采油工程名词解释
- 格式:doc
- 大小:13.50 KB
- 文档页数:2
1、油井流入动态:油井流入动态是指油井产量与井底流动压力的关系。
2、井底流动压力:井底流动压力是指油井生产时的井底压力。
3、生产压差:油层压力与井底流压之差称为生产压差。
4、采油指数:单位生产压差下的日产油量称为采油指数。
5、流动效率:油井的流动效率是指该井的理想生产压差与实际生产压差之比。
6、滑脱现象:在液气混合物向上流动过程中,气泡上升的速度大于液体速度,这种气体超越液体上升的现象称为滑脱现象。
7、滑脱损失:由于滑脱使混合物的密度增大而产生的附加压力损失称为滑脱损失。
8:气相存容比(含气率):计算管段中气相体积与管段容积之比。
9:液相存容比(持液率):计算管段中液相体积与管段容积之比。
10:滑脱速度:滑脱速度定义为气相流速与液相流速之差。
11:气相表观流速:气体流量与管路截面积之比12:气相流速:气体流量与气占截面积之比13:气相流速与表观流速的关系:气相流速等于气相表观流速与气相存容比之比1、节点:把原油流程的起点和终点及两个流动过程的连接点称为节点。
2、节点流入曲线:从油藏节点计算到求解节点的产量随压力的变化曲线称为节点流入曲线。
3、节点流出曲线:从分离器节点计算到求解节点的产量随压力变化的曲线称为节点流出曲线。
4、节点的解:流入流出曲线的交点就是节点的解。
5、功能节点:压力不连续即存在压差的节点称为功能节点。
1、有杆泵抽油装置的工作原理的工作原理是什么?答:用油管把深井泵泵筒下入到井内液面以下,在泵筒下部装有只能向上打开的吸入阀(固定阀)。
用抽油杆柱把柱塞下入泵筒,柱塞上装有只能向上打开的排出阀(游动阀)。
通过抽油杆柱把抽油机驴头悬点产生的上下往复直线运动传递给抽油泵向上抽油。
2、平衡条件:平衡条件是为了使抽油机平衡运转,在下冲程中需要储存的能量应该是悬点在上、下冲程中所做功之和的一半。
3、水力功率:水力功率是指在一定时间内将一定量的液体提升一定的距离所需要的功率,也称为有效功率。
4、充满系数:每冲程吸入泵内的液体体积与上冲程活塞让出体积之比称为充满系数。
采油名词解释油气井流入动态在一定的油层压力下流体产量与相应的井底流压的关系,反映了油藏向该井供油气的能力。
流入动态曲线(IPR曲线):表示产量与井底流压关系的曲线表皮效应由于钻井、完井、作业或采取增产措施使井底附近地层渗透率变差或变好从而引起附加流动压力的效应油井的流动效率:油井的理想生产压差与实际生产压差之比。
采油指数:单位生产压差下的油井日产油量油井生产中可能出现的流型自下而上依次为:纯油(液)流、泡流、段塞流、环流和雾流。
液相存容比(持液率):在气液两相流动状态下,液相所占单位管段容积的份额气相存容比(空隙率):气相所占单位管段容积的份额节点系统分析法:应用系统工程原理,把整个油井生产系统分成若干子系统,研究各子系统间的相互关系及其对整个系统工作的影响,为系统优化运行及参数调控提供依据。
临界流动:流体的流速达到压力波在流体介质中的传播速度即声波速度时的流动状态。
游梁式抽油装置主要由抽油机、抽油泵、抽油杆组成。
抽油机主要由游梁-连杆-曲柄机构、减速箱、动力设备和辅助装置抽油泵分为管式泵和杆式泵,主要由工作筒(外筒和衬套)、柱塞、游动阀(排出阀)和固定阀(吸入阀)组成。
示功图:悬点载荷随位移变化的关系曲线,表示悬点在一个冲程内做的功典型示功图:某一因素影响十分明显,其形状代表了该因素影响下的基本特征的示功图视吸水指数:日注水量除以井口压力米吸水指数:地层吸水指数除以油层有效厚度,表示1m厚的地层在1MPa的注水压差下的日注水量面容比:岩石反应表面积与酸液体积之比裂缝铺砂浓度:单位面积裂缝内所含支撑剂的质量裂缝内的砂浓度(裂缝内砂比):单位体积裂缝内所含的支撑剂的质量地面砂比:单位体积混砂液中所含的支撑剂的质量或支撑剂体积与压裂液体积之比滑脱效应:气液两相管流中,由于气体与液体间的密度差而产生气体超越液体流动的现象离子扩散效应:由于边界层内存在离子浓度差,反应物和生成物在各自的离子浓度梯度作用下向相反的方向传递的现象滑脱损失:因滑脱效应而产生的附加压力损失吸水剖面:在一定的注入压力下沿井筒各射开层段的吸水量分布油井流动效率:油井的理想生产压差与实际生产压差之比气举平衡点:油管与套管压力相等的点,正常生产时环空液面的位置气举启动压力:气举过程中,环空液面达到油管管鞋时地面压缩机的压力气举采油:依靠人工注入井筒的气体的膨胀能量将油气举升的地面的方法自喷采油:完全依靠底层本身能量将油气采到地面的方法泵效:实际排量与理论排量的比值气锁现象:当气体完全占据泵筒,在上下冲程中,只有气体的压缩膨胀,吸入凡尔和排出凡尔始终关闭,泵的排量等于零充满系数:泵的充满程度,其值为泵内吸入液体体积与活塞让出体积之比沉没度:泵沉没在动液面以下的深度酸液有效作用距离:酸液由活性酸变为残酸前所流经的裂缝距离动液面:油井正常生产时环空中的液面静液面:关井后环形空间中液面恢复到静止时的液面水力功率:在一定的时间内将一定的液体提升到一定的距离所需要的功率光杆功率:通过光杆来提升液体和客服井下损耗所需要的功率油嘴临界流动:流体的流速达到压力波的流体介质中的传播速度及声波速度时的流动状态油井流入动态曲线:油井产量与井底流压的关系曲线酸岩反应速度:单位时间内酸浓度降低值或单位时间内岩石单位反应面积的溶蚀量压裂酸化高于岩石破裂压力下,将酸注入地层,在底层内形成裂缝,通过酸液对裂缝壁面的不均匀溶蚀形成高导流能力的裂缝酸洗:将少量酸注入井筒内,清楚井筒孔眼内酸溶性颗粒和钻屑及结垢等,并疏通射孔孔眼注水井指示曲线:稳定流动条件下,注入压力与注水量之间的关系曲线破裂压力梯度:地层破裂压力与地层深度的比值增产倍数:压裂前后油井的采油指数之比等值扭矩:用一个不变化的固定扭矩代替变化的实际扭矩,使其电动机的发热条件相同,则此固定扭矩即为实际变化的扭矩的等值扭矩扭矩因数:悬点载荷在曲柄轴上造成的扭矩和悬点载荷的比值基质酸化:在低于岩石破裂压力的条件下将酸注入地层,依靠酸液的溶蚀作用恢复或提高井筒附近的油层渗透率的方法填砂裂缝的导流能力:油层条件下填砂裂缝渗透率与裂缝宽度的乘积酸压裂缝的有效长度:酸压过程中,由于裂缝壁面被酸不均匀溶蚀,施工结束后仍具有相当导流能力的裂缝长流动效率:理想生产压差与实际生产压差之比滤失百分数:压裂液滤失体积除以地面单元体积液在缝中的剩余体积相对吸水量:在同一压力下,某一层吸水量占全井吸水量的百分数吸水指数是指单位注水压差下的日注水量,为指示曲线斜率倒数。
名词解释1. IPR 曲线:表示产量与流压关系的曲线称为流入动态曲线。
2. 表皮系数:描述油从地层向井筒流动渗流情况的参数与油井完井方式,井底污染或增产措施等有关。
3. 流压:原油从油层流到井底后具有的压力。
4. 流型:油气混合物的流动结构是指流动过程中油气的分布状态。
5. 采油指数:是一个反映油层性质,厚度,流体参数,完井条件及泄油面积与产量之间的关系的综合指标。
6. 油井流入动态:指油井产量与井底流动压力的关系,它反映了油藏向该井的供油的能力。
7. 滑脱损失:由于油井井筒间密度差异,在混合物向上流动过程中,小密度流体流动速度大于大密度流体速度,引起小密度流体超越大密度流体上升而引起的压力损失8. 流动效率:指油井的理想生产压差与实际生产压差之比。
9. 临界流动:流体的流速达到压力波在流体介质中的传播速度时的流动状态。
10. 自喷采油法:油层能量充足时,利用油层的本身的能量就能将油举升到地面的采油方式。
11. 气举采油法:依靠从地面注入井内的高压气体与油层产出流体在井筒混合,利用气体密度小及气体膨胀使井筒中的混合液密度降低,将流入到井内的原油举升到地面的采油方式。
12. 气举启动压力:气举启动过程中,当环形空间的液面将最终达到管鞋处的井口注入压力13. 平衡率:即抽油机驴头上下行程中电动机电流峰值的小电流与大电流的比值。
14. 背面冲击:当扭矩曲线出现负值时说明减速箱的主动轮变为从动轮,如果负扭矩值较大,将发生啮合面的背面冲击。
15. 等值扭矩:用一个不变化的固定扭矩代替变化的实际扭矩,使电动机的发热条件相同,则固定扭矩即为实际变化的扭矩等值扭矩。
16. 水力功率:指在一定时间内将一定量的液体提升一定距离所需要的功率。
17. 光杆功率:通过光杆来提升液体和克服井下损耗所需要的功率。
18. 泵效:在抽油井生产过程中,实际产量与理论产量的比值19. 气锁现象:当进泵气量很大而沉没压力很低时,由于泵内气体处于反复压缩和膨胀状态造成泵的吸入阀和排出阀无法打开,始终处于关闭状态的现象。
采油工程名词解释1、采油指数采油指数是一个反映油层性质、厚度、流体参数、完井条件及泄油面积等与产量之间的关系的综合指标。
其数值等于单位生产压差下油井的油井产油量。
2、折算液面(深度)把一定套压下测得的液面折算成套管压力为零时的液面。
或把套压不为零时的液面(深度)折算成套压为零时的液面(深度)。
3、吸水指数表示单位注水压差下的日注水量。
4、米吸水指数地层吸水指数除以油层有效厚度,表示1米厚地层在1MPa注水压差下的日注水量。
5、酸岩复相反应速度单位时间内酸浓度的降低值,或单位时间内岩石单位反应面积的溶蚀量来表示。
6、滑脱效应在气液多相垂直管流中,由于气象密度小于液相密度,产生气相超越液相流动的现象叫滑脱效应。
由滑脱效应产生的附加压力损失叫滑脱压力损失。
7、油嘴临界流动指油气混合物通过油嘴的流动速度达到压力波在该流体介质中的传播速度。
8、滤失速度地层综合滤失系数与时间t的开方的比值9、光杆功率通过光杆来提升液体和克服井下损耗所需要消耗的功率。
10、滤失百分数压裂液滤失体积除以地面单元体积液在缝中的剩余体积。
11、砾石充填将割缝衬管或是绕丝筛的管下入井内防砂层段处,用一定质量的流体携带地面选好的具有一定粒度的砾石,充填于管和油层之间,形成一定厚度的砾石层,以防止油层砂粒流入井内防砂方法。
12、酸液有效作用距离酸液由活性酸变为残酸前所流经的裂缝距离。
13、过滤速度14、泵的充满程度泵工作过程中被液体充满的程度等于进入泵内的液体体积和柱塞让出的体积之比。
15、压裂井增产倍数压裂后的采油指数与压裂前采油指数的比值。
16、酸岩反应速度单位时间内酸浓度的降低值,或单位时间内岩石单位反应面积的溶蚀量。
17、动液面、静液面静液面是关井后环形空间中液面恢复到静止(与地层压力相平衡)时的液面。
可以用从井口算起的深度,也可以用从油层中部算起的液面高度来表示其位置。
动液面是油井生产时,油套环形空间的液面。
可以用从井口算起的深度,亦可用从油层中部算起的高度来表示其位置。
采油工程油田开采是指在地下油藏中钻井、注水、抽油、压裂等方式,将地下的石油资源开采出来。
而采油工程是指对油田进行勘探、设计、施工、运营等综合技术及管理过程,目的是提高油田产量、缩短采油周期、降低成本,使得石油开采更加高效、安全、经济。
一、采油工程的勘探阶段1. 地质勘探:通过勘探手段分析掌握地下油藏的分布、储存方式、构造和性质等信息,确定采油区的范围和油藏的类型、储量等基本情况。
2. 实验室分析:包括对原油、岩石等样品进行分析,了解原油品质、物性及岩石力学性质等重要参数,为采油工程设计提供基础数据。
3. 地质建模:根据地质勘探和实验室分析所得数据,进行三维地质模型的建立,分析油藏的分布、特征、储量等信息,并确定最优的开采方案。
二、采油工程的设计阶段1. 井的设计:根据油藏特征和地质建模结果,确定井的位置、深度、产量、保护措施等信息,设计钻井方案,并进行井壁完整性和稳定性分析。
2. 油井完井工程:包括完井设计、固井设计、井口装置设计等,以确保井内管道的完整性,提高油井的采油效率和井眼环境的安全性。
3. 人工提高采油设计:人工提高采油的方法包括水驱、蒸汽吞吐、二次采油、聚集物注入等,设计人工提高采油方案,确保油井的正常运行。
三、采油工程的施工阶段1. 钻井施工:根据钻井设计方案,进行钻井施工,完成井身和井口的建设。
2. 井口建设:根据井口装置设计方案,进行井口建设,包括井口设施、防溢环和泥浆池建设。
3. 完井施工:根据井的完井设计方案,进行完井施工,包括完井管道连接、固井、调整支架和通风等操作。
4. 井眼环境治理:随着采油时间的延长,油井井眼会存在积水、堵塞等问题,需要进行环境治理,保证正常采油作业。
四、采油工程的运营阶段1. 井的日常管理:包括井口检查、巡视、测量、刺探等操作,维护油井的正常运行和减少生产中的故障。
2. 油田生态环境维护:采油过程中会对油田环境造成一定程度上的影响,需要进行生态环境维护,保护自然环境生态平衡。
采油工程是油田开采过程中根据开发目标通过生产井和注入井对油藏采取的各项工程技术措施的总称。
它是一门涉及多种技术和工艺的综合性工程领域,目的是经济有效地作用于油藏,以提高油井产量和原油采收率。
采油工程的核心任务是建立和维护油气开采通道,构建油气田开发的生命线。
这包括在抽油机的驱动下,通过下入井中的抽油杆带动抽油泵(又称深井泵)柱塞上、下往复运动,将井液抽汲至地面。
采油工程技术是实现油田开发方案的重要手段,是决定油田产量高低、采油速度快慢、最终采收率大小、经济效益优劣等重要问题的关键技术。
采油工程技术经过长期的发展,已经形成了多种工艺和技术,包括自喷和气举采油等。
此外,随着科技的进步和油田开发难度的增加,采油工程技术也在不断创新和发展,以适应不同油藏类型和复杂地质条件的需求。
总之,采油工程在油气田开发中扮演着至关重要的角色,是实现油气资源高效、经济、环保开发的关键环节。
名词解释油井流入动态:油井产量与井底流动压力的关系节点分析:应用系统工程原理,把整个油井生产系统分成若干个子系统,在每个流动子系统的起始个衔接处设置节点,研究各子系统间的相互关系及其各自对整个系统工作的影响,为优化系统运行参数和进行系统的调控提供依据临界流动:流体的流速达到压力波在流体介质中的传播速度时的流动状态IPR曲线:表示产量与流压关系的曲线表皮系数:描述油从地层向井筒流动渗流情况的参数,与油井完成方式、井底污染或增产措施等有关采油指数:是一个反应油层性质厚度流体参数完井条件及泄油面积与产量之间的关系的总和指标,其数值等于单位生产压差下的油井产油量流动效率:指该井的理想生产压差与实际生产压差之比流型(态):油气混合物的流动结构是指流动过程中油气的分布状态,称为流型气举采油法:是依靠从地面注入井内的高压气体与油层产出流体在井筒中的混合,利用气体的膨胀使井筒中的混合液密度降低,将流入到井内的原油举升到地面的一种采油方式气举启动压力:气举启动过程中,当环形空间的液面将最终达到管鞋处的井口注入压力扭矩因数:是悬点载荷在曲柄上造成的扭矩与悬点载荷的比值背面冲击:当扭矩曲线出现负值是说明减速箱的主动轮变为从动轮,如果负扭矩值较大,将发生啮合面的背面冲击等值扭矩:用一个不变化的固定扭矩代替变化的实际扭矩,使电动机的发热条件相同,则固定扭矩即为实际变化的扭矩等值扭矩水力功率:是指在一定时间内将一定量液体提升一定距离所需要的功率光杆功率:通过光杆来提升液体和克服井下损耗所需要的功率泵效:在抽油井生产过程中,实际产量与理论产量的比值静液面:抽油机关井后,环空液面缓升到一定位置稳定下来的液面动液面:抽油井在正常生产时,油管和套管环形空间有一个液面,这个液面就叫动液折算液面:把套压不为零时的页面折算成套压为零是的液面示功图:由抽油机井光杆载荷随位移的变化曲线所构成的封闭曲线冲程损失:由于抽油杆和油管的弹性伸缩造成光杆冲程和柱塞冲程的差值沉没度:泵深与动液面的差值泵效:在抽油井生产过程中,实际产量与理论产量的比值注水井指示曲线:稳定流动条件下,注入压力与注水量之间的关系曲线相对吸水量:在同一注入压力下某一层吸水量占全井吸水量的百分数吸水指数:单位注水压差下的日注水量,大小表示油层吸水能力的好坏比吸水指数:地层吸水指数除与地层有效厚度所得的数值吸水剖面:在一定注入压力下,各层段的吸水量分布注水井调剖:在一定注入压力下某一层吸水量占全井吸水量的百分数水力压裂:利用地面高压泵组将高粘度液体以大大超过地层吸收能力的排量注入井内,在井底憋起高压,当此压力大于井壁附近的地应力和地层岩石抗张强度时,便在井底附近地层产生裂缝压裂:用压力将地层压开一条或几条水平的或垂直的裂缝,并用支撑剂将裂缝支撑起来,减小油、气、水的流动阻力,沟通油、气、水的流动通道,从而达到增产增注的效果。
油井流入动态:油井产量(qo) 与井底流动压力(pwf) 的关系,反映了油藏向该井供油的能力。
采油指数:单位生产压差下的油井产油量,是反映油层性质、厚度、流体参数、完井条件及泄油面积等与产量之间的关系的综合指标。
油井的流动效率FE:油井的理想生产压差与实际生产压差之比。
流动型态(流动结构、流型):流动过程中油、气的分布状态。
影响流型的因素:气液体积比、流速、气液界面性质等。
油井生产中可能出现的流型自下而上依次为:纯油(液)流、泡流、段塞流、环流和雾流。
滑脱现象:混合流体流动过程中,由于流体间的密度差异,引起的小密度流体流速大于大密度流体流速的现象。
因滑脱而产生的附加压力损失称为滑脱损失
单位管长上的总压力损失由举高、摩擦、加速度三部分构成,用公式表达为:
为什么采用分布迭代法计算多相垂直管流压力:相流体影响流动的物理参数(密度、粘度等)及混合物密度和流速都随压力和温度而变,沿程压力梯度并不是常数,因此,多相管流需要分段计算;同时,要先求得相应段的流体性质参数,然而,这些参数又是压力和温度的函数,压力却又是计算中需要求得的未知数。
所以,多相管流通常采用迭代法进行计算。
持气率:管段中气相体积与管段容积之比值。
持液率:管段中液相体积与管段容积之比值。
自喷井生产的四个基本流动过程:油层到井底的流动—地层渗流,井底到井口的流动—井筒多相管流,井口到分离器—地面水平或倾斜管流,原油流到井口后还有通过油嘴的动态—嘴流。
油井稳定生产时,整个流动系统必须满足混合物的质量和能量守恒原理。
从油藏到分离器无油嘴系统的节点分析方法,给定的已知条件:油藏深度;油藏压力;单相流时的采油指数油管直径;分离器压力;出油管线直径及长度;气油比;含水;饱和压力以及油气水密度。
1)井底为求解点整个生产系统将从井底分成两部分:
(1) 油藏中的流动;(2) 从油管入口到分离器的管流系统。
选取了中间节点(井底)为求解点,求解时,要从两端(井底和分离器)开始,设定一组流量,对这两部分分别计算至求解点上的压力(井底流压)与流量的关系曲线。
选取井底为求解点的目的(1)预测油藏压力降低后的未来油井产量(2)研究油井由于污染或采取增产措施对完善性的影响。
2)井口为求解点整个生产系统以井口为界分为油管和油藏部分以及地面管线和分离器部分流入曲线:油藏压力为起点计算不同流量下的井口压力,即油管及油藏的动态曲线。
流出曲线:以分离器压力为起点计算水平管流动态曲线。
交点:产量及井口压力。
求解点选在井口的目的:研究不同直径油管和出油管线对生产动态的影响,便于选择油管及出油管线的直径。
气举采油原理:从地面注入井内的高压气体与油层产出液在井筒中混合,利用气体的膨胀使井筒中的混合液密度降低,将流到井内的原油举升到地面。
气举分类(按注气方式:连续气举,间歇气举 ) 连续气举:将高压气体连续地注入井内,排出井筒中液体。
适应于供液能力较好、产量较高的油井。
间歇气举:向井筒周期性地注入气体,推动停注期间在井筒内聚集的油层流体段塞升至地面,从而排出井中液体。
主要用于油层供给能力差,产量低的油井
启动压力:当环形空间内的液面达到管鞋时的井口注入压力。
气举阀的作用:(1)降低启动压力。
(2)进气。
原理:逐步排除油套环形空间的液体。
抽油装置由抽油机,抽油杆,抽油泵和其它附件组成。
抽油泵:机械能转化为流体压能的设备。
主要组成:工作筒(外筒和衬套)、柱塞及游动阀(排出阀)和固定阀(吸入阀)。
工作原理:深井泵是依靠抽油机带动抽油杆使活塞在衬套内部做往复运动来实现抽油的。
泵的工作过程是由三个基本环节所组成,即柱塞在泵内让出容积,井内液体进泵和从泵内排出井内液体。