北师大版数学高一必修4课时作业:5正弦函数的图像_正弦函数的性质_Word版含解析
- 格式:doc
- 大小:118.50 KB
- 文档页数:4
§5 正弦函数的图像与性质 5.1 正弦函数的图像 5.2 正弦函数的性质1.了解利用单位圆中的正弦线画正弦曲线的方法.(重点)2.掌握“五点法”画正弦曲线的方法和步骤,能用“五点法”作出简单的正弦曲线.(难点)3.能用正弦函数的图像理解和记忆正弦函数的性质.(重点、难点)[基础·初探]教材整理1 “五点法”作正弦函数的图像阅读教材P 25~P 27“例1”以上部分,完成下列问题.在函数y =sin x ,x ∈[0,2π]的图像上,起着关键作用的有五个关键点:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). 描出这五个点后,函数y =sin x ,x ∈[0,2π]的图像就基本上确定了.因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑曲线顺次将它们连接起来,就得到这个函数的简图.我们称这种画正弦函数曲线的方法为“五点法”.如图1-5-1.图1-5-1判断(正确的打“√”,错误的打“×”)(1)函数y =sin x 在[0,2π]和[4π,6π]上的图像形状相同,只是位置不同.( ) (2)函数y =sin x 的图像介于直线y =-1和y =1之间.( ) (3)函数y =sin x 的图像关于x 轴对称.( ) (4)函数y =sin x 的图像与y 轴只有一个交点.( )【解析】 由函数y =sin x 的图像可知,y =sin x 的图像不关于x 轴对称,与y 轴只有一个交点,且图像介于直线y =-1和y =1之间,在[0,2π]和[4π,6π]上的图像形状相同,而位置不同.【答案】 (1)√ (2)√ (3)× (4)√ 教材整理2 正弦函数的性质阅读教材P 28~P 29“例2”以上部分,完成下列问题.判断(正确的打“√”,错误的打“×”) (1)正弦函数y =sin x 的定义域为R .( )(2)正弦函数y =sin x 是单调增函数.( ) (3)正弦函数y =sin x 是周期函数.( )(4)正弦函数y =sin x 的最大值为1,最小值是-1.( )【解析】 由正弦函数性质知,(1)(3)(4)均正确,对于(2),正弦函数在⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z )上是单调增函数,在R 上不具有单调性. 【答案】 (1)√ (2)× (3)√ (4)√[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_________________________________________________________ 解惑:___________________________________________________________ 疑问2:_________________________________________________________ 解惑:___________________________________________________________ 疑问3:_________________________________________________________ 解惑:___________________________________________________________[小组合作型]【精彩点拨】 借助于五点作图法按下列次序完成:【自主解答】 (1)列表,如下表所示:(2)描点,连线,如图所示:1.解答本题的关键是要抓住五个关键点.使函数中x 取0,π2,π,3π2,2π,然后相应求出y 值,再作出图像.2.五点法作图是画三角函数的简图的常用方法,作图过程中要注重整体代换思想的运用,特别是在取值、描点上,这五点主要指函数的零点及最大值、最小值点,连线要保持平滑,注意凸凹方向.[再练一题]1.作出函数y =-1+2sin x ,x ∈[0,2π]的简图. 【解】 按五个关键点列表:(1)y =1-2sin 2 x ; (2)y =log 21sin x -1.【精彩点拨】 先根据条件,求出sin x 的取值范围,再借助于单位圆或正弦线或正弦函数的图像解决.【自主解答】 (1)为使函数有意义,需满足1-2sin 2x ≥0,即sin 2 x ≤12,解得-22≤sin x ≤22,结合单位圆可知,-π4+2k π≤x ≤π4+2k π或3π4+2k π≤x ≤5π4+2k π(k ∈Z ). ∴原函数的定义域为⎣⎢⎡⎦⎥⎤-π4+2k π,π4+2k π∪⎣⎢⎡⎦⎥⎤3π4+2k π,5π4+2k π(k ∈Z ). (2)为使函数有意义,需满足⎩⎪⎨⎪⎧log 21sin x -1≥0,sin x >0,即⎩⎪⎨⎪⎧sin x ≤12,sin x >0.正弦函数和单位圆如图所示:∴定义域为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2k π<x ≤2k π+π6,k ∈Z ∪⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+5π6≤x <2k π+π,k ∈Z.1.求函数的定义域通常是解不等式组,利用“数形结合”,借助于数轴画线求交集的方法进行.在求解三角函数,特别是综合性较强的三角函数的定义域时,我们同样可以利用“数形结合”,在单位圆中画三角函数线,求表示各三角不等式解集的扇形区域的交集来完成.2.求三角函数的定义域要注意三角函数本身的特征和性质,如在转化为不等式或不等式组后,要注意三角函数的符号及单调性,在进行三角函数的变形时,要注意三角函数的每一步变形都要保持恒等,即不能改变原函数的自变量的取值范围.[再练一题]2.求函数y = 2 sin x +3的定义域.【导学号:66470014】【解】 要使函数有意义,只需2 sin x +3≥0.即sin x ≥-32,如图所示,在区间⎣⎢⎡⎦⎥⎤-π2,3π2上,适合条件的x 的取值范围是-π3≤x ≤4π3.所以该函数的定义域是⎣⎢⎡⎦⎥⎤2k π-π3,2k π+4π3(k ∈Z ).求下列函数的周期,并判断其奇偶性.(1)y =sin ⎝ ⎛⎭⎪⎫2x +π3(x ∈R );(2)y =|sin x |(x ∈R ).【精彩点拨】 (1)利用代换z =2x +π3,将求原来函数的周期转化为求y =sin z 的周期求解,或利用公式求解.(2)作出函数图像观察求解.【自主解答】 (1)法一:令z =2x +π3,∵x ∈R ,∴z ∈R ,函数y =sin z 的最小正周期是2π,就是说变量z 只要且至少要增加到z +2π,函数y =sin z (z ∈R )的值才能重复取得,而z +2π=2x +π3+2π=2(x +π)+π3,所以自变量x 只要且至少要增加到x +π,函数值才能重复取得,从而函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3(x ∈R )的周期是π.法二:f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3中,ω=2, ∴T =2π|2|=π.又sin ⎝ ⎛⎭⎪⎫-2x +π3≠sin ⎝ ⎛⎭⎪⎫2x +π3,且sin ⎝ ⎛⎭⎪⎫-2x +π3≠-sin ⎝ ⎛⎭⎪⎫2x +π3, ∴y =sin ⎝ ⎛⎭⎪⎫2x +π3是非奇非偶函数.(2)作出y =|sin x |的图像如图:由图像可知,y =|sin x |的周期为π.其图像关于y 轴对称,∴y =|sin x |是偶函数.1.利用周期函数的定义求三角函数的周期,关键是抓住变量“x ”增加到“x+T ”,函数值重复出现,T 是函数的一个周期这一理论依据.2.常见三角函数周期的求法(1)对于形如函数y =A sin(ωx +φ),ω≠0的周期求法,通常用定义T =2π|ω|来求解;(2)对于形如y =|A sin ωx |的周期情况,常结合图像法来解决.[再练一题]3.求下列函数的周期,并判断其奇偶性. (1)f (x )=2sin ⎝ ⎛⎭⎪⎫x 2-π6;(2)f (x )=|sin 2x |.【解】 (1)在f (x )=2sin ⎝ ⎛⎭⎪⎫x 2-π6中,∵ω=12,∴T =2π12=4π.又f (-x )≠-f (x ),且f (-x )≠f (x ), ∴f (x )=2sin ⎝ ⎛⎭⎪⎫x 2-π6是非奇非偶函数.(2)作出f (x )=|sin 2x |的图像如图:由图知,y =|sin 2x |的周期为π2,又其图像关于y 轴对称,因而是偶函数.(1)①sin ⎝ ⎛⎭⎪⎫-3π5与sin ⎝ ⎛⎭⎪⎫-9π4;②sin 1,sin 2,sin 3,sin 4(由大到小排列).(2)求函数y =sin ⎝ ⎛⎭⎪⎫π6-x 的单调递增区间.【精彩点拨】 (1)将所给角通过诱导公式化到同一单调区间内,然后利用y =sin x 的单调性比较大小.(2)将⎝ ⎛⎭⎪⎫π6-x 视为z ,利用y =sin z 的单调性求解.【自主解答】 (1)①sin ⎝ ⎛⎭⎪⎫-3π5=-sin 2π5, sin ⎝ ⎛⎭⎪⎫-9π4=-sin π4,sin 2π5>sin π4,所以sin ⎝ ⎛⎭⎪⎫-3π5<sin ⎝ ⎛⎭⎪⎫-9π4.②因为sin 2=sin(π-2),sin 3=sin(π-3), 且0<π-3<π-2<π2.函数y =sin x 在⎣⎢⎡⎦⎥⎤0,π2上是增加的,所以sin(π-2)>sin 1>sin(π-3)>0,即sin2>sin 1>sin 3>sin 4.(2)y =sin ⎝ ⎛⎭⎪⎫π6-x =-sin ⎝ ⎛⎭⎪⎫x -π6. 由2k π+π2≤x -π6≤2k π+32π,k ∈Z ,得 2k π+23π≤x ≤2k π+53π,k ∈Z .所以原函数的单调递增区间为⎣⎢⎡⎦⎥⎤2k π+23π,2k π+53π,k ∈Z .1.比较sin α与sin β的大小时,可利用诱导公式,把sin α与sin β转化为同一单调区间上的正弦值,再借助于正弦函数的单调性来进行比较.2.比较sin α与cos β的大小,常把cos β转化为sin ⎝ ⎛⎭⎪⎫π2±β后,再依据单调性进行比较.3.当不能将两角转到同一单调区间上时,还可以借助于图像或值的符号比较.4.在求形如y =A sin(ωx +φ)(A >0,ω>0)的函数的单调区间时,应采用“换元法”整体代换,将“ωx +φ”看作一个整体“z ”,即通过求y =A sin z 的单调区间求原函数的单调区间.[再练一题]4.比较sin 215π与sin 42π5的大小. 【解】 ∵sin 21π5=sin ⎝ ⎛⎭⎪⎫4π+π5=sin π5,sin 42π5=sin ⎝ ⎛⎭⎪⎫8π+2π5=sin 2π5.∵0<π5<2π5<π2.又y =sin x 在⎝ ⎛⎭⎪⎫0,π2上单调递增.∴sin π5<sin 2π5,即sin 21π5<sin 42π5.[探究共研型]探究1 【提示】求解函数值域时首先应看函数的定义域,在函数定义域内来求值域. 探究2 对于y =A sin 2x +B sin x +C 型的函数怎样求值域? 【提示】 利用换元法转化为二次函数求最值.求下列函数的值域. (1)y =3-2 sin x ; (2)y =-sin 2x +3sin x +54.【精彩点拨】 (1)利用|sin x |≤1即可求解. (2)配方求解,要注意|sin x |≤1这一情况. 【自主解答】 (1)∵-1≤sin x ≤1, ∴-1≤-sin x ≤1, 1≤3-2 sin x ≤5,∴函数y =3-2 sin x 的值域为[1,5].(2)令t =sin x ,则-1≤t ≤1,y =-t 2+3t +54=-⎝⎛⎭⎪⎫t -322+2, ∴当t =32时,y max =2.此时sin x =32,即x =2k π+π3或x =2k π+2π3,k ∈Z .当t =-1时,y min =14- 3.此时sin x =-1,即x =2k π+3π2,k ∈Z .∴函数y =-sin 2x + 3 sin x +54的值域为⎣⎢⎡⎦⎥⎤14-3,2.此类求复合函数最大值、最小值问题关键在于依据函数值的计算过程,把原函数转化为两个基本初等函数的最大(小)值问题.解答过程要特别注意:内函数(本例中t =sin x )的值域恰好是外函数⎝ ⎛⎭⎪⎫本例中y =-t 2+3t +54的定义域.[再练一题]5.求函数y =sin 2x -4 sin x -1的值域.【解】 y =sin 2x -4 sin x -1=(sin x -2)2-5.由-1≤sin x ≤1,得当sin x =-1时函数的最大值为4,当sin x =1时,函数的最小值为-4,所以函数的值域为[-4,4] .[构建·体系]1.正弦函数y =sin x ,x ∈R 的图像上的一条对称轴是( )【导学号:66470015】A .y 轴B .x 轴C .直线x =π2D .直线x =π【解析】结合函数y =sin x ,x ∈R 的图像可知直线x =π2是函数的一条对称轴.【答案】 C2.函数f (x )=3+sin x 的最小正周期是( )A .π2B .πC .3π2D .2π【解析】 由3+sin(2π+x )=3+sin x 知f (x )的最小正周期为2π.【答案】 D3.f (x )=-2 sin x 在⎣⎢⎡⎦⎥⎤π4,π2上的最大值为________. 【解析】 f (x )=-2 sin x 在⎣⎢⎡⎦⎥⎤π4,π2上是减少的,所以f (x )max =-2·sin π4=- 2. 【答案】 - 24.函数f (x )=sin 2x +1的奇偶性是________.【解析】 f (-x )=[sin(-x )]2+1=sin 2x +1=f (x ),所以f (x )为偶函数.【答案】 偶函数5.比较下列各组数的大小.(1)sin 2 016°和cos 160°;(2)sin 74和cos 53.【解】 (1)sin 2 016°=sin(360°×5+216°)=sin 216°=sin(180°+36°)=-sin 36°,cos 160°=cos(180°-20°)=-cos 20°=-sin 70°.∵sin 36°<sin 70°,∴-sin 36°>-sin 70°,即sin 2 016°>cos 160°.(2)cos 53=sin ⎝ ⎛⎭⎪⎫π2+53, 又π2<34<π2+53<3π2,y =sin x 在⎣⎢⎡⎦⎥⎤π2,3π2上是减少的, ∴sin 74>sin ⎝ ⎛⎭⎪⎫π2+53=cos 53, 即sin 74>cos 53.我还有这些不足:(1)______________________________________________________________(2)______________________________________________________________ 我的课下提升方案:(1)______________________________________________________________ (2)______________________________________________________________。