10.3 缩孔与缩松的形成原理
- 格式:ppt
- 大小:6.12 MB
- 文档页数:22
缩孔和缩松及其控制方法缩孔和缩松是在材料加工和制造过程中常见的问题,对于产品的质量和性能有着重要影响。
本文将分别介绍缩孔和缩松的概念、原因以及控制方法。
一、缩孔缩孔指的是材料加工或制造过程中产生的孔洞或空隙,一般是由于材料内部气体无法完全排除或者材料收缩不均匀而引起的。
缩孔问题会导致产品的力学性能下降、密封性能降低以及外观质量不佳等问题。
造成缩孔的原因有多种,主要包括以下几个方面:1. 材料本身的问题:一些材料由于其特殊的化学成分或物理性质,容易产生气泡或者孔洞。
这些材料在加工或制造过程中容易出现缩孔问题。
2. 加工工艺的问题:加工过程中,如果温度、压力或者速度等参数控制不当,都有可能导致缩孔问题的发生。
例如,如果温度过高或者加热速度过快,就容易在材料内部产生气泡或者孔洞。
3. 设备的问题:加工设备的性能和状态也会影响材料的缩孔情况。
如果设备的密封性不好或者加工条件不能满足要求,就有可能导致缩孔问题。
针对缩孔问题的控制方法主要包括以下几个方面:1. 材料选择:选择合适的材料对于缩孔问题的控制非常重要。
一些具有较低缩孔倾向的材料可以有效地减少缩孔问题的发生。
2. 加工工艺优化:通过合理调整加工工艺参数,如温度、压力、速度等,可以减少缩孔问题的发生。
例如,采用适当的加热温度和加热时间可以降低材料内部气泡的产生。
3. 设备改进:改进加工设备的密封性能和控制能力,能够有效地减少缩孔问题。
定期检查和维护设备,确保其处于良好的工作状态也是很重要的。
二、缩松缩松是指在材料加工或制造过程中,由于材料的收缩不均匀而导致的形状尺寸偏差。
缩松问题会导致产品的尺寸不准确,甚至无法满足设计要求。
造成缩松的原因主要包括以下几个方面:1. 材料本身的问题:一些材料由于其特殊的物理性质,在加工或制造过程中容易出现收缩不均匀的情况,从而导致缩松问题的发生。
2. 加工工艺的问题:加工过程中,如果温度、压力或者速度等参数控制不当,都有可能导致材料收缩不均匀,出现缩松问题。
缩孔与缩松杨群收汇编铸件在凝固过程中,由于合金的液态收缩和凝固收缩,往往在铸件最后凝固的部位出现孔,称为缩孔。
容积大而集中的孔称为集中缩孔,或简称缩孔;细小而分散的孔称为分散性缩孔,简称缩松,缩松的形状不规则、表面不光滑,可以看到发达的树枝晶末梢,有时呈氧化现象发青,可以和气孔区别开来。
在铸件中存在任何形态的缩孔都会由它们而减少受力的有效面积,以及在缩孔处产生应力集中现象,而使铸件的机械性能显著降低。
因此,缩孔是铸件的重要缺陷之一,必须设法防止。
一、产生缩孔缩松的因素缩孔形成的因素和过程是很复杂的,各种合金产生缩孔的过程及缩孔量的大小也各不相同,必须说明铸件的缩孔体积和合金的总的收缩(即液态收缩,凝固收缩和固态收缩之和)并不是同等的概念,但是这三个阶段的收缩对缩孔却能产生影响。
要研究如何解决缩孔问题,必须了解两个问题,一、合金的凝固特性和凝固收缩过程。
以铸铁为例,其凝固特性逐层凝固,其总的收缩过程即液态收缩、凝固态收缩(与石墨膨胀共存)和固态收缩。
二、决定铸铁收缩的影响因素主要是三个方面;即浇注温度,石墨析出量(化学成分及冷却方法)和铸型刚度(型壁移动)。
对以上专业词语,结合图形作简单通俗说明,从理论概念上知道一些。
液态收缩:从浇注温度到开始结晶。
(冒口起补缩作用)凝固态收缩:从开始结晶到完全成固态,在这个阶段里存在液态,枝晶状亚固态,石墨生成。
(工艺措施及压力起补偿作用)以上两个阶段是合金的体收缩阶段,在这两个阶段里要防止铸件的缩孔,主要靠冒口,冒口高度,浇注方法及工艺上的措施。
固态收缩:从完全凝固成固态,到室温阶段的收缩,在这个阶段的收缩是线收缩(靠制作模型时放的缩尺,来弥补线收缩时铸件几何尺寸的减少)。
固态收缩对铸件的缩孔一般影响不大,但是在降温线收缩过程中,往四周拉扯的应力也可使缩孔增大些。
铸铁的缩孔量也可以下式表示:缩孔量(%)=液态收缩+凝固态收缩+固态收缩-石墨膨胀对于缩孔的形成,金属的液态收缩和凝固态收缩远大于固态收缩。
铸件产⽣缩孔和缩松产⽣的原因及防⽌措施(⾳频讲解,实⽤⽅便)铸件缩松、缩孔问题防治⽅案来⾃制造⼯业联盟 00:00 10:29
缩孔是集中在铸件上部或最后凝固部位容积较⼤的孔洞
合⾦的液态收缩和凝固收缩愈⼤、浇注温度愈⾼、铸件愈厚,缩孔的容积愈⼤. 缩松是分
散在铸件某区域内的细⼩缩孔
形成原因:铸件最后凝固区域的收缩未能得到补⾜,或因为合⾦呈糊状凝固,被树枝状晶体
分隔开的⼩液体区难以得到补缩所⾄
逐层凝固合⾦,缩松倾向⼩。
糊状凝固合⾦缩松倾向⼤,缩孔倾向⼩。
防⽌缩孔和缩松的措施 1)选择合适的合⾦成分选⽤近共晶成分或结晶温度范围较
窄的合⾦ 2)⼯艺措施顺序凝固原则,获得没有缩孔的致密铸件。
定向凝固就是在铸
件上可能出现缩孔的厚⼤部位通过安放冒⼝等⼯艺措施,使铸件远离冒⼝的部位先凝固,然后
靠近冒⼝部位凝固,最后冒⼝本⾝凝固。
⽬的是铸件各个部位的收缩都能得到补充,⽽将缩孔转移到冒⼝中,最后予以清除措施
1、安放冒⼝
2、在⼯件厚⼤部位增设冷铁。
缩孔和缩松及其控制方法缩孔和缩松是材料加工中常见的问题,会对产品的质量和性能产生不利影响。
本文将首先介绍缩孔和缩松的概念和原因,然后探讨相关的控制方法。
一、缩孔和缩松的概念和原因缩孔是指材料中存在的孔洞或空隙,在加工过程中由于内部应力的作用而发生收缩,导致孔洞的尺寸变小。
缩松是指材料中的实体部分在加工过程中由于受到挤压或拉伸而发生收缩,导致尺寸变小。
缩孔和缩松的产生原因有多种,主要包括材料的物理性质、加工工艺和设备的影响。
材料的物理性质包括材料的组织结构、成分和热膨胀系数等,这些因素会影响材料在加工过程中的变形和收缩特性。
加工工艺中的温度、压力和速度等参数的选择也会影响缩孔和缩松的产生。
设备的精度和稳定性也会对缩孔和缩松产生影响。
二、缩孔和缩松的控制方法为了减少或避免缩孔和缩松的产生,可以采取以下控制方法:1. 材料选择:选择具有较低膨胀系数和较好变形性能的材料,可以减少缩孔和缩松的产生。
此外,还可以选择具有合适组织结构和成分的材料,以提高材料的可加工性。
2. 加工工艺优化:在加工过程中,要合理选择温度、压力和速度等参数,以减少缩孔和缩松的产生。
同时,还需要注意加工工艺中的各个环节,如预处理、加热、冷却和保温等,以确保材料的均匀性和稳定性。
3. 设备维护和调整:保持加工设备的精度和稳定性,及时对设备进行维护和调整,可以减少因设备问题而引起的缩孔和缩松。
此外,还可以通过调整设备的参数,如温度、压力和速度等,来控制缩孔和缩松的产生。
4. 模具设计和加工:合理设计和加工模具,可以减少缩孔和缩松的产生。
模具的结构和形状应与产品的要求相匹配,以确保材料在加工过程中的均匀性和稳定性。
同时,还要注意模具的材料选择和表面处理,以提高模具的耐磨性和抗粘性。
5. 检测和控制:在加工过程中,要建立合适的检测和控制方法,及时发现和解决缩孔和缩松的问题。
可以使用非破坏性检测方法,如超声波检测和X射线检测,来检测材料中的缺陷和孔洞。
浅谈铸件缩孔缩松产生的原因铸件缩孔和缩松是出现在铸件制造过程中的常见缺陷,对铸件的质量和性能产生重要影响。
缩孔和缩松的产生主要有以下几个原因:1.缩孔:缩孔是指铸件中出现内部凹陷或空洞的缺陷。
其主要原因如下:-铸型设计不合理:铸型的收缩系统设计不合理、浇注系统设计不合理、毛坯料和铸型之间的空隙设计不合理等,都会导致金属液在凝固过程中无法顺利填充,从而形成缩孔。
-浇注工艺参数不合理:包括浇注温度过低、浇注速度过快、浇注压力不足等。
这些因素都会影响金属液的流动性和凝固过程,从而产生缩孔。
-快速凝固导致温度梯度大:金属液凝固过程中温度梯度大,会加快金属的凝固速度,导致空洞无法充分填充,形成缩孔。
-毛坯料中夹杂物:毛坯料中的夹杂物如气孔、沙眼等也会导致铸件内部形成缩孔。
2.缩松:缩松是指铸件内部存在小裂纹或局部结构不致密的缺陷。
其主要原因如下:-热应力引起的冷裂纹:在铸造过程中,由于金属液凝固和收缩产生热应力,当应力超过金属的强度时,就会发生冷裂纹,形成缩松。
-毛坯中的气体和夹杂物:毛坯中存在气孔、气泡等夹杂物,会导致铸件内部产生局部脱实和裂纹,形成缩松。
-铸造温度过低:铸造温度过低会导致金属液在凝固过程中形成局部冷凝物,使得金属液无法顺利填充,产生缩松。
-浇注系统设计不合理:浇注系统设计不合理会导致金属液流动不畅,使得铸件内部无法顺利充实,形成缩松。
为防止铸造缺陷的产生,可以采取以下措施:-合理设计铸型:铸型的收缩系统设计要合理,保证金属液顺利充实,并通过改变浇注位置、浇注顺序等因素来减小缩松和缩孔的产生。
-优化浇注工艺参数:要根据具体的铸造材料和结构特点,合理控制浇注温度、浇注速度和浇注压力等参数,以减少缩松和缩孔的产生。
-毛坯清洁处理:在铸造前要对毛坯进行彻底清洁,以排除夹杂物和气泡等缺陷,减少铸件内部缺陷的产生。
-采用适当的热处理工艺:通过热处理来改善铸件内部组织结构,减少缩松和缩孔的产生,提高铸件的力学性能和耐热性能。
§2铸件的缩孔和缩松铸件凝结时因液态缩短和凝结缩短使铸件最后凝结部位出现孔洞,容积大而集中的称集中缩孔(缩孔),小而分别的称分别缩孔(缩松)。
一形成机理1缩孔合金性质不一样,缩孔形成的机理各异。
1)凝结过程中无体积膨胀合金如铸钢、白口铸铁、铝合金等。
浇铸后,型壁传热、逐层凝结、液态缩短和凝结缩短大于固态缩短。
如无赔偿,则在最后凝结部位出现缩孔。
2)有体积膨胀的合金(灰铁、球铁)自补缩能力:灰铁共晶凝结过程中,片状石墨尖端在共晶液中优先长大,其产生的体积膨胀绝大多半直接作用在初生奥氏体枝晶或共晶团的液体上,并推进液体经过枝晶间的通道去补缩因为液态和固态缩短所形成的小孔洞。
文档来自于网络搜寻缩前膨胀:石墨长大所产生的膨胀压力经过奥氏体或共晶团最后作用在铸型表面,使型腔扩大的现象。
灰铁的共晶凝结偏向于中间凝结方式,凝结中期已有完整凝结的外壳,能蒙受必定的石墨化膨胀压力,因此其缩前膨胀可忽视不计。
故其产生缩孔的偏向小。
只有当液态缩短和凝结缩短之和大于石墨化膨胀和固态缩短之和才会产生缩孔。
文档来自于网络搜寻球铁共晶凝结呈糊状凝结方式,凝结时期无牢固外壳。
如铸型刚度不够,则使型腔扩大,故球铁缩前膨胀比灰铁大好多。
当球铁液态缩短、凝结缩短和型腔扩大之和大于石墨化膨胀和固态缩短之和时,铸件将产生缩孔。
文档来自于网络搜寻总结:灰铸铁:石墨化膨胀产生的膨胀压力绝大多半直接作用在液体上(共晶团或A枝晶之间的),小部分作用在铸型型壁上。
球铁:石墨化膨胀产生的膨胀压力一小部分直接作用在液体上(共晶团1/3或A枝晶之间的),绝大多半作用在铸型型壁上。
缩松铸件凝结后期,最后凝结的节余金属液,因为温度梯度小,会按同时凝结原则凝结,即金属液中形成很多渺小的晶粒。
当晶粒长大相互连结后,将节余金属液切割成互不相通的小熔池。
这些小熔池在随后的凝结过程中得不到金属液的增补,就形成缩松。
文档来自于网络搜寻缩松按其散布状态分三种:弥散缩松、轴线缩松、局部缩松。
球铁铸件缩孔、缩松的成因与防止球铁铸件缩孔、缩松的成因与防止摘要:球墨铸铁大多数是共晶或过共晶成分,其糊状凝固方式使铸件外壳没有抵抗石墨化膨胀能力,因而铸型产生型壁迁移,增大铸件体积,极易产生内部缩孔、缩松。
球墨铸铁凝固时,在枝晶和共晶团间的最后凝固区域,收缩的体积得不到完全补充,留下的空洞形成宏观及微观缩松。
La 有助于消除缩松倾向。
分析缩孔缩松形成原因并提出相应的防止办法,有助于减少由此产生的废品损失。
关键词:球墨铸铁、收缩、缩孔、缩松1 前言1.1 缺陷形成原因球墨铸铁生产技术日臻完善,多年技术服务的实践表明,生产中出现的铸造缺陷,完全可以用成熟的经验予以消除。
据介绍:工业发达国家的铸造废品率可以控制在1%以下[1],国内先进水平也在2%左右,提高企业铸造技术水平,对减少废品十分重要。
1。
显微缩松显微镜观察微细连续缺失空间多角形疏松枝晶间、共晶团边界间众所周知,灰铸铁是逐层凝固方式,球墨铸铁是糊状凝固方式。
逐层凝固可以使铸件凝固时形成一个坚实的封闭外壳,铸件全封闭外壳的体积收缩可以减小壳体内的缩孔容积。
糊状凝固的特点是金属凝固时晶粒在金属液内部整个容积内形核、生长,固相与液相混合存在有如粥糊。
大多数球墨铸铁是共晶或过共晶成分,其糊状凝固方式使铸件外壳没有抵抗石墨化膨胀的能力,铸型产生型壁迁移,增大铸件体积,极易产生内部缩孔、缩松缺陷。
铸型冷却能力强,有利于铸件的容积凝固转变成逐层凝固,使铸件的分散缩松转变成集中缩孔。
然而,批量生产中湿砂型铸造很难被金属型或干砂型取代。
球墨铸铁凝固有以下三个特点,决定球墨铸铁是糊状凝固方式:①球化和孕育处理显著增加异质核心,核心存在于整个熔体,有利于全截面同时结晶。
②石墨球在奥氏体壳包围下生长,生长速度慢,延缓铸件表层形成坚实外壳;而片状石墨的端部始终与铁液接触,生长速度快,凝固时间短,促使灰铁铸件快速形成坚实外壳。
③球墨铸铁比灰铸铁导热率小 20%-30%,散热慢,外壳生长速度降低[3]。
铸造工艺---铸件的缩孔、缩松在金属的铸造过程中,易产生缩孔和缩松,缩孔和缩松如何识别?缩孔和缩松如何区别?哪些铸造合金容易产生缩松?铸件的凝固过程如果没有合理的控制,铸件易产生缩孔,缩松一铸件的凝固1凝固方式:铸件凝固过程中,其断面上一般分为三个区:1—固相区2—凝固区3—液相区对凝固区影响较大的是凝固区的宽窄,依此划分凝固方式.1)逐层凝固:纯金属,共晶成分合金在凝固过程中没有凝固区,断面液,固两相由一条界限清楚分开,随温度下降,固相层不断增加,液相层不断减少,直达中心.2)糊状凝固合金结晶温度范围很宽,在凝固某段时间内,铸件表面不存在固体层,凝固区贯穿整个断面,先糊状,后固化.故---3)中间凝固大多数合金的凝固介于逐层凝固和糊状凝固之间.2影响铸件凝固方式的因素1)合金的结晶温度范围范围小:凝固区窄,愈倾向于逐层凝固如:砂型铸造,低碳钢逐层凝固,高碳钢糊状凝固2)铸件的温度梯度合金结晶温度范围一定时,凝固区宽度取决于铸件内外层的温度梯度.温度梯度愈小,凝固区愈宽.(内外温差大,冷却快,凝固区窄)二合金的收缩液态合金从浇注温度至凝固冷却到室温的过程中,体积和尺寸减少的现象---.是铸件许多缺陷(缩孔,缩松,裂纹,变形,残余应力)产生的基本原因.1收缩的几个阶段1)液态收缩:从金属液浇入铸型到开始凝固之前.液态收缩减少的体积与浇注温度质开始凝固的温度的温差成正比.2)凝固收缩:从凝固开始到凝固完毕.同一类合金,凝固温度范围大者,凝固体积收缩率大.如:35钢,体积收缩率3.0%,45钢4.3%3)固态收缩:凝固以后到常温.固态收缩影响铸件尺寸,故用线收缩表示.2影响收缩的因素1)化学成分:铸铁中促进石墨形成的元素增加,收缩减少.如:灰口铁C,Si↑,收↓,S↑收↑.因石墨比容大,体积膨胀,抵销部分凝固收缩.2)浇注温度:温度↑液态收缩↑3)铸件结构与铸型条件铸件在铸型中收缩会受铸型和型芯的阻碍.实际收缩小于自由收缩.∴铸型要有好的退让性.3缩孔形成在铸件最后凝固的地方出现一些空洞,集中—缩孔.纯金属,共晶成分易产生缩孔*产生缩孔的基本原因:铸件在凝固冷却期间,金属的液态及凝固受缩之和远远大于固态收缩.4影响缩孔容积的因素(补充)1)液态收缩,凝固收缩↑缩孔容积↑2)凝固期间,固态收缩↑,缩孔容积↓3)浇注速度↓缩孔容积↓4)浇注速度↑液态收缩↑易产生缩孔5缩松的形成由于铸件最后凝固区域的收缩未能得到补足,或者,因合金呈糊状凝固,被树枝状晶体分隔开的小液体区难以得到补缩所至.1)宏观缩松肉眼可见,往往出现在缩孔附近,或铸件截面的中心.非共晶成分,结晶范围愈宽,愈易形成缩松.2)微观缩松凝固过程中,晶粒之间形成微小孔洞---凝固区,先形成的枝晶把金属液分割成许多微小孤立部分,冷凝时收缩,形成晶间微小孔洞.凝固区愈宽,愈易形成微观缩松,对铸件危害不大,故不列为缺陷,但对气密性,机械性能等要求较高的铸件,则必须设法减少.(先凝固的收缩比后凝固的小,因后凝固的有液,凝,固三个收缩,先凝固的有凝,固二个收缩区----这也是形成微观缩松的基本原因.与缩孔形成基本原因类似)6缩孔,缩松的防止办法基本原则:制定合理工艺—补缩,缩松转化成缩孔.顺序凝固:冒口—补缩同时凝固:冷铁—厚处.减小热应力,但心部缩松,故用于收缩小的合金.l)安置冒口,实行顺序凝固,可有效的防止缩孔,但冒口浪费金属,浪费工时,是铸件成本增加.而且,铸件内应力加大,易于产生变形和裂纹.∴主要用于凝固收缩大,结晶间隔小的合金.2)非共晶成分合金,先结晶树枝晶,阻碍金属流动,冒口作用甚小.3)对于结晶温度范围甚宽的合金,由于倾向于糊状凝固,结晶开始之后,发达的树枝状骨状布满整个截面,使冒口补缩道路受阻,因而难避免显微缩松的产生.显然,选用近共晶成分和结晶范围较窄的合金生产铸件是适宜的.。