高一数学必修5等比数列知识点总结
- 格式:doc
- 大小:243.00 KB
- 文档页数:4
高中数学等比数列知识点总结上学期间,说到知识点,大家是不是都习惯性的重视?知识点有时候特指教科书上或考试的知识。
为了帮助大家掌握重要知识点,以下是小编帮大家整理的高中数学等比数列知识点总结,欢迎阅读与收藏。
高中数学等比数列知识点总结篇11.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q 为非零常数).(2)等比中项:如果a、G、b成等比数列,那么G叫做a与b的`等比中项.即:G是a与b的等比中项a,G,b成等比数列G2=ab.2.等比数列的有关公式(1)通项公式:an=a1qn-1.3.等比数列{an}的常用性质(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a.特别地,a1an=a2an-1=a3an-2=….(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.4.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数.(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.5.等比数列的前n项和Sn(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.高中数学等比数列知识点总结篇21.等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
有关系:注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。
高一数学必修5等比数列知识点自己总结高一数学必修5等比数列学问点自己总结等比数列一、基本概念与公式:1、等比数列的定义;2、等比数列的通项公式:(1)ana1qn1;(2)anamqnm.(其中a1为首项、am为第m项,an0;m,nN)3、等比数列的前n项和公式:当q=1时,Sn=na1(是关于n的正比例式);aanqa1(1qn)当q≠1时,Sn==KqnK,Sn=11q1q三、有关等比数列的几个特别结论1、等比数列an中,若mnpq(m,n,p,qN),则amanapaq留意:由Sn求an时应留意什么?n1时,a1S1;n2时,anSnSn1.2、等比数列an中的任意“等距离”的项构成的数列仍为等比数列.3、公比为q的等比数列an中的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-S3m、(Sm≠0)仍为等比数列,公比为q.4、若an与bn为两等比数列,则数列kan、an(k0,k为常数)仍成等比数列.5、若an为等差数列,则cmkan、anbn、bn(c>0)是等比数列.an6、若bnbn0为等比数列,则logcbn(c>0且c1)是等差数列.7、在等比数列an中:(1)若项数为2n,则S偶S奇q(2)若项数为2n1,则S奇a1S偶qn8、数列an是公比不为1的等比数列数列an前n项和Sn=AqA,(q1,A0)定义递推公式通项公式中项等差数列an1andanan1d;anamnmdana1(n1)d 等比数列an1q(q0)ananan1q;anamqnmana1qn1(a1,q0)Aankank2Gankank(ankank0)(n,kN*,nk0)前n项和Snn(a1an)2(n,kN*,nk0)na1(q1)Sna11qna1anq(q2)1q1qn(n1)Snna1d2重要性质*amanapaq(m,n,p,qN,mnpq)amanapaq(m,n,p,qN*,mnpq)9、等比数列的判定方法(1)、an=an-1q(n≥2),q是不为零的常数,an-1≠0(2)、an=an -1an+1(n≥2,an-1,an,an+1≠0)(3)、an=cq(c,q均是不为零的常数)10、等比数列的前n项和的性质n2{an}是等比数列.{an}是等比数列.{an}是等比数列.(1)、若某数列前n项和公式为Sn=an-1(a≠0,±1),则{an}成等比数列.n(2)、若数列{an}是公比为q的等比数列,则Sn+m=Sn+qSm.(3)、在等比数列中,若项数为2n(n∈N*),则(4)、Sn,S2n-Sn,S3n -S2n成等比数列.扩展阅读:高一数学必修5等比数列学问点自己总结仔细等比数列一、基本概念与公式:1、等比数列的定义;2、等比数列的通项公式:(1)a(2)ana1qn1;amqnma为第m项,a.(其中a为首项、1mnn0;m,nN)3、等比数列的前n项和公式:当q=1时,Sn=na1(是关于n的正比例式);当q≠1a1(1qn)时,Sn==KqnK,1qSn=a1anq1q三、有关等比数列的几个特别结论1、等比数列a中,若nmnpq(m,n,p,qN),则amanapaq留意:由S求a时应留意什么?nnn1时,a1S1;n2时,anSnSn1.2、等比数列a中的任意“等距离”的项构成的数列n仍为等比数列.3、公比为q的等比数列a中的任意连续m项的和构成n的数列Sm、S2m-Sm、S3m-S2m、S4m-S3m、(Sm≠0)仍为等比数列,公比为qm.仔细4、若a与b为两等比数列,则数列ka、a、aknnnnnbn、anbn(k0,k为常数)仍成等比数列.5、若a为等差数列,则c(c>0)是等比数列.nan6、在等比数列a中:n(1)若项数为2n,则S偶S奇奇qa1(2)若项数为2n1,则SnS偶q8、数列a是公比不为1的等比数列数列a前n项n和Sn=Aq定义递推公式通项公式中项前AnA,(q1,A0)等差数列aadn1n等比数列an1q(q0)annnanan1d;aamnmdanan1q;aamqnmana1(n1)dana1qn1(a,q0)1ankank2*Gankank(ankank0)(n,kNnSn,nk0)(n,kN*,nk0)n(a1an)2项和n(n1)Snna1d2na1(q1)Sna11qna1anq(q2)1q1q重要amanapaq(m,n,p,qN*,mnpq)amanapaq(m,n,p,qN*,mnpq)仔细性质9、等比数列的判定方法(1)、an=an-1q(n≥2),q是不为零的常数,an-1≠0{an}是等比数列.(2)、an2=an-1an+1(n≥2,an-1,an,an+1≠0){an}是等比数列.(3)、an=cq(c,q均是不为零的常数){an}是等比数列.10、等比数列的前n项和的性质(1)、若某数列前n项和公式为Sn=an-1(a≠0,±1),则{an}成等比数列.(2)、在等比数列中,若项数为2n(n∈N*),则(3)、Sn,S2n-Sn,S3n -S2n成等比数列.n。
等比数列【知识梳理】.等比数列的定义如果一个数列从第项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母表示(≠)..如果在与中间插入一个数,使,,成等比数列,那么叫做,的等比中项,这三个数满足关系式=±..等比数列{}的首项为,公比为(≠),则通项公式为:=-.【常考题型】题型一、等比数列的判断与证明【例】已知数列{}是首项为,公差为-的等差数列,令=,求证数列{}是等比数列,并求其通项公式.[解]依题意=+(-)×(-)=-,于是=-.而==-=.∴数列{}是公比为的等比数列,通项公式为=-.【类题通法】证明数列是等比数列常用的方法()定义法:=(为常数且≠)或=(为常数且≠,≥)⇔{}为等比数列.()等比中项法:=·+(≠,∈*)⇔{}为等比数列.()通项公式法:=-(其中,为非零常数,∈*)⇔{}为等比数列.【对点训练】.已知数列{}的前项和=-,求证:数列{}是等比数列.证明:∵=-,∴+=-+.∴+=+-=(-+)-(-)=-+.∴+=.又∵=-,∴=≠.又由+=知≠,∴=.∴{}是等比数列.题型二、等比数列的通项公式【例】在等比数列{}中,()=,=,求;()+=,+=,=,求.[解]()因为(\\(=,=,))所以(\\(=,①=,②))由得=,从而=,而=,于是==,所以=-=.()法一:因为(\\(+=+=,③+=+=,④))由得=,从而=.又=,所以×-=,即-=,所以=.法二:因为+=(+),所以=.由+=,得=.由=-=,得=.【类题通法】与求等差数列的通项公式的基本量一样,求等比数列的通项公式的基本量也常运用方程的思想和方法.从方程的观点看等比数列的通项公式,=·-(≠)中包含了四个量,已知其中的三个量,可以求得另一个量.求解时,要注意应用≠验证求得的结果.【对点训练】.()若等比数列的前三项分别为,-,则第项是( )..-..-()已知等比数列{}为递增数列,且=(++)=+,则数列{}的通项公式=.解析:()选∵=,而=,==-,∴=.()根据条件求出首项和公比,再求通项公式.由(++)=+⇒-+=⇒=或,由==>⇒>,又数列{}递增,所以=.。
第二章:数列一、数列的概念1、数列的概念:一般地,按一定次序排列成一列数叫做数列,数列中的每一个数叫做这个数列的项,数列的一般形式可以写成a a a a n ,,,,,123,简记为数列a n {},其中第一项a 1也成为首项;a n 是数列的第n 项,也叫做数列的通项.数列可看作是定义域为正整数集*N (或它的子集)的函数,当自变量从小到大取值时,该函数对应的一列函数值就是这个数列.2、数列的分类:按数列中项的多数分为:(1) 有穷数列:数列中的项为有限个,即项数有限; (2) 无穷数列:数列中的项为无限个,即项数无限.3、通项公式:如果数列a n {}的第n 项a n 与项数n 之间的函数关系可以用一个式子表示成=a f n n (),那么这个式子就叫做这个数列的通项公式,数列的通项公式就是相应函数的解析式.4、数列的函数特征:一般地,一个数列a n {},如果从第二项起,每一项都大于它前面的一项,即>+a a n n 1,那么这个数列叫做递增数列;高一数学必修5:数列(知识点梳理)如果从第二项起,每一项都小于它前面的一项,即1n n a a +<,那么这个数列叫做递减数列; 如果数列的各项都相等,那么这个数列叫做常数列.5、递推公式:某些数列相邻的两项(或几项)有关系,这个关系用一个公式来表示,叫做递推公式.二、等差数列1、等差数列的概念:如果一个数列从第二项起,每一项与前一项的差是同一个常数,那么这个数列久叫做等差数列,这个常数叫做等差数列的公差.即1n n a a d +-=(常数),这也是证明或判断一个数列是否为等差数列的依据.2、等差数列的通项公式:设等差数列的首项为1a ,公差为d ,则通项公式为:()()()11,n m a a n d a n m d n m N +=+-=+-∈、.3、等差中项:(1)若a A b 、、成等差数列,则A 叫做a 与b 的等差中项,且=2a bA +; (2)若数列为等差数列,则12,,n n n a a a ++成等差数列,即1n a +是与2n a +的等差中项,且21=2n n n a a a +++;反之若数列满足21=2n n n a a a +++,则数列是等差数列.4、等差数列的性质:(1)等差数列中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=;(2)若数列和{}n b 均为等差数列,则数列{}n n a b ±也为等差数列;(3)等差数列{}n a 的公差为d ,则{}0n d a >⇔为递增数列,{}0n d a <⇔为递减数列,{}0n d a =⇔为常数列.5、等差数列的前n 项和n S :(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩(3)设等差数列{}n a 的首项为1,a 公差为d ,则前n 项和()()111=.22n n n a a n n S na d +-=+6、等差数列前n 和的性质:(1)等差数列{}n a 中,连续m 项的和仍组成等差数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等差数列(即232,,,m m m m m S S S S S --成等差数列);(2)等差数列{}n a 的前n 项和()2111==,222n n n d d S na d n a n -⎛⎫++- ⎪⎝⎭当0d ≠时,n S 可看作关于n 的二次函数,且不含常数项;(3)若等差数列{}n a 共有2n+1(奇数)项,则()11==,n S n S S a S n++-奇奇偶偶中间项且若等差数列{}n a 共有2n (偶数)项,则1==.n nS a S S nd S a +-偶奇偶奇且7、等差数列前n 项和n S 的最值问题:设等差数列{}n a 的首项为1,a 公差为d ,则(1)100a d ><且(即首正递减)时,n S 有最大值且n S 的最大值为所有非负数项之和; (2)100a d <>且(即首负递增)时,n S 有最小值且n S 的最小值为所有非正数项之和.三、等比数列1、等比数列的概念:如果一个数列从第二项起,每一项与前一项的比是同一个不为零的常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0q ≠).即()1n na q q a +=为非零常数,这也是证明或判断一个数列是否为等比数列的依据.2、等比数列的通项公式:设等比数列{}n a 的首项为1a ,公比为q ,则通项公式为:()11,,n n m n m a a qa q n m n m N --+==≥∈、.3、等比中项:(1)若a A b 、、成等比数列,则A 叫做a 与b 的等比中项,且2=A ab ; (2)若数列{}n a 为等比数列,则12,,n n n a a a ++成等比数列,即1n a +是与2n a +的等比中项,且212=n n n a a a ++⋅;反之若数列{}n a 满足212=n n n a a a ++⋅,则数列{}n a 是等比数列.4、等比数列的性质:(1)等比数列{}n a 中,若(),m n p q m n p q N ++=+∈、、、则m n p q a a a a ⋅=⋅,若2m n p +=,则2m n p a a a ⋅=;(2)若数列{}n a 和{}n b 均为等比数列,则数列{}n n a b ⋅也为等比数列;(3)等比数列{}n a 的首项为1a ,公比为q ,则{}1100101na a a q q ><⎧⎧⇔⎨⎨><<⎩⎩或为递增数列,{}1100011n a a a q q ><⎧⎧⇔⎨⎨<<>⎩⎩或为递减数列, {}1n q a =⇔为常数列.5、等比数列的前n 项和:(1)数列{}n a 的前n 项和n S =()1231,n n a a a a a n N -++++++∈;(2)数列{}n a 的通项与前n 项和n S 的关系:11,1.,2n n n S n a S S n -=⎧=⎨-≥⎩ (3)设等比数列{}n a 的首项为1a ,公比为()0q q ≠,则()11,1.1,11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩由等比数列的通项公式及前n 项和公式可知,已知1,,,,n n a q n a S 中任意三个,便可建立方程组求出另外两个.6、等比数列的前n 项和性质:设等比数列{}n a 中,首项为1a ,公比为()0q q ≠,则 (1)连续m 项的和仍组成等比数列,即12122,,m m m m a a a a a a ++++++++21223m m m a a a +++++,仍为等比数列(即232,,,m m m m m S S S S S --成等差数列);(2)当1q ≠时,()()11111111111111n n n n n a q a a a a aS q q q qq q q q q -==⋅-=-⋅=⋅-------, 设11a t q =-,则n n S tq t =-.四、递推数列求通项的方法总结1、递推数列的概念:一般地,把数列的若干连续项之间的关系叫做递推关系,把表达递推关系的式子叫做递推公式,而把由递推公式和初始条件给出的数列叫做递推数列.2、两个恒等式:对于任意的数列{}n a 恒有:(1)()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-(2)()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈3、递推数列的类型以及求通项方法总结: 类型一(公式法):已知n S (即12()n a a a f n +++=)求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥类型二(累加法):已知:数列的首项,且()()1,n n a a f n n N ++-=∈,求n a 通项.给递推公式()()1,n n a a f n n N ++-=∈中的n 依次取1,2,3,……,n-1,可得到下面n-1个式子:()()()()21324311,2,3,,1.n n a a f a a f a a f a a f n --=-=-=-=-利用公式()()()()12132431n n n a a a a a a a a a a -=+-+-+-++-可得:()()()()11231.n a a f f f f n =+++++-类型三(累乘法):已知:数列的首项,且()()1,n na f n n N a ++=∈,求n a 通项. 给递推公式()()1,n na f n n N a ++=∈中的n 一次取1,2,3,……,n-1,可得到下面n-1个式子: ()()()()23412311,2,3,,1.nn a a aa f f f f n a a a a -====- 利用公式()23411231,0,nn n n a a a a a a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-类型四(构造法):形如q pa a n n +=+1、n n n q pa a +=+1(q p b k ,,,为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
《高中数学等比数列知识点总结》在高中数学的学习中,等比数列是一个重要的知识点。
它不仅在数学学科中有着广泛的应用,还为其他学科的学习提供了重要的数学工具。
本文将对高中数学等比数列的知识点进行全面总结。
一、等比数列的定义如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
这个常数叫做等比数列的公比,通常用字母 q 表示(q≠0)。
例如:数列 2,4,8,16,32……就是一个等比数列,公比 q= 2。
二、等比数列的通项公式等比数列的通项公式为\(a_n = a_1q^{n - 1}\),其中\(a_n\)表示数列的第 n 项,\(a_1\)表示数列的首项,q 表示公比。
1. 推导过程- 设等比数列\(\{ a_{n}\}\)的首项为\(a_1\),公比为 q。
- 则\(a_{2}=a_{1}q\),\(a_{3}=a_{2}q = a_{1}q^{2}\),\(a_{4}=a_{3}q = a_{1}q^{3}\)……- 由此可归纳出等比数列的通项公式\(a_n = a_1q^{n -1}\)。
2. 通项公式的应用- 已知等比数列的首项和公比,可以求出数列的任意一项。
- 已知等比数列的任意两项,可以求出公比和其他项。
三、等比中项如果在 a 与 b 中间插入一个数 G,使 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项。
1. 等比中项的性质- \(G^{2}=ab\)。
- 若\(a\),\(b\)同号,则等比中项有两个,且互为相反数。
2. 应用举例- 已知两个数的积和其中一个数,可以求出另一个数的等比中项。
四、等比数列的前 n 项和公式等比数列的前 n 项和公式为\(S_{n}=\begin{cases}na_{1},(q = 1)\\\frac{a_{1}(1 - q^{n})}{1 - q}=\frac{a_{1}-a_{n}q}{1- q},(q\neq1)\end{cases}\)。
高中数学等比数列知识点总结
等比数列的知识点在高中数学,很多同学学不好,我们来看下面等比数列的知识点总结。
等比数列的定义是指从第二项起,每一项与它前一项的比等于同一个常数,这样的数列叫做等比数列。
在等比数列中,相邻两项的比值相等,称为等比数列的基本性质。
我们常见的等比数列有等差数列、等比数列等。
要注意等比数列都是等差数列与等比数列的推广,它是在等差数列的基础上,经过几何级数的运算得到的。
(1)求和公式:等比数列的求和公式为:
2。
例:等比数列通项公式为:在等比数列中,若其通项公式中出现两个或者两个以上的“比”字,则此“比”字不能省略,否则将会得出错误的结果。
第一种方法可以证明:
3。
一般地,首先需要给出数列,然后根据题目要求,选择相应的方法进行求解即可。
①如果已知等比数列的前n项和为a,则可以用判别式法进行求解,即利用等比数列的基本性质;②如果已知等比数列的前n项和为b,则可以用通项公式进行求解,即利用等比数列的基本性质。
第三种方法可以直接证明:
4。
例1已知:等比数列{a+(a+2)+…+a+n-
1}=a1+(a1+2)+…+(a1+n-1)n=a。
则有:①由等比数列的通项公式得: a=(a1+n)/(n-1)=a1=2a+1=a1。
②令a=2a+1=a1,则可求得
n=a-1,且a=n。
于是, n=a1-1,由①可得n-1=2a-1=2a+1,即n=2a-2,由此可求得通项公式。
高一数学必修5等比数列知识点自己总结等比数列是数学中常见的数列,其特点是每个数与前一个数的比例保持不变。
等比数列在高中数学中常用于解题和推导。
下面是关于高一数学必修5中等比数列的知识点总结。
一、等比数列的定义等比数列是一种数列,它的每一项与前一项之比都相等。
记作a1、a2、a3、...、an、...的等比数列,它的通项公式为an=a1*r^(n-1),其中a1是首项,r是公比,n是项数。
二、等比数列的性质1. 公比为0时,等比数列为常数列。
2. 公比大于1时,等比数列呈递增趋势。
3. 公比小于1但大于0时,等比数列呈递减趋势。
4. 公比小于-1但大于-1时,等比数列呈交替增减趋势。
5. 等比数列的首项与公比的正负关系决定了数列的增减趋势。
三、等比数列的通项公式等比数列的通项公式可以通过下述推导得出:设等比数列的首项是a1,公比是r,第n项是an,第n-1项是an-1。
an=a1*r^(n-1) (等比数列的通项公式)an-1=a1*r^(n-2) (等比数列的通项公式)将第一个式子除以第二个式子得:an/an-1=(a1*r^(n-1))/(a1*r^(n-2))=r即等比数列的两项之比恒等于公比r。
四、等比数列的和等比数列的前n项和可以通过以下公式计算得出:Sn=a1*(1-r^n)/(1-r) (等比数列的前n项和公式)其中Sn是前n项的和。
特殊情况下,当公比r=1时,等比数列的前n项和可以简化为Sn=n*a1。
五、等比中项等比数列中,若数列中的某个数是它前后两个数的几何平均数,则称该数为等比数列的等比中项。
设该数为x,前一项是a,后一项是b,根据等比数列的性质可得:a/x=x/b即x^2=ab,解得x=√(ab)。
六、等比数列的应用1. 判断一组数是否构成等比数列,可通过两项之比是否恒等于公比来判断。
2. 求等比数列的前n项和,可使用等比数列的前n项和公式Sn=a1*(1-r^n)/(1-r)。
等比数列的性质与公式数列是数学中常见的一种序列,根据元素之间的规律可以分为等差数列和等比数列等。
在本文中,我们将重点讨论等比数列的性质与公式。
一、等比数列的定义等比数列是指一个数列中的每一项与它的前一项的比值都相等的数列。
设等比数列的首项为a₁,公比为r,则数列的通项公式为:aₙ = a₁ * r^(n-1)其中aₙ表示第n项的值。
二、等比数列的性质1. 公比的性质公比为r的等比数列中,如果r>1,则数列是递增的;如果0<r<1,则数列是递减的;如果r=1,则数列是恒定的。
2. 通项公式等比数列的通项公式为aₙ = a₁ * r^(n-1),通过该公式可以求出任意项的值。
3. 首项、公比与项数的关系根据等比数列的通项公式aₙ = a₁ * r^(n-1),我们可以得到首项、公比和项数之间的关系:aₙ = a₁ * r^(n-1)a₂ = a₁ * rr = a₂ / a₁a₃ = a₁ * r^2...即等比数列的第n项等于首项乘以公比的n-1次方。
4. 等比数列的前n项和等比数列的前n项和记为Sₙ,可以通过以下公式计算:Sₙ = a₁ * (1 - rⁿ) / (1 - r)其中n表示项数。
三、等比数列的常见问题1. 求等比数列中某一项的值如果已知等比数列的首项a₁、公比r和项数n,我们可以通过通项公式aₙ = a₁ * r^(n-1)计算出该项的值。
2. 求等比数列的前n项和已知等比数列的首项a₁、公比r和项数n,可以通过前n项和的公式Sₙ = a₁ * (1 - rⁿ) / (1 - r)求得。
3. 求等比数列的项数已知等比数列的首项a₁、公比r和某一项的值aₙ,可以通过项数的对数形式求得:n = logₐ( aₙ / a₁ ) + 1其中logₐ表示以a为底的对数运算。
四、等比数列的应用等比数列在实际问题中有着广泛的应用。
例如在金融领域,利率、汇率等都可以用等比数列的形式来描述;在自然科学研究中,细胞分裂、物种繁殖等也常常涉及等比数列的计算。
等比数列相关公式总结等比数列,这玩意儿在数学的世界里可有点意思!咱们今儿个就来好好聊聊它的那些公式。
咱先说说啥是等比数列哈。
比如说有这么一组数:1,2,4,8,16……每一项和前一项的比值都一样,这就是等比数列啦。
等比数列有几个重要的公式,咱一个一个来。
首先是通项公式:\(a_{n} = a_{1} \times q^{n - 1}\) 。
这里面\(a_{n}\) 表示第\(n\)项的值,\(a_{1}\) 是首项,\(q\) 是公比。
举个例子,一个等比数列首项是 3,公比是 2,那第五项\(a_{5}\) 就是 \(3× 2^{5 - 1} = 3× 2^4 = 48\) 。
然后是前\(n\)项和公式:当\(q≠1\) 时,\(S_{n} = \frac{a_{1}(1 -q^{n})}{1 - q}\) ;当\(q = 1\) 时,\(S_{n} = na_{1}\) 。
我记得有一次给学生们讲这个公式的时候,有个调皮的小家伙就问我:“老师,这公式有啥用啊?”我笑着跟他说:“你想想啊,假如你每个月的零花钱都以固定的比例增加,那到年底你能攒下多少钱,用这个公式就能算出来啦!”这小家伙一听,眼睛都亮了。
再说说等比中项公式,如果在\(a\),\(b\) 中插入一个数\(G\) ,使\(a\),\(G\) ,\(b\) 成等比数列,那么\(G\) 就叫做\(a\) ,\(b\) 的等比中项,\(G^2 = ab\) 。
实际做题的时候,经常会碰到那种需要我们灵活运用这些公式的情况。
有一回考试,有一道题是这样的:已知一个等比数列的前三项分别是 2,4,8,求它的前 6 项和。
这时候就得先用通项公式求出公比\(q = 2\) ,再用前\(n\)项和公式算出 \(S_{6} = \frac{2×(1 - 2^6)}{1 - 2} = 126\) 。
总之,等比数列的这些公式就像是我们解题的法宝,只要掌握好了,遇到啥难题都不怕。
高中数学等比数列知识点总结归纳高中数学中等比数列是必考之一,等比数列是高中数学的一个重要知识点也是一个难点,很多人在学完等差数列之后再学等比数列就更容易相互混淆了。
下面是小编为大家整理的关于高中数学等比数列知识点总结,希望对您有所帮助!等比数列公式性质知识点1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q 为非零常数).(2)等比中项:如果a、G、b成等比数列,那么G叫做a与b的等比中项.即:G 是a与b的等比中项a,G,b成等比数列G2=ab.2.等比数列的有关公式(1)通项公式:an=a1qn-1.3.等比数列{an}的常用性质(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a.特别地,a1an=a2an-1=a3an-2=….(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.4.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的',公比q 也是非零常数.(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.5.等比数列的前n项和Sn(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.等比数列知识点1.等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
有关系:注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。
等比数列中知识点总结一、等比数列的概念等比数列是指一个数列中的每一项与它的前一项之比都相等的数列。
具体而言,如果一个数列满足an=ar^(n-1),其中a是首项,r是公比,n是项数,那么这个数列就是等比数列。
公比r是等比数列中相邻两项的比值,它代表着数列中每一项与前一项的比例关系。
二、等比数列的通项公式对于等比数列an=a1*r^(n-1),我们可以通过求出前n项和来求解其通项公式。
等比数列的前n项和Sn=a1*(1-r^n)/(1-r)。
通过这两个公式,我们可以方便地求解等比数列的通项公式,从而推导出数列中任意一项的值。
三、等比数列的性质1. 等比数列的前n项和公式在等比数列中,前n项和Sn=a1*(1-r^n)/(1-r),其中a1是首项,r是公比,n是项数。
这个公式可以帮助我们快速计算出数列的前n项和,从而对数列进行更深入的分析和应用。
2. 等比数列的性质等比数列具有许多重要的性质,例如任意一项与它的前一项的比值都是相等的,序列中相邻两项的比值等于公比r等。
这些性质使得等比数列可以在实际问题中被广泛地应用,例如在金融、生物、工程等领域中。
3. 等比数列的图像等比数列的图像是一条直线,其斜率等于公比r。
通过绘制等比数列的图像,我们可以更直观地理解数列中项与项之间的比例关系,从而更深入地理解等比数列的性质和应用。
四、等比数列的应用等比数列在实际问题中有许多重要的应用,下面我们就来介绍一些常见的应用领域。
1. 财务投资在财务投资中,等比数列可以用来描述利息的增长规律。
例如,如果某个投资方案的收益率是一个固定的百分比,那么这个投资方案的收益可以用等比数列来描述。
通过等比数列的通项公式,我们可以轻松地计算出不同时间段内的收益总额。
2. 生物学在生物学研究中,等比数列可以用来描述生物种群的增长规律。
例如,如果某种动植物的数量每一代都以相同的比例增长,那么这个生物种群的数量可以用等比数列来描述。
通过等比数列的通项公式,我们可以预测未来某一时刻该种群的数量。
高中数学等比数列知识点总结高中数学等比数列知识点总结上学期间,说到知识点,大家是不是都习惯性的重视?知识点有时候特指教科书上或考试的知识。
为了帮助大家掌握重要知识点,以下是小编帮大家整理的高中数学等比数列知识点总结,欢迎阅读与收藏。
高中数学等比数列知识点总结篇11.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q 为非零常数).(2)等比中项:如果a、G、b成等比数列,那么G叫做a与b的等比中项.即:G 是a与b的等比中项a,G,b成等比数列G2=ab.2.等比数列的有关公式(1)通项公式:an=a1qn-1.3.等比数列{an}的常用性质(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a.特别地,a1an=a2an-1=a3an-2=….(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.4.等比数列的'特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数.(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.5.等比数列的前n项和Sn(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.高中数学等比数列知识点总结篇21.等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
13.等比数列的概念教学目标 班级:_____ 姓名:____________1.了解等比数列的定义;掌握等比数列的通项公式;掌握等比中项的性质.2.能熟练应用等比数列的通项公式解决有关问题.教学过程一、 等比数列的概念.观察下面数列,看看它们有什么特点?(1) 1,2,4,8,16,……(2) 1,-21,41,-81,161,...... (3) 5,5,5,5,5,......_________________________________________________________________1.等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比值都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,常用字母q 表示. 即)0(1≠=+q q a a nn . 注意:(1)等比数列的定义通常用来证明等比数列;(2)等比数列各项均不为0,公比也不为0.2.等比中项:若三个数c b a ,,构成等比数列,则b 叫做a 与c 的等比中项,且ac b =2, 即ac b ±=.注意:(1)一般“三个数成等比数列”,用等比中项的性质来解决.(2)同号两数有等比中项(且有两值,互为相反数),异号两数无等比中项.3.等比数列的通项公式: 等比数列}{n a 的首项为1a ,公比为q ,则其通项公式为_________________________________________________________________学法指导:学习等比数列时,注意与等差数列类比,找到它们的区别与联系.二、等比数列的应用.例1:在等比数列}{n a 中,203=a ,1606=a ,求10a .练1:在等比数列}{n a 中,321=+a a ,632=+a a ,求7a 的值.例2:求45和80的等比中项.练2:在等比数列}{n a 中,44=a ,则_____62=⋅a a .例3:已知数列}{n a 的前n 项和为n S ,且))(1(31*∈-=N n a S n n . (1)求1a ,2a ;(2)证明:数列}{n a 是等比数列.作业:等比数列x ,33+x ,66+x ,...的第4项是多少?。
高中数学等比数列知识点总结精华归纳高中数学中等比数列是必考之一,等比数列是高中数学的一个重要知识点也是一个难点,很多人在学完等差数列之后再学等比数列就更容易相互混淆了。
下面是为大家整理的关于高中数学等比数列知识点总结,希望对您有所帮助!等比数列公式性质知识点1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q为非零常数).(2)等比中项:如果a、G、b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项a,G,b成等比数列G2=ab.2.等比数列的有关公式(1)通项公式:an=a1qn-1.3.等比数列{an}的常用性质(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a.特别地,a1an=a2an-1=a3an-2=….(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.4.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.5.等比数列的前n项和Sn(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.等比数列知识点1.等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。
有关系:注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。
等比性质知识点总结等比数列的通项公式设等比数列的首项为 a,公比为 r,则该等比数列的通项公式为:an = a * r^(n-1)其中,an表示等比数列的第n项,a表示首项,r表示公比,n表示项数。
等比数列的前n项和公式设等比数列的首项为 a,公比为 r,前n项和为 Sn,则等比数列的前n项和公式为:Sn = a * (1 - r^n) / (1 - r)特殊情况:当r>1时,n趋于无穷大时,Sn无上限;当0<r<1时,n趋于无穷大时,Sn有上限。
等比数列的性质1. 从通项公式可以看出,等比数列的每一项之间都存在固定的倍数关系,这是等比数列与等差数列的主要区别。
2. 在等比数列中,每一项与其前面的一项之比都相等,这个比值就是公比r。
3. 当公比r大于1时,等比数列呈现出递增的特点;当公比r在0到1之间时,等比数列呈现出递减的特点。
4. 当公比r大于1时,等比数列呈现出无上限的情况;当公比r在0到1之间时,等比数列呈现出有上限的情况。
5. 等比数列的前n项和公式可以通过数学归纳法推导得出。
等比中项的公式在等比数列中,如果已知某两项的值,以及它们之间的n个等比中项的和,可以通过等比中项公式求出这n个等比中项的值:设两项为a和b,它们之间有n-1个等比中项,则它们的和为:S = a + b + a*r + a*r^2 + ... + a*r^(n-2) + b*r^(n-1)等比中项公式为:Sn = a * (1 - r^n) / (1 - r) + b * r^n等比中项的应用主要是在数学的等比数列和数列问题中。
等比函数性质在数学中,等比函数是一种特殊的函数形式,其自变量的次方是一个等比数列。
等比函数的性质包括:1. 等比函数的图像呈现出指数函数的特点,通常是一个递增或递减的曲线。
2. 等比函数的导数是其自变量的常数倍,即f'(x) = k * f(x),其中k为常数。
这是等比函数在微积分中的一个重要性质。
高一数学必修5等比数列知识点总结
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
等差数列与等比数列
一、基本概念与公式:
1、等差(比)数列的定义;
2、等差(比)数列的通项公式:
等差数列d n a a n )1(1-+=【或=n a d m n a m )(-+】 等比数列(1)11-=n n q a a ; (2)m n m n q a a -=
.(其中1a 为首项、m a 为第m 项,0≠n a ;),*∈N n m
3、等差数列的前n 项和公式:2)(1n n a a n S +=
或2
)1(1d
n n na S n -+= 等比数列的前n 项和公式:当q=1时,S n =n a 1 (是关于n 的正比例式);
当q≠1时,S n =q q a n --1)
1(1=,K q K n -⋅ S n =q
q a a n --11
二、有关等差 、比数列的几个特殊结论
等差数列、① d=n a -1-n a ② d =
11--n a a n ③ d =m
n a a m
n --
等比数列{}n a 中,若),,,(*∈+=+N q p n m q p n m ,则q p n m a a a a •=• 注意:由n S 求n a 时应注意什么?
1n =时,11a S =;
2n ≥时,1n n n a S S -=-.
2、等比数列{}n a 中的任意“等距离”的项构成的数列仍为等比数列.
3、公比为q 的等比数列{}n a 中的任意连续m 项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、
S 4m - S 3m 、……(S m ≠0)仍为等比数列,公比为m q .
4、若{}n a 与{}n b 为两等比数列,则数列{}n ka 、{}
k
n a 、{}n n b a •、⎭
⎬⎫⎩⎨⎧n n b a
(0≠k ,k 为常数)仍成等比数列. 5、若{}n a 为等差数列,则{}
n a c (c>0)是等比数列.
6、若{}n b ()0>n b 为等比数列,则{}n c b log (c>0且c ≠1) 是等差数列.
7、在等比数列{}n a 中: (1)若项数为n 2,则
q S S =奇
偶 (2)若项数为12+n ,则
q S a S =-偶
奇1
8、数列{}n a 是公比不为1的等比数列⇔数列{}n a 前n 项和S n =,(1,0)n A q A q A ⋅-≠≠ 9、等比数列的判定方法
(1)、a n =a n -1·q(n≥2),q 是不为零的常数,a n -1≠0{a n }是等比数列.
(2)、a n 2
=a n -1·a n +1(n≥2, a n -1,a n ,a n +1≠0){a n }是等比数列.(3)、a n =c·q n
(c ,q 均是不为零的常数){a n }是等比数列.
10、等比数列的前n 项和的性质
(1)、若某数列前n 项和公式为Sn=a
n -1
(a≠0,±1),则{a n }成等比数列.
等差数列
等比数列
定义 d a a n n =-+1
)0(1
≠=+q q a a n
n 递推公式 d a a n n +=-1;md a a n m n +=- q a a n n 1-=;m n m n q a a -=
通项公式 d n a a n )1(1-+=
11-=n n q a a (0,1≠q a ) 中项
2
k
n k n a a A +-+=
(0,,* k n N k n ∈) )
0( k n k n k n k n a a a a G +-+-±=(0,,* k n N k n ∈)
前n 项
和
)(2
1n n a a n
S +=
d
n n na S n 2
)
1(1-+=
()
⎪
⎩⎪
⎨⎧≥--=--==)2(111)1(111q q q
a a q
q a q na S n n n 重要性质
)
,,,,(*q p n m N q p n m a a a a q p n m +=+∈+=+)
,,,,(*q p n m N q p n m a a a a q p n m +=+∈⋅=⋅
(2)、若数列{a n}是公比为q的等比数列,则S n+m=S n+q n·S m. (3)、在等比数列中,若项数为2n(n∈N*),则
(4)、S n,S2n-S n,S3n-S2n成等比数列.。