纳米金属用途简介
- 格式:doc
- 大小:13.00 KB
- 文档页数:3
纳米材料的电学性质从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在0.1微米以下(注1米=100厘米,1厘米=10000微米,1微米=1000纳米,1纳米=10埃),即100纳米以下。
因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。
纳米金属材料是20世纪80年代中期研制成功的,后来相继问世的有纳米半导体薄膜、纳米陶瓷、纳米瓷性材料和纳米生物医学材料等。
纳米级结构材料简称为纳米材料(nanomaterial),是指其结构单元的尺寸介于1纳米~100纳米范围之间。
由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。
纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。
纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。
当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。
纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。
其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。
本文主要讲述纳米材料的电学性质。
纳米材料的电学性质主要从两个方面讲述:导电性,电荷载流子是电子和阴离子,阳离子,以及电子空穴。
节点性,绝缘体(电介质),在外电场作用下内部电场不为零,正负电荷分布的中心分离,产生点偶极矩,即发生电极化。
金属纳米材料的应用与研究【前言】著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”(bottom up) 出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。
他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。
”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。
”[1]1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。
1982年,科学家发明研究纳米的重要工具--扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。
1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。
【摘要】纳米技术是当今世界最有前途的决定性技术。
文章简要地概述了纳米技术,纳米材料的结构和特殊性质以及纳米纳米材料各方面的性能在实际中的应用,并展望了纳米材料的应用前景。
1.纳米科学和技术1.1 纳米科技的定义纳米科技是20世纪80年代末诞生并正在崛起的新科技,是一门在0.1~ 100 nm尺度空间内,研究电子、原子和分子运动规律和特性的高技术学科。
其涵义是人类在纳米尺寸(10-9--10-7m)范围内认识和改造自然,最终目标是通过直接操纵和安排原子、分子而创造特定功能的新物质。
纳米科技是现代物理学与先进工程技术相结合的基础上诞生的,是一门基础研究与应用研究紧密联系的新兴科学技术。
其中纳米材料是纳米科技的重要组成部分。
1.2 纳米科技的内容纳米科技主要包含:纳米物理学;纳米电子学;纳米材料学;纳米机械学;纳米生物学;纳米显微学;纳米计量学;纳米制造学……1.3 纳米科技的内涵第一:纳米科技不仅仅是纳米材料的问题。
目前科技界普遍公认的纳米科技的定义是:在纳米尺度上研究物质的特性和相互作用以及如何利用这些特性和相互作用的具有多学科交叉性质的科学和技术。
纳米金属在医药领域的应用随着现代科技的不断进步,纳米技术被越来越广泛地应用于各个领域,其中医药领域是一个重要的应用方向。
纳米金属是纳米技术中的重要代表之一,其应用已经引起了越来越多的关注和研究。
本文将重点探讨纳米金属在医药领域的应用。
一、纳米金属的定义和特性纳米金属是指直径在1-100纳米的金属颗粒。
与传统的大颗粒相比,纳米金属具有以下的特性:1.表面比大颗粒更大,更容易和周围环境接触,因此更容易产生化学反应。
2.具有更高的比表面积,更容易产生催化反应。
3.纳米颗粒大小与光的波长相当,能够吸收光并发生共振,这些现象使得纳米金属在医药领域具有重要的应用前景。
二、纳米金属在医药领域的应用1.纳米金属在肿瘤治疗中的应用纳米金属具有较高的表面活性,特别是在金属表面修饰其他配体的情况下,能够与细胞产生特定的作用,从而实现对肿瘤的治疗。
例如,纳米金属可以被设计成靶向方式,只针对特定类型的肿瘤细胞,并释放药物或辐射来杀死这些细胞。
这种方式称为纳米靶向治疗,目前在癌症治疗方面研究最为广泛。
2.纳米金属在抗菌药物开发中的应用纳米金属本身具有较强的抗菌性能,特别是银纳米颗粒。
银纳米颗粒具有较高的表面积,可以生成自由基,并对细菌细胞膜的氧化还原能力产生影响,从而实现杀菌的效果。
此外,银纳米颗粒还可以与抗菌药物结合使用,具有协同作用,提高药物的疗效。
3.纳米金属在生物成像中的应用由于纳米金属颗粒对光敏感,光的波长和颜色会由颗粒的大小和形状决定。
因此,纳米金属可以作为生物成像的标志物,在生物体内定位和跟踪分子的位置、数量和分布情况,如在X线成像和磁共振成像中使用纳米金属,可以改善成像质量。
三、纳米金属在医药领域的应用前景随着纳米技术的不断进步和发展,纳米金属在医药领域的应用前景越来越广阔。
其中,纳米靶向治疗和抗菌药物的研究已经由实验室环境发展到临床试验,预计在未来几年内会取得相当的科研成果。
此外,纳米金属在生物成像中的应用也已经成为生物医学领域研究的重要方向之一。
金属纳米材料金属纳米材料是一种具有纳米级尺寸特征的金属材料,其在尺寸小于100纳米的范围内具有独特的物理和化学性质。
由于其独特的尺寸效应、量子效应和表面效应,金属纳米材料在材料科学和纳米技术领域具有广泛的应用前景。
本文将对金属纳米材料的特性、制备方法、应用领域等方面进行介绍。
首先,金属纳米材料具有独特的物理和化学性质。
由于其尺寸小于100纳米,金属纳米材料表面积大大增加,使得其表面原子和分子数目大大增加,因而具有更高的表面能和表面活性。
此外,金属纳米材料的电子结构和光学性质也发生了显著改变,表现出与宏观尺寸金属材料迥然不同的特性。
这些独特的性质使得金属纳米材料在催化、传感、生物医学、材料强化等领域具有广泛的应用前景。
其次,金属纳米材料的制备方法多种多样。
目前,常见的制备金属纳米材料的方法包括物理方法(如溅射、气相沉积、球磨法等)和化学方法(如溶胶-凝胶法、化学还原法、微乳液法等)。
这些方法各具特点,可以根据具体需求选择合适的制备方法。
此外,近年来,生物合成法、纳米压印法等新型制备方法也不断涌现,为金属纳米材料的大规模制备提供了新的途径。
最后,金属纳米材料在各个领域都有着重要的应用价值。
在催化领域,金属纳米材料因其高比表面积和丰富的表面活性位点,被广泛应用于催化剂的制备,可用于催化剂的高效制备、废水处理等。
在传感领域,金属纳米材料因其特殊的电子结构和表面增强拉曼散射效应,被应用于生物传感器、化学传感器等领域。
在生物医学领域,金属纳米材料被用于药物传输、肿瘤治疗等。
在材料强化领域,金属纳米材料被应用于提高材料的强度、硬度和耐腐蚀性能。
综上所述,金属纳米材料具有独特的物理和化学性质,其制备方法多样,应用领域广泛。
随着纳米技术的不断发展,金属纳米材料将在材料科学和纳米技术领域发挥越来越重要的作用。
希望本文的介绍能够为相关领域的研究和应用提供一定的参考价值。
【初中化学】纳米金属用途简介钴(co)高密度磁记录材料:利用纳米钴粉的高记录密度、高矫顽力(高达119.4ka/M)、高信噪比和良好的抗氧化性等优点,可以大大提高磁带和大容量软硬盘的性能。
磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。
吸波材料:金属纳米粉末对电磁波有特殊的吸收效果。
铁、钴、氧化锌粉末和碳包覆金属粉末可作为军用高性能毫米波隐身材料料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。
铜(Cu)金属和非金属的表面导电涂层处理:纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。
此技术可应用于微电子器件的生产。
高效催化剂:采用铜及其合金纳米粉末作为催化剂,效率高,选择性强。
在二氧化碳和氢气制甲醇的反应过程中,它可用作催化剂。
导电浆料:用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。
此技术可促进微电子工艺的进一步优化。
铁(FE)高性能磁记录材料:利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。
磁流体:由铁、钴、镍及其合金粉末制成的磁流体具有优异的性能,可广泛应用于密封和减震、医疗器械、声音调节、灯光显示等领域。
吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。
铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。
导磁浆料:利用纳米铁粉的高饱和磁化强度和高磁导率特性,可制成导磁浆料,用于精细磁头等结构的粘接。
纳米导向剂:一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。
镍(Ni)磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。
金纳米材料是一种具有微观尺度的金属纳米颗粒,其尺寸通常在1到100纳米之间。
这种材料由于其独特的物理和化学性质,在许多领域具有广泛的应用价值。
下面将详细介绍金纳米材料在各个领域的应用。
生物医学应用:金纳米材料在生物医学领域具有广泛的应用,例如用作药物载体。
由于其较大的比表面积和优异的生物相容性,金纳米材料可以有效地将药物载送到靶细胞内,从而提高药物的疗效并减少副作用。
此外,金纳米材料还可用于生物标记和生物成像,例如在癌症治疗中,通过将金纳米材料与抗癌药物结合,可以实现对肿瘤的精准治疗,同时通过生物成像技术可以实时监测治疗效果。
光电子器件应用:金纳米材料在光电子器件中的应用也备受关注。
由于金纳米材料具有表面等离子共振效应,可以有效地增强光学信号,因此被广泛应用于传感器、光学滤波器和太阳能电池等领域。
此外,金纳米材料还可以用于制备纳米光学器件,例如纳米透镜、纳米光栅等,这些器件在纳米尺度下具有优异的光学性能,可以用于微纳光学系统和光子集成电路。
催化剂应用:金纳米材料在催化领域也有着重要的应用。
由于其较大的比表面积和优异的催化性能,金纳米材料可以作为高效的催化剂用于化学反应中。
例如,在有机合成反应中,金纳米材料可以作为氧化、还原和羰基化反应的催化剂,具有高效、选择性和可重复使用的特点。
此外,金纳米材料还可以用于制备新型的催化剂载体,例如将金纳米材料负载在多孔材料上,可以进一步提高催化剂的性能。
纳米生物传感器应用:金纳米材料还可以用于制备纳米生物传感器,用于检测生物分子和细胞。
由于金纳米材料具有优异的电化学性能和生物相容性,可以实现对生物分子的高灵敏、高选择性检测。
例如,通过将金纳米材料与生物分子识别元素结合,可以制备出高灵敏的生物传感器,用于检测蛋白质、DNA、细胞等生物标志物,具有重要的生物医学应用前景。
环境治理应用:金纳米材料在环境治理领域也有着潜在的应用价值。
例如,金纳米材料可以作为吸附剂用于水处理和大气污染治理,通过其优异的吸附性能和催化性能可以有效地去除水中的重金属离子和有机污染物,净化环境。
纳米是一种很小的单位,纳米技术则是一种非常具有市场潜力的新兴科学技术。
关于纳米技术的研究,是很多国家研究的一个重要方向,2011年,欧盟通过了纳米材料的定义,纳米材料,即一种由基本颗粒组成的粉状或团块状天然或人工材料,这一基本颗粒的一个或多个三维尺寸在1纳米至100纳米之间,并且这一基本颗粒的总数量在整个材料的所有颗粒总数中占50%以上。
这标志着科学史上又一个里程碑。
那么,纳米材料的特点和用途有哪些呢?一、纳米材料的特点当粒子的尺寸减小到纳米量级,将导致声、光、电、磁、热性能呈现新的特性。
比方说:被广泛研究的II-VI族半导体硫化镉,其吸收带边界和发光光谱的峰的位置会随着晶粒尺寸减小而显著蓝移。
按照这一原理,可以通过控制晶粒尺寸来获得不同能隙的硫化镉,这将大大丰富材料的研究内容和可望获得新的用途。
我们知道物质的种类是有限的,微米和纳米的硫化镉都是由硫和镉元素组成的,但通过控制制备条件,可以获得带隙和发光性质不同的材料。
也就是说,通过纳米技术获得了全新的材料。
纳米颗粒往往具有很大的比表面积,每克这种固体的比表面积能达到几百甚至上千㎡,这使得它们可作为高活性的吸附剂和催化剂,在氢气贮存、有机合成和环境保护等领域有着重要的应用前景。
对纳米体材料,我们可以用“更轻、更高、更强”这六个字来概括。
“更轻”是指借助于纳米材料和技术,我们可以制备体积更小性能不变甚至更好的器件,减小器件的体积,使其更轻盈。
如现在小型化了的计算机。
“更高”是指纳米材料可望有着更高的光、电、磁、热性能。
“更强”是指纳米材料有着更强的力学性能(如强度和韧性等),对纳米陶瓷来说,纳米化可望解决陶瓷的脆性问题,并可能表现出与金属等材料类似的塑性。
二、纳米材料的用途纳米材料应用在信息产业、环境产业、能源环保、生物医药等领域,帮助着产品的进步与发展,为人们的社会发展、科研进步、医药发展带去了很好的辅助。
1、纳米磁性材料在实际中应用的纳米材料大多数都是人工制造的。
纳米金的用途纳米金是一种具有纳米级尺寸的金纳米颗粒,其尺寸通常在1-100纳米之间。
由于其特殊的尺寸效应和表面效应,纳米金材料在许多领域都有广泛的应用。
以下是纳米金的一些主要用途:1. 生物医学领域:纳米金在生物医学领域有广泛应用,例如在药物传递中扮演载药体的角色,可以有效地将药物输送至靶细胞。
此外,纳米金还可以用于光热疗法,通过激活纳米金在近红外光下的光热转化,使癌细胞受到热损伤。
此外,纳米金还可用于生物传感器和生物成像等方面,提高对组织和细胞的检测和成像能力。
2. 材料科学领域:纳米金具有较大的比表面积和优异的光学特性,可以用作增强材料的传导性和催化活性。
纳米金可以嵌入到陶瓷材料中,提高其热传导性能和机械强度。
此外,纳米金还可以用于制备高性能的传感器材料,例如气体传感器、光学传感器和生物传感器。
3. 环境应用:纳米金在环境科学领域有广泛应用,例如在水处理中,纳米金可以作为催化剂去除有害物质和污染物,例如重金属离子和有机物。
纳米金还可以用于制备高效能源材料,例如太阳能电池和燃料电池,提高能源转换效率。
4. 电子学和信息技术:纳米金可以用于制备高性能的电子器件,例如透明导电膜、有机太阳能电池和柔性电子器件。
纳米金还可以用于制备高密度的电子元件,例如纳米线和纳米颗粒晶体管。
此外,纳米金还可以用于制备纳米光学器件,例如纳米光纤和纳米光栅。
5. 其他应用:纳米金还可以用于制备高性能的涂料材料、抗菌材料和防护材料。
纳米金可以作为涂层的添加剂,提高涂层的硬度和耐磨性。
纳米金还可以用于制备纳米墨水,用于纳米印刷和柔性电子显示器等方面。
综上所述,纳米金具有广泛的应用领域,在生物医学、材料科学、环境科学、电子学和信息技术等方面都具有巨大的潜力。
随着纳米科技的不断发展,纳米金的应用前景也会越来越广阔。
纳米金属用途简介
钴(Co)
高密度磁记录材料:利用纳米钴粉记录密度高、矫顽力高(可达119.4KA/m)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。
磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。
吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。
铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材
料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。
铜(Cu)
金属和非金属的表面导电涂层处理:纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。
此技术可应用于微电子器件的生产。
高效催化剂:铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。
导电浆料:用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。
此技术可促进微电子工艺的进一步优化。
铁 (Fe)
高性能磁记录材料:利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。
磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。
吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。
铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。
导磁浆料:利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。
纳米导向剂:一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。
镍(Ni)
磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。
高效催化剂:由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。
高效助燃剂:将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。
导电浆料:电子浆料广泛应用于微电子工业中的布线、封装、连接等,对微电子器件的小型化起着重要作用。
用镍、铜、铝纳米粉体制成的电子浆料性能优越,有利于线路进一步微细化。
高性能电极材料:用纳米镍粉辅加适当工艺,能制造出具有巨大表面积的电极,可大幅度提高放电效率。
活化烧结添加剂:纳米粉末由于表面积和表面原子所占比例都很大,所以具有高的能量状态,在较低温度下便有强的烧结能力,是一种有效的烧结添加剂,可大幅度降低粉末冶金产品和高温陶瓷产品的烧结温度。
金属和非金属的表面导电涂层处理:由于纳米铝、铜、镍有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。
此技术可应用于微电子器件的生产。
锌(Zn)
高效催化剂:锌及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。