集成稳压器的原理和应用
- 格式:doc
- 大小:24.50 KB
- 文档页数:1
简明集成稳压器应用手册集成稳压器的分类:1.根据电路稳压稳压原理进行分类:●串联调整式:串联调整式稳压器的调整元件串联在不稳定的输入电压端与稳定的输出电压端之间,通过等效电阻的变化来保持输出电压的不变。
半导体集成稳压器大多属于串联调整式稳压器。
●并联调整式:并联调整式稳压器的调整元件与负载并联,通过并联元件等效电阻的变化来保持输出电压不变。
串联、并联调整式稳压器统称为线性集成稳压器。
●开关调整式:开关调整式稳压器的调整元件工作在开关状态,一般串接在输入端与输出端之间,并通过改变自身的开启和关闭时间来保持输出电压的不变。
2.根据稳压器的外形结构进行分类:●多端式:稳压器的外引出线数目超过三个的。
●三端式:3.根据输出电压能否调整进行分类:●固定输出电压式:该类稳压器输出电压由制造厂商预先调整好(其输出电压数值往往为常用的标准值),使用时输出电压不能调节。
●可调输出电压式:该类稳压器的输出电压可通过少数外接元件在较大范围内调整。
根据使用要求调节外接元件值,便可获得所需的输出电压。
集成稳压器主要电参数1.质量参数:●电压调整率Sv:表征稳压器稳压性能优劣的主要指标,又称为稳压系数或稳定度。
它表征当输入电压Vi变化时稳压器输出电压V o 稳定的程度。
通常以单位输出电压下的输入和输出电压相对变化的百分比表示[△Vi/(△Vo*Vo)×100%],也有以输出电压和输入电压相对变化的百分比表示的[△Vi/△Vo×100%](当稳压器的负载不变时),此外,也有以输出电压变化的绝对值表示的[△Vo].●电流变化率Si:是反映稳压器负载能力的一项主要指标,又称为电流稳定系数,它表征当输入电压不变时,稳压器对由于负载电流(输出电流)的变化而引起的输出电压波动的抑制能力。
在规定的负载电流变化值条件下,通常以单位输出电压下的输出电压变化率的百分比来表示稳压器的电流调整率[△V o/Vo×100%],或者以输出电压变化的绝对值表示|△Vo|,(在规定的负载电流变化范围内)。
三端集成稳压器原理与应用三端集成稳压器的分类秦炎做电子实验或自制各种电子装置都离不开直流稳压电源用分立元件组装的稳压电源调试维修比较麻烦且体积较大随着功率集成技术的提高和电子电路集成化的发展出现了集成稳压器所谓集成稳压器是指将功率调整管取样电阻以及基准稳压误差放大启动和保护电路等全部集成在一个芯片上而形成的一种稳压集成电路目前常见的三端集成稳压器按性能和用途可分为以下4类1. 三端固定输出正稳压器所谓三端是指电压输入端电压输出端和公共接地端输出正是指输出正电压国内外各生产厂家均将此系列稳压器命名为78系列如7805 7812等其中78后面的数字代表该稳压器输出的正电压数值以伏特为单位例如7805即表示稳压输出为5V 7812表示稳压输出为12V等有时我们会发现在型号78前面和后面还有一个或几个英文字母如W78 AN78 L78CV等前面的字母称前辍一般是各生产厂公司的代号后面的字母称为后辍用以表示输出电压容差和封装外壳的类型等不过各生产厂家对集成稳压器型号后辍所用字母定义不一但这对实际使用没有大的影响78 系列稳压器按输出电压分共有9种分别为7805 78067808 78097810 78127815 78187824按其最大输出电流又可分为78L78M和78三个分系列其中78L系列最大输出电流为100mA 78M 系列最大输出电流为500mA 78系列最大输出电流为1.5A78系列稳压器外形见图1其中78L系列有两种封装形式一种是金属壳的TO 39封装见图1a一种是塑料TO 92封装见图1 b前者温度特性比后者好最大功耗为700mW加散热片时最大功耗可达1.4W后者最大功耗为700mW使用时无需加散热片78L系列中一般以塑封的使用较多78M系列有两种封装形式一种是T O 202塑封见图1 c一种是TO 220塑封见图1 d不加散热片时最大功耗为1W加2002004m㎡散热片时最大功耗可达7.5W 78系列也有两种封装形式一种是金属亮的TO 3封装见图1e一种是料TO 220封装见图1d不加散热片时前者最大功耗可达2.5W后者可达2W加装200 2004mm3散热片时最大功耗可达15W塑料封装以其安装固定容易价廉等优点在无线电爱好者中使用居多2. 三端固定输出负稳压器即79系列除输出电压为负电压引脚排列不同外其命名方法外型等均与78系列相同3 .三端可调输出正稳压器此处的三端是指电压输入端电压输出端和电压调整端在电压调整端外接电位器后可对输出电压进行调节其主要特点是使用灵活4..三端可调输出负稳压器其输出为负电压LM123系列LM140系列LM138系列LM150系列等与之对应的负输出也各有一个系列这类稳压器的命名方法无明显规律封装也各异本文拟以最常见最廉价的LM317T 正输出可调和LM337T负输出可调为例予以介绍LM317T的输出电压可在1.2V 37V之间可调输出电压由两只外接电阻确定输出电流可达1.5A其各项指标均优于固定输出稳压器使用极为方便LM317T采用标准的TO 220塑料封装不加散热片时最大功耗为2W加200 200 4mm3散热片时最大功耗可达15WLM337T除输出为负电压外其它均与LM317T相同三端集成稳压器原理与应用集成稳压器的工作原理与主要参数秦炎本章介绍集成稳压器的工作原理和几个主要参数掌握了这些知识对自制稳压电源将会有帮助工作原理图1是78 系列稳压器的电原理框图由图可见它与一般分立件组成的串联调整式稳压电源十分相似不同的是增加了启动电路恒流源以及保护电路为了使稳压器能在比较大的电压变化范围内正常工作在基准电压形成和误差放大部分设置了恒流源电路启动电路的作用就是为恒流源建立工作点R sc 是过流保护取样电阻R A R B组成电压取样电路实际路是由一个电阻网络构成在输出电压不同的稳压器中采用不同的串并联接法形成不同的分压比通过误差放大之后去控制调整管的工作状态以形成和稳定一系列预定的输出电压因此在图1中将R A画成可变电阻形式79 系列稳压器也是一种串联调整式稳压电源但它的调整管处于共射工作状态属集电极输出型稳压电路其工作原理与78系列类似图2是LM317系列可调稳压器的电原理框图基准电压 1.25V接在误差放大器A的同相输入端和芯片的电压调整端Adj之间并由一个超级恒流源50A供电显然如果将调整端直接接地则输出Uo固定为1.25V实际使用时LM317采用悬浮式工作即由外接电阻R1R2来设定输出电压根据LM317内部电路详图经推导计算可得出Uo 1.25 1R2/R1过程从略主要参数1.最大输入电压U imax它是指稳压器输入端允许加的最大电压它与集成稳压器的击穿电压有关应注意整流后的最大直流电压不能超过此值2. 最小输入输出压差U i-U o min其中U i表示输入电压U o表示输出电压此参数表示能保证稳压器正常工作所要求的输入电压与输出电压的最小差值由此参数与输出电压之和决定稳压器所需的最低输入电压值如果输入电压过低使输入输出压差小于U i-U o min则稳压器输出纹波变大稳压性能变差3. 输出电压范围是指稳压器参数符合指标要求时的输出电压范围对于三端固定输出稳压器其电压偏差范围一般为5%对于三端可调输出稳压器应适当地选择外接取样电阻分压网络以建立所需的输出电压4.最大输出电流I omax是指稳压器能够输出的最大电流值使用中不允许超出此值5.电压调整率S v反映稳压器输入电压的变化所引起输出电压的变化情况第一种定义S v=U o / U i ·U o100 | I o=0 其意义是单位输出电压的输入和输出电压相对变化的百分比第二种定义是限定输入电压U i一个变化范围直接将U0的数值做为S v两种定义方法所得出的S v的量纲不同第一种定义的单位为百分数/V第二种定义的单位为“mV” 一般对于可调输出稳压器使用第一种定义方法对于固定稳压器常使用第二种定义方法显然不管是那种定义的S v其值越小说明稳压器性能越好6.电流调整率S I反映稳压器负载电流的变化所引起输出电压的变化第一种定义S I =U o / U o·100 | U i =0I o=常数第二种定义S I= U o| U1 =0 Io=常数有时为了更直观地表达稳压器的负载能力采用了输出电阻R o这个指标其定义如下R o= U o / I o| Ui =0有时也称为稳压器的内阻自然R o越小稳压器负载能力越强三端集成稳压器原理与应用稳压电源的制作秦炎利用78×× 79××系列三端集成稳压器可做成系列稳压电源电路如图1所示其中图1 a是采用78L×× 或78M×× 组成的正电压输出稳压电源输出电压和最大输出电流由稳压器型号决定如78L09即可输出+9V直流电压100mA电流78M12即可输出+12V电压500mA电流等可按需要适当选择图1 b是采用79L×× 或79M×× 组成的负电压输出稳压电源注意到其中4个整流二极管与图1 a的接法不同除了输出为负电压外其它选择要求与图1 a相同图1 c是采用78×× 稳压器组成的最大输出电流为1.5A的正电输出稳压电源因1N4000系列二极管最大整流电流为1A 无法满足输出1.5A电流的要求故整流部分采用了3A 50V的全桥一般以QL表示它有四个端子其中两个端子是交流输入标记接电源变压器次级交流电压输出不分正负端子相当于图1 a的“A” 点端子“” 相当于图1 a的 “A”点图1中电源变压器的选择注意两点第一是选择功率根据稳电路的输出Uo和最大输出电流Io来确定变压器的功率P 一般选P 1.4 Uo Io例如用7809组成输出电压为9V最大输出电流为1.5A的稳压电源电源变压器的功率应选择P 1.4 9 1.5=18.9W则变压器功率可选19W以上的第二是选择电源变压器次级交流电压U2要根据稳压器输出电压来确定一般要求集成器的输入输出直流压差即|UoUi|不小于2V压差过小稳压器起不到稳压作用压差过大稳压器本身消耗功率随之增大对输出最大电流有影响实际应用中一般选择| Uo Ui|=2.5 3V为宜由此反映到对U2 的要求可按下述方法估算输出电压Uo12V的选择U 2数值比Uo大2V以上输出电压12V的选择U2数值与Uo数值相同即可例如使用7806 则U2取8V使用7818 则U2取18V以上电源变器的选择标准只是一个参考实际应用当中视电源变压器状况可做适当调整如变压器空载电流较小则其功率可适当降低一些U2选择也可低一些反之则应提高如果所用元器件完好接线无误无须任何调试电路便能正常工作发现电路有故障时应首先切断电源仔细检查接线是否有误然后再考虑更换稳压块千万不要一发现故障便换新稳压块这样往往会连续烧坏家用收音机和随身听收录机的工作电压一般以4.5V 6V居多工作电流一般为200多毫安给这些装置加装一个稳压电源该如何选择电路元器件呢对于工作电压为6V的可直接选用7806因工作电流为200多毫安故亦可以选78M06 电路形式可直接采用图1“a” 电源变压器功率选2 3W 因为P 1.4· 6· 0.2=1.68W次级交流电压U2选8V对于工作电压为4.5V的收音机或收录机因在固定系列中无此系列值故只有用三端可调稳压器LM317T组成电路如图2其中输出电压Uo 1.25 1R 2 / R1 4.5V 显然改变R2数值利LM317T同样可得到输出为4.5V的稳压电源图3是用LM317T组成的正可调直流稳压电源非常适于小型实验室使用其主要参数为输出电压1.25 20V连续可调输出电流最大可达到1.5A内阻小于0.05 纹波电压小于1mV实际安装时要注意稳压器要尽可能的靠近滤波电容C1以免引起输入端自激电阻R1两端分别尽量靠近稳压器的输出端和调整端否则输出端流过大电流时产生的附加压降会造成基准电压的变化三端集成稳压器原理与应用三端稳压器的扩展使用秦炎本篇主要介绍常用三端集成稳压器的一些使用知识扩展功能的方法以使广大电子爱好者能利用手头现有的各种稳压器来组成所需要的各种电源电路一扩流电路78 79系列和LM317系列最大输出电流为1.5A如果所用电子装置需要稳压电源提供更大的电流就需要采用扩流措施了1.外加功率管扩流电路如图1所示在下面介绍的电路中为简单起见均将电源变压器整流二极管和输入滤波电容省略不画R1是过流保护取样电阻当输出电流增大超过一定值时R1上压降增大使BG1的U bc值减小促使BG1向截止方向转化因为集成稳压器本身有过热保护电路如果我们将BG1和集成稳压器安装在同一个散热器板上则BG 1也同样受到过热保护图1电路可输出7A的电流2. 多块稳压器并联扩流电路如图2所示这是一种线路简单无需调整有较高实用性的电路其最大输出电流为N ·1.5A N为并联的稳压器的块数实际应用中稳压器最好使用同一厂家同一型号产品以保证其参数一致性另外最好在输出电流上留有10% 20% 的余量以避免个别稳压器失效造成稳压器连锁烧毁二扩压电路固定抬高输出电压电路如图3所示如果需要输出电压Uo高于手头现有的稳压块的输出电压时可使用一只稳压二极管DW将稳压块的公共端电位抬高到稳压管的击穿电压V z此时实际输出电压U o 等于稳压块原输出电压与V z之和将普通二极管正向运用来代替DW同样可起到抬高输出电压的作用例如想为自己的随身听录音机装一个6V 500mA稳压电源而手头只有一只7805稳压器则可按图4所示安装D1 选用2CP类硅二极管其上压降约为0.8V这样整个输出就约为5.8V足以满足随身听的需要了若将D1换成发光二极管LED不但能提高输出电压而且LED发光还起到电源指示作用输出电压可调电路利用78系列固定输出稳压电路也可以组成电压可调电路如图5输出电压Uo U××1 R2/ R1其中U××为稳压块标称输出电压显然若将R1 R2数值固定该电路就可以用于固定抬高输出电压如将R1或R2换成光敏电阻便可构成光控输出电压关断电路图6中用运放作为电压跟随器克服了稳压块静态电流IQ的影响输出电压U o= U××1 R2/ R1其中R1为电位器中心抽头与A点之间的电阻值R2为电位器中心轴头与B点之间的电阻值电路中运放亦可用741运放输出电压从7 30V连续可调电压极性变换电路如果需要正电压输出而手头只有79系列稳压块或需要负电压输出而手头只有78系列稳压块这种情况下可以采用图7电路进行极性转换注意输入电压不是对地而是悬空输入的三慢启动稳压电源慢启动稳压电源在一些灯丝供电电路电子琴电源中得到广泛应用此种电路的功能是减小冲击电流以延长灯丝寿命或消除喇叭开机时的噗声图8是用LM317T组成的慢启动正12V电路电路加电时由于C2上电压不能突变故BG1导通将R2短路输出电压U o约为1.5V随着C2的充电BG1逐渐退出饱和区R2上的电压逐渐增大输出压U0亦慢慢升高一直到C2充电完毕BG1截止输出电压U0才达到额定值12V稳压电源的启动速度由时间常数R3· C2决定其中二极管2AP 是为了帮助稳压器正常启动而设置的四恒流源电路如图9所示输出电流I0 = U×× / R I Q一般在选择R时应使I0 I Q以避免或减小I Q变化时影响恒流特性此电路可给各种可充电电池充电实际使用时可以将不同的R分档接入并用开关进行转换以调整不同的充电电流对于三端集成稳压器来说其具体应用电路可以说是不胜枚举只要掌握了其基本工作原理就可以演变出各种实用的电路2002-12-02。
集成稳压电路原理
稳压电路是一种用于稳定电压输出的电子电路。
它可以将不稳定的输入电压转换为稳定的输出电压,以满足特定设备或电路的电源需求。
稳压电路可以分为线性稳压电路和开关稳压电路两种类型。
线性稳压电路是最简单和最常用的稳压电路之一。
它基于放大器的负反馈原理工作。
线性稳压电路通常由一个稳压器件(如二极管稳压器或晶体管稳压器)和一个金属氧化物半导体场效应管(MOSFET)组成。
稳压器件负责将输入电压稳定在一定范围内,而MOSFET则通过控制输出电压和输入电压之间的
差距来实现稳定输出电压。
此外,线性稳压电路还可以使用电容器、电感器和电阻器作为滤波器来提高输出电压的稳定性。
开关稳压电路是一种相对复杂的稳压技术,它基于开关和电感器的原理工作。
开关稳压电路通常由开关元件(如晶体管)和控制电路组成。
当输入电压超出设定范围时,控制电路会打开或关闭开关元件,使其工作于不同的状态。
通过高频开关操作,开关稳压电路可以实现快速响应和高效转换,以提供稳定的输出电压。
开关稳压电路通常用于需要更高效能和更大输出功率的应用领域。
无论是线性稳压电路还是开关稳压电路,它们的共同目标都是提供稳定的输出电压。
稳压电路的设计需要考虑输入电压变化范围、输出电压精度、电流能力、抗干扰能力以及功率效率等因素。
为了确保稳压电路的工作稳定,还需要注意热量产生、温度控制、过载保护和短路保护等问题。
通过合理设计和选择适当的稳压器件、滤波器和控制电路,稳压电路可以在各种应用中提供高质量和稳定的电源。
它在电子设备、通信系统、工业自动化和汽车电子等领域都有广泛的应用。
LDO的分类及原理LDO(低压差稳压器)是一种用来产生稳定输出电压的集成稳压器件。
它在电路系统中广泛应用,能够提供稳定的直流电压。
LDO可以根据输出电压的稳定性分类为线性低压差稳压器和开关低压差稳压器。
1. 线性低压差稳压器(Linear Regulator):线性低压差稳压器是最常见的一种LDO,它基于半导体功率晶体管的线性调节器件。
它有三个基本部分:基准电压源,错误放大器和功率晶体管。
基准电压源提供稳定的参考电压,错误放大器比较输入电压和参考电压,产生误差信号,然后通过功率晶体管控制输出电压以达到稳定。
线性低压差稳压器的原理是基于负反馈控制,通过将电压差与参考电压进行比较,并通过负反馈控制使得输出电压保持在所需的稳定值。
它具有简单的电路结构、低噪声、高稳定性和快速响应的特点。
然而,线性低压差稳压器的效率相对较低,尤其在输入电压远高于输出电压时。
2. 开关低压差稳压器(Switching Regulator):开关低压差稳压器通过开关电源的原理进行工作。
它包括一个开关器件(MOSFET)和一个电感,通过快速开关和关闭来调节电压。
开关低压差稳压器通过控制开关器件的导通时间和关断时间来调节输出电压,从而实现稳定的输出。
开关低压差稳压器的原理是基于占空比控制,通过改变开关器件导通时间和关断时间的比例来调整输出电压。
开关低压差稳压器具有高效率、高速响应和较小的尺寸等优点。
然而,它也存在着高频噪声和电磁干扰的问题,需要通过滤波电路进行补偿。
除了以上两种分类之外,还可以根据输入电压的类型将LDO进一步分类:1.线性低压差稳压器:-输入输出电压均为直流电,一般工作在低压差状态。
-输入电压通常较高,典型范围为5V至20V。
-在输出负载存在变化时,能够提供稳定的输出电压。
2. 预调节LDO(Pre-Regulated LDO):-输入电压为交流电,需要经过整流和滤波等处理。
-在输入端加入预调节电路,将输入电压调节为较低稳定的直流电压,再输入到线性低压差稳压器中进行进一步的调节。
ka431az工作原理KA431AZ是一种调压稳压器,具有广泛应用于电源管理和电路控制领域的工作原理。
本文将详细介绍KA431AZ的工作原理及其在电路中的应用。
一、KA431AZ的工作原理KA431AZ是一种集成电路,采用了开环控制的方式来实现稳压功能。
其内部结构包括一个比较器、一个参考电压源和一个输出驱动器。
1. 参考电压源:KA431AZ内部集成了一个2.5V的参考电压源,该电压源用于与输入电压进行比较,从而实现稳压功能。
2. 比较器:KA431AZ内部的比较器将输入电压与参考电压进行比较。
当输入电压高于参考电压时,比较器输出高电平;当输入电压低于参考电压时,比较器输出低电平。
3. 输出驱动器:输出驱动器根据比较器的输出状态来控制输出电压。
当比较器输出高电平时,输出驱动器将输出电压拉到高电平,从而降低输出电压;当比较器输出低电平时,输出驱动器将输出电压拉到低电平,从而提高输出电压。
二、KA431AZ的应用由于KA431AZ具有高精度、可调节的输出电压和较小的封装尺寸,因此广泛应用于电源管理和电路控制领域。
下面将介绍KA431AZ 在不同电路中的应用。
1. 稳压电源KA431AZ可以作为稳压电源的控制元件,用于稳定输出电压。
通过调整KA431AZ的引脚连接方式和外部元件的数值,可以实现不同的输出电压。
这使得KA431AZ非常适用于需要稳定输出电压的电路,如电子设备的电源模块、车载电源等。
2. 温度控制器KA431AZ也可以用作温度控制器,通过与温度传感器结合,实现温度的精确控制。
当温度传感器检测到温度超过设定值时,KA431AZ会自动调节输出电压,从而控制温度在设定范围内。
这在一些需要精确温度控制的场合非常有用,如温度控制箱、温室控制系统等。
3. 电压监测器KA431AZ还可以作为电压监测器使用,用于检测电路的电压是否在设定范围内。
当电压超过或低于设定值时,KA431AZ会输出相应的信号,从而触发其他电路的动作。
稳压器工作原理稳压器是一种电子元件,用于稳定电压输出,确保电路中的设备能够在稳定的电压下工作。
稳压器通常被用于各种电子设备和电路中,以保护设备免受电压波动的影响。
在本文中,我们将讨论稳压器的工作原理,以及不同类型的稳压器及其应用。
稳压器的工作原理基于负反馈控制系统。
当输入电压发生变化时,稳压器会通过负反馈回路来调整输出电压,使其保持在一个稳定的水平。
这种负反馈控制系统可以通过不同的方式来实现,例如使用晶体管、集成电路或其他电子元件。
最常见的稳压器类型是线性稳压器和开关稳压器。
线性稳压器通过调节电路中的电阻来实现稳压,而开关稳压器则通过开关电路来实现稳压。
下面我们将分别介绍这两种稳压器的工作原理。
线性稳压器的工作原理是基于调节器的电阻来实现稳压。
当输入电压发生变化时,调节器会调整电路中的电阻,以确保输出电压保持在一个稳定的水平。
线性稳压器的优点是简单可靠,成本较低,但效率较低,适用于小功率应用。
开关稳压器则通过开关电路来实现稳压。
当输入电压发生变化时,开关稳压器会通过开关电路的控制来调整输出电压,以确保其保持在一个稳定的水平。
开关稳压器的优点是效率较高,但成本较高,适用于大功率应用。
除了线性稳压器和开关稳压器,还有其他类型的稳压器,如Zener稳压器、电容式稳压器等。
这些稳压器都有各自的工作原理和应用领域。
总的来说,稳压器的工作原理是基于负反馈控制系统,通过调节电路中的元件来实现稳定的输出电压。
不同类型的稳压器有不同的工作原理和应用,选择合适的稳压器取决于具体的应用需求。
稳压器在电子设备和电路中起着至关重要的作用,可以保护设备免受电压波动的影响,确保设备能够稳定可靠地工作。
集成稳压器实验报告集成稳压器实验报告引言:集成稳压器是一种常见的电子元件,用于稳定电压输出。
在本次实验中,我们将对集成稳压器进行测试和分析,以了解其性能和应用。
一、实验目的本次实验的目的是通过测试集成稳压器的输出电压、负载能力和温度特性,掌握集成稳压器的工作原理和使用方法。
二、实验器材和原理1. 实验器材:- 集成稳压器芯片- 直流电源- 电阻负载- 万用表- 温度计- 连接线等2. 实验原理:集成稳压器是一种电子元件,用于将不稳定的输入电压转换为稳定的输出电压。
它通常由一个稳压芯片和一些外部电路组成。
稳压芯片内部包含了反馈电路和调节电路,通过对输入电压进行采样和调节,使输出电压保持在设定值附近。
三、实验步骤1. 连接电路:将集成稳压器芯片、直流电源和电阻负载按照实验电路图连接起来。
确保连接正确并牢固。
2. 测试输出电压:将直流电源调节至设定值,使用万用表测量集成稳压器的输出电压。
记录不同输入电压下的输出电压,并绘制输出电压-输入电压曲线。
3. 测试负载能力:在设定输入电压下,逐渐增加电阻负载的阻值,测量集成稳压器的输出电压。
记录不同负载下的输出电压,并分析其变化规律。
4. 测试温度特性:使用温度计测量集成稳压器芯片的温度,记录不同温度下的输出电压。
分析温度对集成稳压器性能的影响。
四、实验结果和分析1. 输出电压-输入电压曲线:根据实验数据绘制的曲线显示,集成稳压器的输出电压基本稳定在设定值附近,随着输入电压的增加,输出电压基本保持不变。
这表明集成稳压器具有良好的稳定性能。
2. 负载能力:随着负载的增加,集成稳压器的输出电压会出现一定的下降。
这是因为负载的增加会导致芯片内部功耗的增加,进而影响到输出电压的稳定性。
根据实验数据,我们可以计算出集成稳压器的最大负载能力。
3. 温度特性:实验结果显示,集成稳压器的输出电压会随着温度的升高而下降。
这是因为温度的增加会导致芯片内部电子元件的性能变化,进而影响到输出电压的稳定性。
集成稳压器电路的特点
集成稳压器电路是一种常见的电子元件,它的主要作用是将不稳定的
电压转换为稳定的电压输出。
在现代电子设备中,集成稳压器电路被
广泛应用于各种场合,如计算机、通信设备、家用电器等。
下面就来
详细介绍一下集成稳压器电路的特点。
1. 稳定性高
集成稳压器电路具有很高的稳定性,能够保证输出电压几乎不受输入
电压变化和负载变化的影响。
这是因为集成稳压器内部采用了反馈控
制技术,能够自动调整输出电压以保持恒定。
2. 体积小
与传统离散式稳压器相比,集成稳压器采用了微型化设计和制造工艺,使得其体积非常小。
这样可以大大节省空间,并且便于在高密度布局
的PCB板上进行安装。
3. 功能多样
除了基本的线性调节功能外,集成稳压器还具有多种附加功能。
例如
过载保护、过热保护、瞬态保护等。
这些功能可以提高整个系统的可
靠性和稳定性。
4. 效率高
集成稳压器电路的效率一般比传统离散式稳压器高。
这是因为集成稳
压器内部采用了高效的功率半导体器件和电路拓扑结构,能够将输入
电源能量尽可能地转换为输出负载能量,从而减少功率损耗。
5. 可靠性好
集成稳压器电路的可靠性非常高。
这是因为它采用了先进的工艺和材料,具有优异的抗干扰、耐温、耐压等特点。
同时,由于其结构简单、元件少,也减少了故障点和维修难度。
总之,集成稳压器电路具有稳定性高、体积小、功能多样、效率高、
可靠性好等特点。
这些特点使得它在现代电子设备中得到广泛应用,
并且在未来还将继续发挥重要作用。
一、实验目的1. 了解集成稳压电源的工作原理和设计方法。
2. 掌握集成稳压电路的调试技术。
3. 熟悉集成稳压电源的性能指标及其测试方法。
4. 培养实际操作能力和问题解决能力。
二、实验原理集成稳压电源是将交流电源通过变压器降压、整流、滤波后,利用集成稳压器输出稳定的直流电压。
本实验采用LM7805集成稳压器,其输出电压为5V,输出电流可达1A。
三、实验仪器与材料1. 交流电源:220V,50Hz2. 变压器:输出电压约15V,输出电流约1A3. 整流桥堆:4个二极管4. 滤波电容:1000μF5. 集成稳压器:LM78056. 电压表:量程0-30V7. 电流表:量程0-1A8. 线路板、连接线、焊锡等四、实验步骤1. 电路搭建:按照实验原理图搭建集成稳压电源电路,包括变压器、整流桥堆、滤波电容和集成稳压器等元件。
2. 电路调试:1. 将交流电源接入变压器,观察变压器输出电压是否正常。
2. 将整流桥堆接入变压器输出端,观察整流桥堆输出电压波形是否为直流电压。
3. 将滤波电容接入整流桥堆输出端,观察滤波电容输出电压波形是否平滑。
4. 将集成稳压器接入滤波电容输出端,观察集成稳压器输出电压是否稳定。
3. 性能测试:1. 使用电压表测量集成稳压器输出电压,观察输出电压是否稳定。
2. 使用电流表测量输出电流,观察输出电流是否满足设计要求。
3. 测量输出电压的纹波电压,观察纹波电压是否在允许范围内。
五、实验结果与分析1. 输出电压:实验测得集成稳压电源输出电压为5V,符合设计要求。
2. 输出电流:实验测得输出电流约为1A,满足设计要求。
3. 纹波电压:实验测得纹波电压约为50mV,符合设计要求。
六、实验总结通过本次实验,我们掌握了集成稳压电源的工作原理、设计方法和调试技术。
实验结果表明,所设计的集成稳压电源性能稳定,输出电压和电流满足设计要求。
七、改进建议1. 在电路设计时,可以采用更高精度的滤波电容,以降低纹波电压。
实验十七 集成稳压器一、实验目的1、了解集成稳压器的特性和使用方法2、掌握直流稳压电源主要参数测试方法二、实验仪器1、示波器2、数字万用表三、实验原理采用集成工艺,将调整管、取样电路、误差放大和保护电路等集成在一块芯片上,就构成了集成化稳压电源。
如图1所示的外引脚图。
(a )W78XX 外部引脚功能 (b )W117引脚图1输入端 2公共端 3输出端 1调整端 2输出端3输入端图1常用三端稳压器的外引脚功能1、 三端固定输出集成稳压器型号为W78XX 系列的三端稳压器为固定式稳压电路,他有三个引出端:输入端、输出端和公共端。
根据其输出电压极性可跟为固定正输出集成稳压器(W78系列)和固定负输出集成稳压器(W79系列)。
根据输出电流的大小又可分为W78XX 型(表示输出电流为1.5A )、W78MXX 型(表示输出电流为0.5A )和CW78LXX 型(表示输出电流为0.1A )。
后面两位数字XX 表示输出电压的数值,一般有5V 、6V 、9V 、12V 、15V 、18V 、24V ,固定负输出集成稳压器相应也有W79XX 、W79MXX 和W79LXX 型。
利用固定输出集成稳压器可组成各种应用电路,W78XX 型集成稳压器的基本应用电路如图2所示。
对三端固定集成稳压器,其输入电压的选取原则是:min max ()o i o i i U U U U U +-<<式中,o U ----- 集成稳压器的固定输出电压值m a xi U ----- 集成稳压器规定的最大允许输入电压值 min ()i o U U ------ 集成稳压器规定允许的最小输入输出电压值,一般为2V图2 基本应用电路如果只有固定输出集成稳压器,又希望输出电压扩大或可调,可采用图3所示电路实用稳压电路来完成。
图中电压跟随器的输出电压等于其输入电压,也等于三端稳压器的输出电压U o ,也就是说R 1和R 2上部分的电压之和为U o ',是一个常量。
集成稳压器的原理和应用
2、可调集成稳压器
CW117为三端可调正输出集成稳压器,输出电压可调范围为1.2—37V,输出电流可达1.5A,其1脚为调整端,2脚为输出端,3脚为输入端。
下图为CW117典型应用电路,R1与RP组成调压电阻网络,调节电位器RP即可改变输出电压。
RP动臂向上移动时输出电压增大,向下移动时输出电压减小。
当将CW117的调整端直接接地时,即可获得1.2V的固定低压稳压输出。
如下图所示为固定低压应用电路。
CW117还可以用于软启动电源电路,如下图所示。
刚接通输入电源时,C2上无电压,VT导通将RP短路,稳压电源输出电压Uo=1.2V。
随着C2的充电,VT逐步退出导通状态,Uo逐步上升,直至C2充电结束,VT截止,Uo达最大值。
启动时间的长短由R1、R2和C2决定。
VD为C2提供放电通路。
CW137为三端可调负输出集成稳压器,输出电压可调范围为-(1.2—37V),输出电流可达1.5A。
其1脚为调整端,2脚为输入端,3脚为输出端。
下图所示为CW137典型应用电路。
调节电位器RP可改变输出电压的大小,RP动臂向上移动时输出负电压的绝对值增大,向下移时输出负电压的绝对值减小。
下图为采用CW117和CW137组成的正、负对称输出可调的稳压电源电路,输出电压±(1.2—37V),最大输出电流1.5A。
调节双连同轴电位器RP1,即可使正、负输出电压的绝对值同步变化。