中间的四个格中的数是表
格的核心部分,给出了事件
{X=x,Y=y}(x,y=0,1)中样本
点的个数;右下角格中的数
是样本空间中样本点的总
数。
X
Y
X=0
X=1
Y=0
a
c
Y=1
b
d
合计
a+c
b+d
合计
a+b
c+d
n=a+b+c+d
复习回顾
两个分类变量之间关联关系的定性分析的方法:
(1)频率分析法:通过对样本的每个分类变量的不同类别事件产生的频率大
因为
数学成绩
学校
合计
不优秀(Y=0)
优秀(Y=1)
甲校(X=0)
33
10
43
乙校(X=1)
38
7
45
合计
71
17
88
所以
=
(×−×)
×××
≈ . < . =x0.1
根据小概率值=0.1的 独立性检验,没有充分证据推断H0不成立,因此可以
表是关于分类变量X和Y的抽样数据的2×2列联表:
最后一行的前两个数分别是事件{Y=0}和{Y=1}的频数;
最后一列的前两个数分别是事件{X=0}和{X=1}的频数;
中间的四个数a,b,c,d是事件{X=x,Y=y}(x, y=0,1)的频数;
右下角格中的数n是样本容量。
对于随机样本,表中的频数
a,b,c,d 都是随机变量,而表中
{Y=1}都是互对峙事件,与前面的讨论类似,我们需要判断下面的假定关系
H0:P(Y=1|X=0)=P(Y=1|X=1)是否成立,通常称H0为零假设或原假设(null hypothesis).