铸件缩孔
- 格式:docx
- 大小:13.72 KB
- 文档页数:2
铸件缩孔缩松产生的原因
一、金属铸件缩孔缩松的原因
1、模具质量不合格:模具的表面没有经过预处理,工作表面毛糙度不够,加工精度不高,导致熔模渗入的位置不正确,从而影响铸件缩孔的精度。
2、砂芯质量不合格没有经过预处理或抛光处理,表面毛糙度不均,加工精度低,砂芯内部出现裂纹,导致不同部位的造型不稳定,从而影响铸件缩孔的精度。
3、工艺条件不合理:模具配套不当,熔模温度过高或过低,模具保温不足,充型压力不足,熔模渗入缓慢,从而影响铸件缩孔的精度。
4、冷却不当:铸件出模后,冷却时间过长或过短,容易出现开裂现象,从而影响铸件缩孔的精度。
二、金属铸件缩孔缩松的改善措施
1、严格模具质量:采用高强度的整体钢,并且经过精密加工,表面经过研磨抛光,以保证熔模渗入的位置准确,从而提高铸件缩孔的精度。
2、严格砂芯质量:采用高质量的砂芯,经过彻底的预处理,能够保证砂芯表面毛糙度均匀,加工精度高,避免出现裂纹,从而确保缩孔的精度。
3、调整熔模温度:严格控制熔模的温度,熔模温度过高可以导致金属分子值过大,熔态液体容易流失。
缩孔、缩松的形成及防止方法副教授:陈云铸件中的缩孔与缩松液态金属在铸型内凝固过程中,由于液态收缩和凝固收缩导致体积缩小,若其收缩得不到补充,就在铸件最后凝固的部分形成孔洞。
大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。
(a)铝合金缩孔、缩松(b)金相显微镜下缩松(c)扫描电镜下缩松一、缩孔的形成纯金属、共晶成分和凝固温度范围窄的合金,浇注后在型腔内是由表及里的逐层凝固。
在凝固过程中,如得不到合金液的补充,在铸件最后凝固的地方就会产生缩孔。
缩孔形成的条件:铸件呈逐层凝固方式凝固,成分为纯金属或共晶成分的合金。
缩孔产生的基本原因:是合金的液态收缩和凝固收缩值大于固态收缩值,且得不到补偿。
缩孔产生的部位在铸件最后凝固区域,如壁较厚大的上部或铸件两壁相交处,这些地方称为热节。
热节位置可用画内接圆的方法确定。
用画内切圆法确定缩孔位置二、缩松的形成铸件最后凝固的收缩未能得到补充,或者结晶温度范围宽的合金呈糊状凝固,凝固区域较宽,液、固两相共存,树枝晶发达,枝晶骨架将合金液分割开的小液体区难以得到补缩所致。
缩松形成的条件:铸件主要呈糊状凝固方式凝固,成分为非共晶成分或有较宽结晶温度范围的合金。
形成缩松的基本原因:是合金的液态收缩和凝固收缩值大于固态收缩值。
缩松一般出现在铸件壁的轴线区域、冒口根部、热节处,也常分布在集中缩孔的下方。
三、影响缩孔和缩松形成的因素1、合金成分结晶温度范围越小的合金,产生缩孔的倾向越大;结晶温度范围越大的合金,产生缩松的倾向越大。
铁碳合金成分和体积收缩的关系V总—总体积收缩容积;V孔—缩孔容积;V松—缩松容积2、浇注条件提高浇注温度时,合金的总体积收缩和缩孔倾向增大。
浇注速度很慢或向冒口中不断补浇高温合金液,使铸件液态和凝固收缩及时得到补偿,铸件总体积收缩减小,缩孔容积也减小。
V 总—总体积收缩容积;V 孔—缩孔容积;V 松—缩松容积铁碳合金成分和体积收缩的关系3、铸型材料铸型材料对铸件冷却速度影响很大 。
熔模铸造产品缩孔问题的理解与分析王在现代工业领域中,熔模铸造技术以其无与伦比的精度和复杂程度,广泛应用于各类精密零件的制造。
然而,随着生产技术的持续进步,我们面临着一系列挑战。
其中,熔模铸造产品的缩孔及缩松问题显得尤为突出。
这是一个充满复杂性的问题,需要我们深入理解其产生的机理,并找出有效的解决方案。
首先,我们要理解什么是熔模铸造产品的缩孔。
在熔模铸造过程中,由于金属液体在冷却过程中体积收缩,会在铸件内部形成空洞,这就是我们所说的缩孔。
这些缩孔不仅会影响铸件的外观质量,更重要的是,它们会降低铸件的机械性能,甚至可能导致铸件的破裂。
那么,为什么会出现缩孔呢?原因主要有两个方面。
一方面,是由于金属液体在冷却过程中的体积收缩,这是物理规律,无法避免。
另一方面,是由于铸造工艺的问题。
例如,如果铸造速度过快,金属液体在壳模中的冷却时间不足,钢水无法补缩就会导致缩孔的产生。
那么,如何解决这个问题呢?我认为,主要可以从以下几个方面入手:首先,优化铸造工艺。
从产品结构分析,确认产品热节,设置合理的浇口大小以及组树方式,热节-浇口-流道-三者的比例;通过调整铸造速度以及浇注温度,延长金属液体在壳模中的冷却时间,可以有效减少缩孔的产生。
控制液态金属的流动速度和冷却时间,以确保铸件内部结构的稳定性和外观的完整性。
其次,改变以往陈旧观念,尽可能的降低壳模厚度,在产品制壳时应当分析产品在制壳过程中,会不会产生积浆积砂情况,这些问题在制壳过程中要去避免,积浆积砂会导致产品散热不好,出现缩孔及缩松现象,同时壳模厚度减薄利于产品散热,同时也能避免其他铸造问题;此外,通过调整铸造速度以及浇注温度,延长金属液体在壳模中的冷却时间,可以有效减少缩孔的产生。
控制液态金属的流动速度和冷却时间,以确保铸件内部结构的稳定性和外观的完整性。
最后,采用定向凝固技术。
通过改变铸件的凝固方向(如贴保温岩棉、浇注前壳模蘸水、浇注后局部浇水降温等方式),可以使金属液体在凝固过程中产生的缩孔集中在铸件的某一部位,从而减少缩孔对铸件性能的影响。
2019年第2期热加工79F锻造与铸造orging &Casting铸铁件缩松、缩孔、凹陷缺陷的原因分析与防止方法■王姗姗,程凯,靳宝,赵新武摘要:结合生产实践,依据缩松、缩孔、凹陷等缺陷的特征分类,整理了产生的原因,以及采取的纠正预防措施。
有关书籍对缩松、缩孔的产生均有阐述,只是进一步结合几种材质作了补充和整理,以求不断地完善。
关键词:缩松;缩孔;原因分析;防止方法一、缩松1. 特征在铸件内部有许多分散小缩孔,其表面粗糙,水压试验时渗水。
典型案例如图1~图5所示。
发现方法:用机械加工、磁粉探伤可发现。
2. 原因分析(1)工艺设计不合理。
铸件的结构、形状及壁厚的影响。
孤立热节多,尺寸变化太大,厚断面得不到足够的补缩。
(2)浇注系统、冷铁、冒口设计不合理,冒口的补缩效果差。
(3)浇注温度不合理,温度太高或太低均会影响冒口的补缩效果。
(4)铸型紧实度低,铸型刚度差。
石墨化膨胀造成型腔扩大,铸件收缩时由于补缩不足形成缩松。
图1 缩松图2 硅钼球铁4mm处缩松图4 硅钼材质蜂窝状显微缩松图3 高镍奥氏体球铁的缩气孔图5 接触热节产生的缩松图6 鸭嘴顶冒口2019年 第2期 热加工80F锻造与铸造orging &Casting(5)碳、硅含量低,磷含量较高;凝固区间大。
硅钼和高镍球墨铸铁对碳、硅含量和氧化铁液的敏感性特大,铁液严重氧化或碳、硅量低时,易出现显微缩松。
即便在薄壁处也容易出现缩松(见图2、图3、图4)。
(6)孕育不充分,石墨化效果差。
(7)残余镁量和稀土量过高。
钼含量较高时也会增加显微缩松。
(8)浇注速度太快。
(9)炉料锈蚀,氧化铁多。
(10)铁液在电炉内高温停放时间太长,俗称“死铁水”,造成严重氧化。
(11)冲天炉熔炼时底焦太底,风量太大,元素烧损大,铁液严重氧化。
(12)冒口径处形成接触热节产生缩松(见图5)。
(13)压箱铁不够(或箱卡未锁紧,箱带断裂等),浇注后由于涨箱造成缩松。
铸件缩孔和缩松缺陷十点分析缩孔和缩松都是铸造生产中常见的铸件缺陷。
缩孔是铸件在冷凝过程中收缩,得不到金属溶液的补充而产生的孔洞,形状不规则,孔壁粗糙,一般位于铸件的热节处。
缩孔和气孔在外表上往往极为相似,经常容易混淆。
一般来说,气孔的内壁是平滑的,而缩孔的内壁则呈枝状结晶的末梢状。
缩松是铸件最后凝固的区域没有得到金属溶液的补缩而形成分散和细小的小孔,常出现在铸件的较厚截面以及厚薄截面交接处或热节点上。
缩松的分布面积要比缩孔大得多,往往隐藏于铸件的内部,有时肉眼察觉不到。
缩孔和缩松在铸件废品中占有较大的比例,必须引起足够的重视,以提高铸件合格率。
笔者结合多年的生产实践经验,谈谈铸件缩孔和缩松的产生原因及其防止措施。
1.铸件和模样设计(1)铸件截面尺寸变化过大。
如果在设计中铸件截面尺寸变化过大,薄截面的冷却速度比相邻厚截面的冷凝速度要快得多,这样就很难实现铸件的顺序凝固,同时也难于进行补缩。
设计时要尽量避免这种情况,否则应采用冷铁,以实现铸件的顺序凝固并利于补缩。
(2)铸件断面过厚,如果没有采取相应措施对其进行补缩,会因补缩不良形成缩孔。
(3)圆角太小。
铸件的凹角圆角半径太小,会导致型砂传热能力降低,凝固速度下降,同时由于该处型砂受热作用强,发气压力大,析出的气体可向未凝固的金属液渗入,导致铸件产生气缩孔。
(4)圆角太大。
圆角太大,则圆角部分就成了厚截面,如果相邻的截面较薄,就难以得到有效的补缩,造成补缩不良2.模样(1)模样或芯盒磨损致使铸件截面减薄,导致铸件截面厚度减薄而妨碍补缩。
(2)模样尺寸不当或模样结构不当,导致铸件截面过厚或过薄。
设计时应注意控制模样的厚度,尽量使邻近较厚截面的薄截面保持最大的厚度。
3.砂箱(1)上箱太浅。
生产中为了节省型砂用量或为了降低砂箱和造型成本而使用高度不够的上箱,这是造成缩松缺陷的常见原因。
上箱太浅,会降低金属液的静压力,以致难以进行补缩,补缩压力不够,会导致产生缩松或缩孔,或二者兼有之。
压铸件螺纹孔处缩孔产生的原因
压铸件螺纹孔处缩孔的产生原因可能有以下几种:
1. 模具设计不合理:模具中螺纹孔的设计、尺寸和形状不合理,导致压力分布不均匀,容易造成局部缩孔。
2. 材料问题:压铸件材料中存在各种夹杂物、气孔等缺陷,当受到压力时,这些缺陷会产生局部应力集中,导致局部缩孔。
3. 压力不均匀:在压力注入过程中,如果压力不稳定或者注入速度不均匀,容易造成螺纹孔处局部缩孔。
4. 组织变化:压铸过程中,材料会受到高温和高压的作用,导致其组织发生变化,如果压力不均匀或者温度不合适,容易产生局部缩孔。
5. 冷却问题:压铸过程中材料的冷却速度也会影响缩孔问题,如果冷却速度过快或者不均匀,容易产生局部缩孔。
综上所述,压铸件螺纹孔处缩孔产生的原因主要与模具设计、材料质量、压力、温度、冷却等因素有关。
铸件产⽣缩孔和缩松产⽣的原因及防⽌措施(⾳频讲解,实⽤⽅便)铸件缩松、缩孔问题防治⽅案来⾃制造⼯业联盟 00:00 10:29
缩孔是集中在铸件上部或最后凝固部位容积较⼤的孔洞
合⾦的液态收缩和凝固收缩愈⼤、浇注温度愈⾼、铸件愈厚,缩孔的容积愈⼤. 缩松是分
散在铸件某区域内的细⼩缩孔
形成原因:铸件最后凝固区域的收缩未能得到补⾜,或因为合⾦呈糊状凝固,被树枝状晶体
分隔开的⼩液体区难以得到补缩所⾄
逐层凝固合⾦,缩松倾向⼩。
糊状凝固合⾦缩松倾向⼤,缩孔倾向⼩。
防⽌缩孔和缩松的措施 1)选择合适的合⾦成分选⽤近共晶成分或结晶温度范围较
窄的合⾦ 2)⼯艺措施顺序凝固原则,获得没有缩孔的致密铸件。
定向凝固就是在铸
件上可能出现缩孔的厚⼤部位通过安放冒⼝等⼯艺措施,使铸件远离冒⼝的部位先凝固,然后
靠近冒⼝部位凝固,最后冒⼝本⾝凝固。
⽬的是铸件各个部位的收缩都能得到补充,⽽将缩孔转移到冒⼝中,最后予以清除措施
1、安放冒⼝
2、在⼯件厚⼤部位增设冷铁。
1.压铸件缩孔缩松现象存在的原因压铸件缩孔缩松现象产生的原因只有一个,那就是由于金属熔体充型后,由液相转变成固相时必然存在的相变收缩.由于压铸件的凝固特点是从外向内冷却,当铸件壁厚较大时, 内部必然产生缩孔缩松问题。
所以,就压铸件来说,特别是就厚大的压铸件来说,存在缩孔缩松问题是必然的,是不可以解决的。
640.webp (1).jpg2.解决压铸件缩孔缩松缺陷的唯一途径压铸件缩孔缩松问题,不能从压铸工艺本身得到彻底解决,要彻底解决这个问题,只能超越该工艺,或者说是从系统外寻求解决的办法。
这个办法又是什么呢?从工艺原理上说,解决铸件缩孔缩松缺陷,只能按照通过补缩的工艺思想进行.铸件凝固过程的相变收缩,是一种自然的物理的现象,我们不能逆这种自然现象的规律,而只能遵循它的规律,解决这个问题。
3.补缩的两种途径对铸件的补缩,有两种途径,一是自然的补缩,一是强制的补缩. 要实现自然的补缩,我们的铸造工艺系统中,就要有能实现“顺序凝固”的工艺措施.很多人直觉地以为,采用低压铸造方法就能解决铸件的缩孔缩松缺陷,但事实并不是这么回事.运用低压铸造工艺,并不等于就能解决铸件的缩孔缩松缺陷,如果低压铸造工艺系统没有设有补缩的工艺措施,那么,这种低压铸造手段生产出来的毛坯,也是可能百分之一百存在缩孔缩松缺陷的。
由于压铸工艺本身的特点,要设立自然的“顺序凝固”的工艺措施是比较困难的,也是比较复杂的.最根本的原因还可能是, ”顺序凝固”的工艺措施,总要求铸件有比较长的凝固时间,这一点,与压铸工艺本身有点矛盾。
强制凝固补缩的最大特点是凝固时间短,一般只及”顺序凝固”的四分之一或更短,所以,在压铸工艺系统的基础上,增设强制的补缩工艺措施,是与压铸工艺特点相适应的,能很好解决压铸件的缩孔缩松问题。
4.强制补缩的两种程度挤压补缩和锻压补缩实现铸件的强制补缩可以达到有两种程度.一种是基本的可以消除铸件缩孔缩松缺陷的程度,一种是能使毛坯内部达到破碎晶粒或锻态组织的程度.如果要用不同的词来表述这两种不同程度话,那么,前者我们可以用“挤压补缩”来表达,后者,我们可以用“锻压补缩”来表达。
浅谈铸件缩孔缩松产生的原因铸件缩孔和缩松是出现在铸件制造过程中的常见缺陷,对铸件的质量和性能产生重要影响。
缩孔和缩松的产生主要有以下几个原因:1.缩孔:缩孔是指铸件中出现内部凹陷或空洞的缺陷。
其主要原因如下:-铸型设计不合理:铸型的收缩系统设计不合理、浇注系统设计不合理、毛坯料和铸型之间的空隙设计不合理等,都会导致金属液在凝固过程中无法顺利填充,从而形成缩孔。
-浇注工艺参数不合理:包括浇注温度过低、浇注速度过快、浇注压力不足等。
这些因素都会影响金属液的流动性和凝固过程,从而产生缩孔。
-快速凝固导致温度梯度大:金属液凝固过程中温度梯度大,会加快金属的凝固速度,导致空洞无法充分填充,形成缩孔。
-毛坯料中夹杂物:毛坯料中的夹杂物如气孔、沙眼等也会导致铸件内部形成缩孔。
2.缩松:缩松是指铸件内部存在小裂纹或局部结构不致密的缺陷。
其主要原因如下:-热应力引起的冷裂纹:在铸造过程中,由于金属液凝固和收缩产生热应力,当应力超过金属的强度时,就会发生冷裂纹,形成缩松。
-毛坯中的气体和夹杂物:毛坯中存在气孔、气泡等夹杂物,会导致铸件内部产生局部脱实和裂纹,形成缩松。
-铸造温度过低:铸造温度过低会导致金属液在凝固过程中形成局部冷凝物,使得金属液无法顺利填充,产生缩松。
-浇注系统设计不合理:浇注系统设计不合理会导致金属液流动不畅,使得铸件内部无法顺利充实,形成缩松。
为防止铸造缺陷的产生,可以采取以下措施:-合理设计铸型:铸型的收缩系统设计要合理,保证金属液顺利充实,并通过改变浇注位置、浇注顺序等因素来减小缩松和缩孔的产生。
-优化浇注工艺参数:要根据具体的铸造材料和结构特点,合理控制浇注温度、浇注速度和浇注压力等参数,以减少缩松和缩孔的产生。
-毛坯清洁处理:在铸造前要对毛坯进行彻底清洁,以排除夹杂物和气泡等缺陷,减少铸件内部缺陷的产生。
-采用适当的热处理工艺:通过热处理来改善铸件内部组织结构,减少缩松和缩孔的产生,提高铸件的力学性能和耐热性能。
铸件缩孔、缩松产生的原因
1、铸件结构方面的原因
由于铸件断面过厚,造成补缩不良形成缩孔。
铸件壁厚不均匀,在壁厚部分热节处产生缩孔或缩松。
由于铸孔直径太小形成铸孔的砂芯被高温金属液加热后,长期处于高温状态,降低了铸孔表面金属的凝固速度,同时,砂芯为气体或大气压提供了信道,导致了孔壁产生缩孔和绣松。
铸件的凹角圆角半径太小,使尖角处型砂传热能力降低,凹角处凝固速度下降,同时由于尖角处型砂受热作用强,发气压力大,析出的气体可向未凝固的金属液渗入,导致铸件产生气缩孔。
2、熔炼方面的原因
液体金属的含气量太高,导致在铸件冷却过程中以气泡形式析出,阻止邻近的液体金属向该处流动进行补缩,产生缩孔或缩松。
当灰铸铁碳当量太低时,将使铁水凝固时共晶石墨析出量减少,降低了石墨化膨胀的作用,使凝固收缩增加,同时也降低铁水的流动性。
认而降低铁水的自补缩能力,使铸件容易产生缩孔或缩松。
当铁水含磷量或含硫量偏高时,磷是扩大凝固温度范围的元素,同时形成大量的低熔点磷共晶,凝固时减少了补缩能力。
硫是阻碍石墨化的元素,硫还能降低铁水的流动性。
同时,铁水氧化严重,也降低液体金属的流动性,使铸件产生缩孔或缩松。
孕育铸铁或球墨铸铁在浇注前用硅铁等孕育剂进行孕育处理时,如果孕育不良,将导致铁水凝固时析出大量的渗碳体,从而使凝固收缩增加,产生缩孔或缩松。
3、工艺设计的原因
(1)浇注系统设计不合理浇注系统设计与铸件的凝固原则相矛盾时,可能会导致铸件产生缩孔或缩松。
主要表现为浇注位置不合适,不利于顺序凝固,内浇口的位置及尺寸不正确。
对于灰铸铁和球墨铸铁,如果将内浇口开在铸件厚壁处,同时内浇口尺寸较厚,浇注后,内浇口则长时间处于液体状态。
在铁水凝固发生石墨化膨胀的作用下,铁水会经内浇口倒流回直浇道,从而使铸件产生缩孔和缩松。
(2)冒口设计不合理冒口位置、数量、尺寸及冒口颈尺寸未能促进铸件顺序凝固,都可能导致铸件产生缩孔和缩松。
如果在暗冒口顶部未放置出气冒口,或冷铁使用不当,也会导致铸件产生缩孔和缩松。
(3)型砂、芯砂方面的原因型砂(芯砂)的耐火度及高温强度太低,热变形量太大。
当在金属液的静压力或石墨化膨胀力的作用下,型壁或芯壁会产生移动。
使铸件实际需要的补缩量增加或在膨胀部位出现新的热节,导致铸件产生缩孔和缩松。
这种现象对大中型铸件是很敏感的。
另外,如果型砂中水分含量太高,将使型壁表面的干燥层厚度减少和水分凝聚区的水分增加,范围扩大,从而使型壁的移动能力增加,导致缩孔及缩松的产生。
(4)浇注方面的原因浇注温度太高,使液态金属的液态收缩量增加;太低时,又会降低冒口的补缩能力,特别是采用底注式浇注系统时更明显,铸件往往在下部产生缩孔和缩松。
当冒口没有浇满或对大中型铸件没有用金属液对明冒口进行补浇时,这将降低冒口的补缩能力,引起铸件产生缩孔或缩松。