《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲(课程标准实验版)》,结合江苏普通高中课程教学要求,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.1.突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,注重知识内在联系的考查,注重对中学数学中所蕴涵的数学思想方法的考查.2.重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算. (5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3.注重数学的应用意识和创新意识的考查数学的应用意识的考查,要求能够运用所学的数学知识、思想和方法,构造数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够综合,灵活运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-1《几何证明选讲》、4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示).了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题. 具体考查要求如下:1.必做题部分2.附加题部分(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2(不含选修系列1)中的内容;选做题共4小题,依次考查选修系列4中4-1、4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大 致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大 致为5:4:1.四、典型题示例 A.必做题部分 1. 设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_____ 【解析】本题主要考查复数的基本概念,基本运算.本题属容易题. 【答案】12. 设集合}3{},4,2{},3,1,1{2=++=-=B A a a B A ,则实数a 的值为_ 【解析】本题主要考查集合的概念、运算等基础知识.本题属容易题. 【答案】1.3. 右图是一个算法流程图,则输出的k【解析本题属容易题. 【答案】54. 函数)12(log )(5+=x x f 【解析】本题主要考查对数函数的单调性,本题属容易题.【答案】,+∞1(-)25.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤 维的长度是棉花质量的重要指标),所得数 据均在区间]40,5[中,其频率分布直方图 如图所示,则在抽测的100根中,有_ _根棉花纤维的长度小于mm 20.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题. 【答案】由频率分布直方图观察得棉花纤维长度小于mm 20的频率为 3.0501.0501.0504.0=⨯+⨯+⨯,故频数为301003.0=⨯.6. 现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 .【解析】本题主要考查等比数列的定义,古典概型.本题属容易题.【答案】0.6.7. 如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 cm 3.【解析】本题主要考查四棱锥的体积,考查空间想象能力和运算能力.本题属容易题.【答案】6.8.设n S 为等差数列}{n a 的前n 项和.若11=a ,公差24,22=-=+k k S S d , 则正整数=k【解析】本题主要考查等差数列的前n 项和及其与通项的关系等基础知识.本 题属容易题. 【答案】5 9.设直线12y x b =+是曲线ln (0)y x x =>的一条切线,则实数b 的值是 . 【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】ln 21-.10.函数ϕωϕω,,(),sin()(A x A x f +=是常数,)0,0>>ωA 的部分图象如图所示,则____)0(=f【解析】本题主要考查三角函数的图象与性质,考查特殊角的三角函数值.本题属中等题. 【答案11. 已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则实数k 的值为【解析】本题主要考查用坐标表示的平面向量的加、减、数乘及数量积的运算等基础知识. 本题属中等题. 【答案】45=k . 12.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存 在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 【解析】本题主要考查圆的方程、圆与圆的位置关系、点到直线的距离等基础知识,考查DA BC 1C1D 1A1B灵活运用相关知识解决问题的能力.本题属中等题 【答案】34 13. 已知函数⎩⎨⎧<≥+=0,10,1)(2x x x x f ,则满足不等式)2()1(2x f x f >-的x 的取值范围是__【解析】本题主要考查函数的单调性和奇偶性,简单不等式的解法,以及数形结合与分类讨论的思想;考查灵活运用有关的基础知识解决问题的能力. 本题属难题. 【答案】)12,1(--.14.满足条件2,AB AC ==的三角形ABC 的面积的最大值是____________. 【解析】本题主要考查灵活运用有关的基础知识解决问题的能力.本题属难题.【答案】二、解答题15.在ABC ∆中,2C A π-=, 1sin 3B =. (1)求A sin 值;(2)设AC =,求ABC ∆的面积.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力. 本题属容易题. 【参考答案】(1)由π=++C B A 及2π=-A C ,得,22B A -=π故,40π<<A并且.sin )2cos(2cos B B A =-=π即,31sin 212=-A 得⋅=33sin A (2)由(1)得36cos =A .又由正弦定理得ABCB AC sin sin =所以.23sin sin =⋅=B A AC BC 因为,2A C +=π所以⋅==+=36cos )2sin(sin A A C π因此,23621cos 21sin 21⨯⨯=⋅⋅=⋅⋅=∆A BC AC C BC AC S ABC .2336=⨯ 16.如图,在直三棱柱111C B A ABC -中,1111C A B A =,D E ,分别是棱1,CC BC 上的点(点D 不同于点C ),且⊥AD F DE ,为11C B 的中点. 求证:(1)平面ADE ⊥平面11B BCC ;(2)直线//1F A 平面ADE .【解析】本题主要考查直线与平面、平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】 证明:(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC , 又∵AD ⊂平面ABC ,∴1CC AD ⊥.又∵1AD DE CC DE ⊥⊂,,平面111BCC B CC DE E =,,∴AD ⊥平面11BCC B ,又∵AD ⊂平面ADE , ∴平面ADE ⊥平面11BCC B .(2)∵1111A B AC =,F 为11B C 的中点,∴111A F B C ⊥. 又∵1CC ⊥平面111A B C ,且1A F ⊂平面111A B C ,∴11CC A F ⊥.又∵111 CC B C ⊂,平面11BCC B ,1111CC B C C =,∴1A F ⊥平面111A B C .由(1)知,AD ⊥平面11BCC B ,∴1A F ∥AD .又∵AD ⊂平面1, ADE A F ⊄平面ADE ,∴直线1//A F 平面ADE .17. 请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得D C B A ,,,四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,F E ,在AB 上是被切去的一个等腰直角三角形斜边的两个端点,设cm x FB AE ==.(1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值?(2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值。