数值分析考题
- 格式:doc
- 大小:57.00 KB
- 文档页数:7
..数值分析试题集(试卷一)一( 10 分)已知 x 1* 1.3409 ,x 2* 1.0125 都是由四舍五入产生的近似值, 判断 x 1*x 2* 及 x 1* x 2*有几位有效数字。
二( 10 分)由下表求插值多项式x 01 2 y2 34 y1- 1三( 15 分)设 f ( x)C 4 [a,b] , H ( x )是满足下列条件的三次多项式H (a) f (a) , H (b) f (b) , H (c)f (c) , H (c) f (c)( a c b )求 f (x)H ( x) ,并证明之。
12四( 15 分)计算13 dx ,10 2。
x五( 15 分)在 [0,2]上取 x 0 0 , x 1 1 , x 22 ,用二种方法构造求积公式,并给出其公式的代数精度。
六( 10 分)证明改进的尢拉法的精度是 2 阶的。
七( 10 分)对模型 yy , 0 ,讨论改进的尢拉法的稳定性。
八( 15分)求方程 x 34x 2 7x 1 0 在 -1.2 附近的近似值,10 3。
-----------------------------------------------------------------------------------------------------------------------------(试卷二)一填空( 4*2 分)1 {k ( x) } k 0 是区间 [0, 1]上的权函数为( x) x 2 的最高项系数为 1 的正交多项式族,其中10 (x)1,则x0 ( x) dx ------------------- , 1 ( x) ------------------。
2 12 A,则 A1 4----------- ,( A) ----------------- 。
a 1 2 时, A 可作 LU 分解。
3 设 A,当 a 满足条件 ---------------- 14..4 设非线性方程 f ( x) (x33x23x1)( x 3) 0 ,其根 x1* 3 , x2*1,则求 x1* 的近似值时,二阶局部收敛的牛顿迭代公式是--------------------------- 。
数值分析试题及答案一、选择题1. 下列哪个方法不适合用于求解非线性方程的根?A. 二分法B. 牛顿法C. 弦截法D. 正割法2. 当使用二分法求解非线性方程的根时,需要满足的条件是:A. 函数f(x)在区间[a, b]上连续B. 函数f(x)在区间[a, b]上单调递增C. 函数f(x)在区间[a, b]上存在根D. 函数f(x)在区间[a, b]上可导3. 数值积分是通过将定积分转化为求和的方法来近似计算积分值的过程。
下列哪个方法是常用的数值积分方法?A. 矩形法则B. 辛普森规则C. 梯形规则D. 高斯-勒让德法则4. 龙格-库塔法是常用于求解常微分方程的数值解法。
以下哪个选项是描述龙格-库塔法的特点?A. 该方法是一种多步法B. 该方法是一种多项式插值法C. 该方法是一种单步法D. 该方法是一种数值积分法5. 用有限差分法求解偏微分方程时,通常需要进行网格剖分。
以下哪个选项是常用的网格剖分方法?A. 多边形剖分法B. 三角剖分法C. 矩形剖分法D. 圆形剖分法二、解答题1. 将函数f(x) = e^x 在区间[0, 1]上用复化梯形规则进行数值积分,分为6个子区间,求得的近似积分值为多少?解:将区间[0, 1]等分为6个子区间,每个子区间的长度为h = (1-0)/6 = 1/6。
根据复化梯形规则的公式,近似积分值为:I ≈ (1/2) * h * [f(0) + 2f(1/6) + 2f(2/6) + 2f(3/6) + 2f(4/6) + 2f(5/6) +f(1)]≈ (1/2) * (1/6) * [e^0 + 2e^(1/6) + 2e^(2/6) + 2e^(3/6) + 2e^(4/6) +2e^(5/6) + e^1]2. 使用二分法求解方程 x^3 - 3x + 1 = 0 在区间[1, 2]上的根。
要求精确到小数点后三位。
解:首先需要判断方程在区间[1, 2]上是否存在根。
数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
数值分析考试题一、 填空题(每小题3分,共15分) 1.已知x =62.1341是由准确数a 经四舍五入得到的a 的近似值,试给出x 的绝对 误差界_______________.2. 已知矩阵1221A ⎡⎤=⎢⎥⎣⎦,则A 的奇异值为 _________. 3. 设x 和y 的相对误差均为0.001,则xy 的相对误差约为____________. 4. 424()53,,()_____.i i f x xx x i f x =+-∆=若=则5. 下面Matlab 程序所描述的数学表达式为________________________.a =[10,3,4,6];t=1/(x -1);n=length(a )();1:1:1*();y a n for k n y t y a k end==--=+二、(10分)设32()()f x x a =-。
(1)写出解()0f x =的Newton 迭代格式;(2)证明此迭代格式是线性收敛的。
三、 (15分)已知矛盾方程组Ax=b ,其中21110,1101211A b ⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎣⎦,(1)用Householder 方法求矩阵A 的正交分解,即A=QR 。
(2)用此正交分解求矛盾方程组Ax=b 的最小二乘解。
四、(15分) 给出数据点:012343961215i i x y =⎧⎨=⎩(1)用1234,,,x x x x 构造三次Newton 插值多项式3()N x ,并计算 1.5x =的近似值3(1.5)N 。
(2)用事后误差估计方法估计3(1.5)N 的误差。
五、(15分)(1)设012{(),(),()}ϕϕϕx x x 是定义于[-1,1]上关于权函数2()x x ρ=的首项系数为1的正交多项式组,若已知01()1,()x x x ϕϕ==,试求出2()x ϕ。
(2)利用正交多项式组012{(),(),()}ϕϕϕx x x ,求()f x x =在11[,]22-上的二次最佳平方逼近多项式。
山东科技大学2008-2009学年第一学期《数值分析》考试一、设x =9.1234, y =10.486均具有5位有效数字。
试分析x - y和x3 y啲绝对误差限和相对误差限。
二、求一条拟合3点A(0,1), B(1,3),C(2,2)的直线。
三、设n _ 2为正整数,c为正数,记x*二n.c1) 说明不能用下面的迭代格式1 _nx k 1 = cx k ,k =Q1,2:= = " =求x*的近似值。
2) 构造一个可以求x*的迭代格式,证明所构造迭代格式的收敛性,并指出收敛阶数四、给定线性方程组_4 -1 0卩1 一2〕-1 a 1 x2 = 64」]X3」:2J】0 1其中a为非零常数。
1) 写出Jacobi迭代格式与Gauss-Seidel迭代格式并分析其收敛性。
2) 分析a在什么范围取值时以上迭代格式收敛。
五、做一个5次多项式H (x)使得H(1) =3,H (2) = —1, H(4) =3,H'(1) =2, H'(2) =1, H *(2) =2,六、求f (x) =x2在区间0,1上的一次最佳一致逼近多项式。
七、给定积分公式:1f(x)d x :Af (-1) Bf (0) f (1)■ -41) 试确定求积系数A,B,C,使其具有尽可能高的代数精度,并指出其代数精度。
2) 试判断该求积公式是否为高斯型求积公式,并说明理由。
3) ................................................................................................ 将区间-1,作n等分,并记h=2,X j =-1 ih,i =0,1,............................................................ ,n,利用该求积公式n 构造一个复化求积公式。
数值分析A 试题2007.1第一部分:填空题10⨯51.设3112A ⎛⎫= ⎪⎝⎭,则A ∞=___________ 2()cond A =___________2.将4111A ⎛⎫= ⎪⎝⎭分解成TA LL =,则对角元为正的下三角阵L =___________,请用线性最小二乘拟合方法确定拟合函数()bx f x ae =中的参数:a = ___________ b =___________4.方程13cos 2044x x π--=在[0,1]上有 个根,若初值取00.95x =,迭代方法113cos 244k k x x π+=-的收敛阶是5.解方程2210x x -+=的Newton 迭代方法为___________,其收敛阶为___________6。
设()s x = 3232323,[0,1]31,[1,2]ax x x x x x bx x +-+∈--+∈为三次样条函数,则a = ___________ b =___________ 7。
要想求积公式:1121()(()f x dx A f f x -≈+⎰的代数精度尽可能高,参数1A = ___________ 2x =___________此时其代数精度为:___________8.用线性多步法2121(0.50.5)n n n n n y y h f f f ++++-=-+来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,该方法的局部截断误差为___________,设,0,f y μμ=〈其绝对稳定性空间是___________9。
用线性多步法2121()n n n n n y ay by h f f ++++-+=-来求解初值问题00'(,),(),y f x y y x y ==其中(,)n n n f f x y =,希望该方法的阶尽可能高,那么a = ___________ b =___________,此时该方法是几阶的:___________10。
数值分析期末考试题及答案一、选择题(每题2分,共20分)1. 在数值分析中,下列哪个算法用于求解线性方程组?A. 牛顿法B. 高斯消元法C. 插值法D. 傅里叶变换答案:B2. 以下哪个选项不是数值分析中的误差类型?A. 舍入误差B. 截断误差C. 测量误差D. 累积误差答案:C3. 多项式插值中,拉格朗日插值法的特点是:A. 插值点必须等距分布B. 插值多项式的次数与插值点的个数相同C. 插值多项式是唯一的D. 插值多项式在插值点处的值都为1答案:B4. 在数值分析中,下列哪个方法用于求解非线性方程?A. 辛普森法则B. 牛顿迭代法C. 欧拉法D. 龙格-库塔法答案:B5. 以下哪个是数值稳定性的指标?A. 收敛性B. 收敛速度C. 条件数D. 误差传播答案:C二、简答题(每题10分,共20分)1. 简述高斯消元法求解线性方程组的基本原理。
答案:高斯消元法是一种直接解法,通过行变换将增广矩阵转换为上三角形式,然后通过回代求解线性方程组。
它包括三个基本操作:行交换、行乘以非零常数、行相加。
2. 解释什么是数值稳定性,并举例说明。
答案:数值稳定性是指数值解对输入数据小的扰动不敏感的性质。
例如,某些数值方法在计算过程中可能会放大舍入误差,导致结果不可靠,这样的方法就被认为是数值不稳定的。
三、计算题(每题15分,共30分)1. 给定线性方程组:\[\begin{align*}x + 2y - z &= 4 \\3x - y + 2z &= 1 \\-x + y + z &= 2\end{align*}\]使用高斯消元法求解该方程组,并给出解。
答案:首先将增广矩阵转换为上三角形式,然后回代求解,得到\( x = 1, y = 2, z = 1 \)。
2. 给定函数 \( f(x) = x^2 - 3x + 2 \),使用拉格朗日插值法在\( x = 0, 1, 2 \) 处插值,并求出插值多项式。
数值分析期末考卷一、选择题(每题4分,共40分)A. 插值法B. 拟合法C. 微分法D. 积分法A. 高斯消元法B. 高斯赛德尔迭代法C. 共轭梯度法D.SOR方法3. 下列哪个算法不是求解非线性方程的方法?A. 二分法B. 牛顿法C. 割线法D. 高斯消元法A. 梯形法B. 辛普森法C. 高斯积分法D. 复化求积法A. 欧拉法B. 龙格库塔法C.亚当斯法D. 高斯消元法A. 幂法B. 反幂法C. 逆迭代法D. QR算法A. 梯度下降法B. 牛顿法C. 共轭梯度法D. 高斯消元法A. 拉格朗日插值法B. 牛顿插值法C. 埃尔米特插值法D. 分段插值法A. 前向差分法B. 后向差分法C. 中心差分法D. 拉格朗日插值法A. 牛顿法B. 割线法C. 雅可比迭代法D. 高斯消元法二、填空题(每题4分,共40分)1. 数值分析的主要任务包括数值逼近、数值微积分、数值线性代数和______。
2. 在求解线性方程组时,迭代法的收敛速度与______密切相关。
3. 牛顿法的迭代公式为:x_{k+1} = x_k f(x_k)/______。
4. 在数值积分中,复化梯形公式的误差为______。
5. 求解常微分方程初值问题,龙格库塔法的阶数取决于______。
6. 矩阵特征值的雅可比方法是一种______方法。
7. 梯度下降法在求解无约束优化问题时,每次迭代的方向为______。
8. 拉格朗日插值多项式的基函数为______。
9. 数值微分中的中心差分公式具有______阶精度。
10. 在求解非线性方程组时,牛顿法的迭代公式为:x_{k+1} =x_k J(x_k)^{1}______。
三、计算题(每题10分,共60分)1. 给定数据点(1,2),(2,3),(3,5),(4,7),求经过这四个数据点的拉格朗日插值多项式。
2. 用牛顿迭代法求解方程x^3 2x 5 = 0,初始近似值为x0 = 2,计算前三次迭代结果。
《数值分析》练习题及答案解析一、单选题1. 以下误差公式不正确的是( D )A .()1212x x x x ∆-≈∆-∆B .()1212x x x x ∆+≈∆+∆C .()122112x x x x x x ∆≈∆+∆D .1122()x x x x ∆≈∆-∆ 2. 已知等距节点的插值型求积公式()()352kkk f x dx A f x =≈∑⎰,那么3kk A==∑( C )A .1 B. 2 C.3 D. 4 3.辛卜生公式的余项为( c )A .()()32880b a f η-''-B .()()312b a f η-''-C .()()()542880b a f η--D .()()()452880b a f η--4. 用紧凑格式对矩阵4222222312A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦进行的三角分解,则22r =( A ) A .1 B .12C .–1D .–25. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( D ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()111l x = D . ()00l x =1,()111l x =6. 用二分法求方程()0f x =在区间[],a b 上的根,若给定误差限ε,则计算二分次数的公式是n ≥( D )A .ln()ln 1ln 2b a ε-++ B. ln()ln 1ln 2b a ε-+-C.ln()ln 1ln 2b a ε--+ D. ln()ln 1ln 2b a ε--- 7.若用列主元消去法求解下列线性方程组,其主元必定在系数矩阵主对角线上的方程组是( B )A .123123123104025261x x x x x x x x x -+=⎧⎪-+=⎨⎪-+=-⎩ B 。
数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。
李津2004.6.211、给定2阶RK基本公式,求相容阶数,判断是否收敛,考虑稳定性后对h的要求yn+1=yn+h/2*(k1+k2)k1=f(tn,yn)k2=f(tn+3/5*h,yn+3/5*h*k1)2、给定一个分段函数,求全函数为1区间[0,2]的最佳二次平方逼近3、给定对称正定矩阵(3*3),判断SOR收敛性(w=1.2)、给定初值算一步、估计5次迭代误差4、给定求积表达式,要求有最大的代数精度,确定参数和代数精度f(x)从0积到2= r1*f(x1)+r2*f(x2)5、给定两个矩阵A、A1(均为3*3),将A变化为三对角阵,用QR方法对A1算一步求A26、(1)以前试题的变形,设B奇异,证明(||A-B||/||A||)〉=1/(||inv(A)||||A||),其中||为算子范数(2)证明最佳n次平方逼近函数奇偶性与f(x)相同别的题目记不太清了第一题有些错误,正确的题目好像是:Y(n+1)=Y(n)+h*(k1+5*k2)/6k1=f(tn,Y(n))k2=f(tn+3/5*h,y(n)+3/5*k1)偶算出来的是二阶相容第四题的矩阵A好像是:[10 -1 -2;-1 10 -2;0 -2 10]2002.121.三点高斯-勒让得积分公式最佳平方逼近,f(x)=|x|,(-1,1)分别在span{1,x^2}和span{x,x^3}中求2.书上P236第31题第2小问原题,只是没告诉α的范围,要你求3.书上P257原题加了两问,证明收敛,再算一步4.householder变换Givens做QR分解5.Y(n+2)=Y(n)+h(fn+f(n+2))求局部TE,相容,根条件,绝对稳定区间6.定理1.12和推论,以及P167式3.4的应用||A-B||<1/||inv(A)||要证B可逆,||inv(B)||<=||inv(A)||/(1-||A-B||*||inv(A)||)||inv(A)-inv(B)||<=(||inv(A)||)^2*||A-B||/(1-||A-B||*||inv(A)||)ft,没做完,第4题的矩阵太难算了其他老师: 有记错的和不全的请补充:: 一。
填空题: 1.求矩阵2范数和cond的题A={1 1/2}{1/2 1/3}: 2.Ax=b,A=[1,a,a;a,1,a;a,a,1],b=[1,2,3]'(或者3,2,1,我记不清了): (1)如果0<=a<c时GS方法收敛,求c的最大值: (2)a=1/2,x(0)=(0,0,0),求迭代两次的x(2): (3)a=1/2,jacobi方法收敛不?为啥: 3.给一个函数,给5个点,求拉各朗日插值多项式: 4.稳定方法求解良性问题是否一定收敛?: 二。
计算题: 1.非线性方程组问题: 给F(s): (1)如果x(k+1)=x(k)+1/4F(x(k)),证明这个迭代方法在x*=[1,1,1]': 附近局部收敛。
: (2)newton求两步: 2.Euler的显式和隐士方法: (1)求两方法的局部截断误差: (2)两方法几阶的?梯形方法几阶?: (3)显示Euler的绝对稳定域: (4)证明隐士的步长可以随便选: 3.(1)用houleholder变换QR分解A: (2)利用上面的分解求Ax=b的解x: 三。
证明: Ax=b,A(x+deltax)=b+deltab: 证明deltax的范数/x的范数<=cond(A)[deltab的范数/b的范数]1.1)求sin(x)的pade(3*3)逼近R332)确定求积公式的待定参数,使其代数精度尽量高并指出代数精度是多少,判断是否为Gauss型(区间是-2到2,被积函数是f(x),求积公式为Af(-α)+Bf(0)+Cf(α))2.给出一多步线性方法,y(n+2)=y(n)+h[f(n)+f(n+2)]1)求此方法局部截断误差主项,并判断方法的阶2)是否相容3)是否满足根条件,是否收敛4)是否A稳定3.给定矩阵A,B.5 1 -2 3 4 0A= -3 2 1 B= 4 4 14 1 3 0 0 21)用正交相似变换把A变化成上Hessenberg型矩阵2)对B做一次QR分解4.给一非线性方程组3(X1)^2-(X2)^2=03(X1)(X2)^2-(X1)^3-1=0此方程组在D{0.4<=X1=<0.6 ; 0.5<=X2<=1}上有精确解X*要求1)写出相应的牛顿法迭代公式,给定X(0)=(0.55,0.9)T,求X(1)2)已知X*=(1/2,3^(1/2)/2)T,求一种不动点迭代方式,并判定其局部收敛性5.给一矩阵A和向量b4 -2 a 2A= -2 4 -1 b= 6a -1 4 51)求使J法迭代收敛的a的范围(注意使用最简单的收敛充要条件)2)若a=0,写出SOR法的分量计算公式,并求最优松弛因子Wopt6.||G(x)-G(y)||<=L||x-y|| 0<L<1 G(D0)是D0的真子集求证G(x)在D0中存在唯一的不动点填空:1 A=[1,1/2;1/2,1/3]求||A||2和cond2(A)2 J,GS迭代有关3 f(x)=x^2+3x+2,在-2,-1,0,1,2五点确定得拉格朗日多项式插值多项式4 一个稳定得算法计算一个良态得问题是否一定稳定(大致)计算1 F(x)=....(1)证明x(k+1)=x(k)-1/4F'(x)收敛到其解x*=[1,1,1]'(2)用牛顿法在给定初值x0=[...]'下计算两步2 显式和隐式欧拉法得局部截断误差和阶数,写出梯形法,及其阶数.....3 A=[4,1,1;1,1,1;1,1,2];b=[...]'(1)housholder变换求A得QR变换(2)用QR变换结果计算Ax=b证明已知Ax=b,A(x+deltaX)=b+deltaB证明||deltaX||/||x||<=cond(A)*||deltaB||/||b||1。
单步法yn+1=yn+h/4(f(tn,yn)+3f(tn+2/3h,yn+2/3hf(tn,yn))1)Tn+1,收敛阶2)绝对稳定区间3)对y'=-5y+2,y0=1(好像是),在h=0.2,0.5,1时讨论数值扰动的稳定性2.1)exp(-2x)的pade(1*2)逼近2)I=A(f(x0)+f(x1)+f(x2))确定A,x1,x0,x2,判断代数精度,是否高斯3。
给定F(x)1)xk+1=xk-1/4F(x),x*=(1,1,1)T,证明局部收敛2)给定x0,用牛顿算两部4。
Ax=b A含未知数a1)求a,使LLT存在2)给定a,用cholesky算L3)给定a,判断jacobi,gauss_siedel是否收敛4)给定a,sor算一步5。
给定A,1)househoulder算p,A1=pAp2)givens对A1做QR3)算一步QR迭代,得到A26。
||B||<1,证明I-B可逆,并证明||I-B||<1/1-||B||好像是这么写,书上有个I+B的,一点思路都没有5555555一.(1)函数f(x)=|x|在[-1,1]上积分,求在空间span{1,x2}和span{x,x^3}上权函数p(x)=1的最佳平方逼近函数,并说明(2)对f(x)在[-1,1]上积分,求A0,A1,A2,x0,x2,使得A0*f(x0)+A1*f(0)+A2*f(x2)对求积公式有最高的代数精度,并求代数精度二. A=[2 0 1;0 2 -1;1 -1 1](1)求householder变换矩阵P,使得A1=PAP为三对角矩阵(2)用Givens变换,对A1进行QR分解;(3)若用QR方法求A1特征值,迭代一步,求A2,并证明A2和A相似三.线性二步法y(n+2)=y(n)+h*(fn-fn+2)fi=f(ti,yi)(1)求局部截断误差及主部,方法是几阶收敛(2)用根条件判断收敛性(3)绝对收敛域四.A为对称正定矩阵,最大特征值和最小特征值分别是λ1和λn,迭代X(k+1)=(I-w*A)*X(k)+w*b求w的范围,使迭代法收敛,并求w'使收敛速度最快。
五. 非线性方程组F(x)=[x1^2-10*x1+x2^2+8;x1*x2^2+x1-10*x2+8]'=0令G(x)=[1/10*(x1^2+x2^2+8)1/10*(x1*x2^2+x1+8)](1)若0<x1,x2<3/2, 用x=G(x)迭代,证明G(x)在D中存在唯一的不动点;(2)判断G(x)是否收敛?(3)写出牛顿迭代法的公式,并且取初值x0=(0.5,0.5)T,求出x1六. A,B为n*n阶矩阵,A非奇异,||A-B||< 1/||A^(-1)||证明:(1) B非奇异(2) ||B^(-1)|| <= ||A^(-1)||/(1-||A^(-1)||*||A-B||)(3) ||A^(-1)-B^(-1)|| <= ||A^(-1)||^2*||A-B||/(1-||A^(-1)||*||A-B||)仅供参考!1.(1)求f(x)=|x|,区间[-1,1]上权函数为ρ(x)=1,在span{1,x2}上的最佳平方逼近(2)[0,1]上权函数为ρ(x)=1,求积分公式Af(0)+Bf(x1)+Cf(1)的参数使得代数精度尽可能高2。
A=[0 3 4;3 0 0;4 0 1](1)求householder变换使A1=PAP为对称三对角阵(2)用givens变换求A1的QR分解(3)用不带原点位移的QR算A的特征值,A1迭代一次得A2,证明A2与A1相似3。
不动点迭代F(x)=0,F(x)=[x1+x2^2-x1^2+x2]等价于x=G(x),G(x)=[-x2^2x1^2](a)证明D={(x1,x2)T|-0.25<=x1,x2<=0.25}上,G有唯一不动点(b)写出newton公式,取x(0)=(1,1)T,求x(1)4.初值问题dy/dt+y=0,y(0)=1(a)tn=nh,用梯形法求数值解yn(b)h趋于0时,证明数值解收敛于准确解y=exp(-t)(c)梯形法的局部阶段误差主项(d)梯形法的绝对稳定区域5(1)A为n*m矩阵,列满秩,w与ATA的特征值有什么关系时x(k+1)=x(k)+wAT(b-Ax(k))收敛到ATAx=ATb的唯一解(2)B为n阶方阵,x*=Bx*+C,迭代公式x(k+1)=Bx(k)+C若||B||<=β<1且||x(k)-x(k-1)||<=ε(1-β)/β证明||x*-x(k)||<=ε6.A对称正定,φ(x)=0.5xTAx-xTb,p为非零向量定义ψ(α)=φ(x+αp),求α为何值时ψ(α)最小证明对此α定义下的x*=x+αp,有b-Ax*与p正交一、给了个矩阵A1)用household正交相似变换,将A变换为上海森堡形式A12)对A1(我记得是A1,不是A,不知道看错没有)做一次QR分解,要求用第一种位移方法二1)给了个常微分方程组,求刚性比2) y(n+2)=y(n+1)+h/(3f(n+2)+f(n))/4,求阶数,判断相容性,收敛,及绝对稳定区间三,给定Ax = b1)用变分构造出它的二次形式,并证明(这题的意思我觉得就是证明方程组的解使该函数取最小值,好像就是证明书上那个定理,不知道对不对)2)给定初值,用最速下降法算一步。