中考考试数学知识辅导:一次函数公
- 格式:docx
- 大小:10.07 KB
- 文档页数:2
中考数学复习考点知识讲解与练习 专题11 一次函数-概念与性质在某一个变化过程中,设有两个变量x 和y ,如果满足这样的关系:y=kx+b(k 为一次项系数且k≠0,b 为任意常数,),那么我们就说y 是x 的一次函数,其中x 是自变量,y 是因变量 (又称函数)。
其图象是一条直线,k 的值决定图象的增减性,k 、b 的值决定图象的位置。
本中考数学复习考点知识讲解与练习 专题主要内容是对一次函数定义、图象的位置、增减性、直线平移、进行巩固练习,为后期综合题训练打下坚实基础。
一、一次函数定义(基本概念、参数取值或取值范围)1.(2022·广西兴宁·南宁三中期末)下列函数中,一次函数是() A .28y x = B .18y x -= C .1y x =+D .11y x =+ 2.(2022·山东东昌府·期末)下列函数中,y 是x 的一次函数的有( ) ①y =x ﹣6;②y =2x 2+3;③y =2x;④y =8x ;⑤y =x 2A .0个B .1个C .2个D .3个3.(2022·广西横县·期末)下列函数不是正比例函数的是( ) A .y =2xB .y =﹣4xC .y =﹣6xD .y =﹣6x +54.(2022·四川营山·初二期末)下列函数中,正比例函数是() A .2xy =B .y =2x 2C .2y x=D .y =2x +15.(2022·安徽瑶海·合肥38中月考)y=(m-3)x+m 2-9 是正比例函数,则m=_____________6.(2022·山东汶上·初二期末)若25(2)3m y m x -=++是一次函数,则m 的值为()A .2B .-2C .±2D .7.(2022·内蒙古科尔沁右翼前旗·初二期末)若函数y=(m-1)x ∣m ∣-5是一次函数,则m 的值为( ) A .±1B .-1C .1D .28.(2022·山东昌乐·初二期末)已知函数28(3)4m y m x -=++是关于x 的一次函数,则m 的值是() A .3m =±B .3m ≠-C .3m =-D .3m =9.(2022·贵州兴仁·初二期末)若函数()232m y m x -=-是正比例函数,则m =_______.二、一次函数图象的位置10.一次函数2y kx =-的图象经过点()1,0-,则该函数的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限11.一次函数21y x =--的图象不经过() A .第一象限B .第二象限C .第三象限D .第四象限12.如果一次函数y =mx+n 的图象经过第一、二、四象限,则一次函数y =nx+m 不经过的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限13.当0b <时,一次函数y x b =+的图象大致是()A .B .C .D .14.两个一次函数y 1 = mx+n ,y 2 =nx+m ,它们在同一坐标系中的图像可能是()A .B .C .D .15.一次函数y=3x ﹣6的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限16.一次函数y=kx+b ,当k >0,b <0时,它的图象是( )A .B .C .D .17.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .18.一次函数1y ax b 与一次函数2y bx a =-在同一平面直角坐标系中的图象大致是()A .B .C .D .19.直线()32y a x b =-+-在直角坐标系中的图象如图所示,化简||2b a b --______.三、一次函数图象的增减性20.已知一次函数y=kx+b ﹣x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为() A .k 1>,b 0<B .k 1>,b 0>C .k 0>,b 0>D .k 0>,b 0<21.一次函数24y x =--的图象上有两点A (﹣3,y 1)、B (1,y 2),则y 1与y 2的大小关系是() A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定22.已知一次函数()371y m x m =--+(m 为整数)的图象与y 轴正半轴相交,y 随x 的增大而减小,当04y <<时,x 的取值范围是(). A .10x -<<B .31x -<<C .04x <<D .13x <<23.若点(-3,y 1),(1,y 2)都在直线12y x b =-+上,则y 1、y 2大小关系是()A .y 1 < y 2B .y 1 > y 2C .y 1 = y 2D .y 1≥y 224.点()111,P x y ,点()222,P x y 是一次函数43y x =-+图象上的两个点,且120x x <<,则3,1y 与2y 的大小关系是() A .213y y <<B .123y y >>C .123y y <=D .123y y =>25.已知点()()()123,,1,3,2,y y -在一次函数5y kx =+的图像上,则12,,3y y 的大小关系正确的是() A .213y y <<B .123y y <<C .213y y <<D .213y y <<26.如图,正比例函数y =kx ,y =mx ,y =nx 在同一平面直角坐标系中的图象如图所示,则比例系数k ,m ,n 的大小关系是()A .n <m <kB .m <k <nC .k <m <nD .k <n <m27.一个y 关于x 的一次函数同时满足两个条件:①图像经过(1,-1)点;②当x >0时,y 随x 的增大而减小,这个函数的解析式为________.28.己知一次函数23y x =-+,当05x ≤≤时,函数y 的最大值是__________. 29.已知,函数y =3x +b 的图象经过点A (﹣1,y 1),点B (﹣2,y 2),则y 1_____y 2(填“>”“<”或“=”) 四、一次函数图象的平移 30.将一次函数12y x =的图象向上平移2个单位,平移后,若0y >,则x 的取值范围是() A .4x >B .4x >-C .2x >D .2x >-31.一次函数23y x =+的图象可由直线2y x =向上平移得到,则平移的单位长度是________.32.将一次函数3y x =的图象向上平移2个单位的长度,平移后的直线与x 轴的交点坐标为_________. 33.如果将一次函数132y x =+的图像沿y 轴向上平移3个单位,那么平移后所得图像的函数解析式为__________.34.将直线24y x =-+先向上平移2个单位,再向右平移2个单位得到的直线l 对应的一次函数的表达式为_____.35.将一次函数2y x =的图象向上平移2个单位后,当0y >时,x 的取值范围是_________.36.将直线12y x =-向上平移一个单位长度得到的一次函数的解析式为_______________.37.解答题:如图,直线l 是一次函数y kx b =+的图象. (1)求出这个一次函数的解析式;(2)将该函数的图象向下平移3个单位,求出平移后一次函数的解析式,并写出平移后的图像与x 轴的交点坐标38.解答题:已知一次函数y kx b =+,y 随x 增大而增大,它的图象经过点()1,0且与x 轴的夹角为45,()1确定这个一次函数的解析式;()2假设已知中的一次函数的图象沿x 轴平移两个单位,求平移以后的直线及直线与y 轴的交点坐标.39.解答题:已知一次函数y =kx -4,当x =2时,y =-3. (1)求一次函数的表达式;(2)将该函数的图像向上平移6个单位长度,求平移后的图像与x 轴交点的坐标. 40.解答题:一次函数2y x a =+的图象与x 轴交与点()2,0, (1)求出a 的值;(2)将该一次函数的图象向上平移5个单位长度,求平移后的函数解析式.。
【中考数学复习】一次函数与反比例函数知识提要初中代数中涉及的函数有:一次函数(包括正比例函数)、反比例函数、二次函数.每种函数一般从下面四个方面研究:定义,图象,性质,求解析式.本讲研究一次函数和反比例函数.一、一次函数1、定义:函数)0(≠+=k b kx y 称为一次函数,若0=b 则称函数为正比例函数.2、图象:一次函数是过点(0,b )和点(kb -,0)的直线.当b=0时的正比例函数)0(≠=k kx y 是过原点的一条直线,若k 与b 的符号不同,则直线经过的象限也不同,如图所示:3、性质:当0>k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小.(此性质为一次函数的单调性)另外,正比例函数关于原点O 中心对称4、求解析式:求一次函数的解析式,一般需要两个条件,求出表达式b kx y +=中的k 及b 的值,常用待定系数法来求一次函数.而正比例函数的解析式只需要一个条件.二、反比例函数1、定义:形如)0(≠=k x k y 形式称为反比例函数,定义域为0≠x 的所有实数.2、图象:反比例图象为双曲线,如图所示:3、性质:反比例函数x k y =在0>k 且0>x 时,函数值y 随x 的增大而减小;在0>k 且0<x 时,函数值y 随x 的增大而减小.即:当0>k 时,反比例函数x k y =分布在一、三象限,在每个象限内,y 随x 的增大而减小,如图(1)所示.当0<k 时,反比例函数xk y =分布在二、四象限,在每个象限内,y 随x 的增大而增大,如图(2)所示.反比例函数x k y =图象上的点关于原点O 成中心对称的.当0>k 时,函数的图象关于直线x y =成轴对称;当0<k 时,函数的图象关于直线x y -=成轴对称.4、求解析式:反比例函数的解析式,只需要一个条件,求出xk y =)0(≠k 中的k 即可.在解决有关一次函数及反比例函数的问题时,常运用数形结合及分类讨论的思想方法.待定系数法是研究函数表达式的基本方法,同时紧密结合图象寻求思路,是处理这类问题的重要方法.例1、已知正比例函数x y =和)0(>=a ax y 的图象与反比例函数xky =(k>0)的图象在第一象限内分别相交于A 、B 两点,过A 、B 作x 轴的垂线,垂足分别为C 、D ,设△AOC 和△BOD 的面积分别为1S 、2S ,则1S 与2S 的大小关系怎样?例2、两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示,点1P ,2P ,3P ,…2005P 在反比例函数x y 6=图象上,它们的横坐标分别是1x ,2x ,3x ,…2005x ,纵坐标分别是1,3,5,…,共2005个连续奇数,过点1P ,2P ,3P ,…2005P 分别作y 轴的平行线,与xy 3=的图象交点依次是)(111y x Q ,,)(222y x Q ,,)(333y x Q ,,…)(200520052005y x Q ,,则_________2005=y .例3、平面直角坐标系内有A (2,-1)、B (3,3)两点,点P 是y 轴上一动点,求P 到A 、B 距离之和最小时的坐标.例4、已知一次函数的图象经过点(2,2),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的解析式.例5、已知A (-2,0)、B (4,0),点P 在直线221+=x y 上,若△PAB 是直角三角形,求点P 的坐标.例6、已知两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供两个方面的信息,如图所示,请根据图中提供的信息,求:(1)第2年全县生产甲鱼的只数及甲鱼池的个数;(2)到第6年,这个县的甲鱼养殖规模比第1年是扩大了还是缩小了,请说明理由.例7、如图,已知C 、D 是双曲线xm y =在第一象限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(11y x ,)、(22y x ,),连接OC 、OD.(1)求证:111y m y OC y +<<;(2)若α=∠=∠AOD BOC ,31tan =α,10=OC ,求直线CD 的解析式.(3)在(2)的条件下,双曲线是否存在一点P ,使POD POC S S ∆∆=?若存在,求出P 点坐标;若不存在,请说明理由.例8、有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到时间x (分)与水量y (升)之间的关系如图所示,若20分钟后只放水不进水,求多长时间能将水放完?例9、为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图),观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息解答下列问题:(1)药物燃烧时,y 关于x 的函数关系式为__________,自变量x 的取值范围是___________;药物燃烧后y 关于x 的函数关系式为____________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?例10、某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表所示:家电名称空调器彩电冰箱工时/个213141产值/千元432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)练习1、已知0≠abc 并且p b a c a c b c b a =+=+=+而直线p px y +=一定通过()A 第一、二象限B 第二、三象限C 第三、四象限D 第一、四象限2、函数kx y =和)0(<=k x k y 在同一坐标系中的图象是()3、一次函数b kx y +=过点)(11y x ,和)(22y x ,,且0>k ,b<0,当210x x <<时,有()A 21y b y >>B 21y b y <<C b y y <<<210D 012<<<y b y 4、若点(-2,1y ),(1,2y ),(2,3y )在反比例函数x y 21=的图象上,则下列结论正确的是()A 123y y y >>B 312y y y >>C 132y y y >>D 321y y y >>5、反比例函数x k y =的图象是轴对称图形,它的一条对称轴是下列正比例函数图象中的()A kxy -=B x k y =C x k k y =D kxy =6、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有()A 4个B 5个C 6个D 7个7、如图,正比例函数x y 3=的图象与反比例函数xk y =(0>k )的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为1S ,2S ,…20S ,则__________2021=+++S S S .8、不论k 为何值,解析式0)11()3()12(=--+--k y k x k 表示函数的图象都经过一定点,则这个定点是_________.9、如图所示,直线l 和双曲线x k y =(0>k )交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP.设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则321S S S 、、的大小关系是______________.10、甲、乙两车出发后再同一条公路行驶,行驶路程与时间的关系如图所示,那么可以知道:(1)出发行驶在前面的车是_________,此时两车相隔_________;(2)两车的速度分别为甲:___________千米/小时,乙:_________千米/小时,经过___________小时,快车追上慢车;(3)甲、乙两车均行驶600千米时各用的时间分别是:甲用_________小时,乙用__________小时.11、如图,函数221+-=x y 的图象交y 轴于M ,交x 轴于N ,MN 上两点A ,B 在x 轴上射影分别为11B A 、,若411>+OB OA ,则A OA 1∆的面积1S 与B OB 1∆的面积2S 的大小关系是_____________.12、已知非负数x 、y 、z 满足323=++z y x ,433=++z y x ,则z y x w 423+-=的最大值为_________,最小值为__________.13、在直角坐标系中,有四个点:A (-8,3),B (-4,5),C (0,n ),D (m ,0),当四边形ABCD 的周长最短时,求nm 的值.14、设直线1)1(=++y k kx (k 是自然数)与两坐标轴所围成的图形的面积为1S ,2S ,…,2000S .求200021S S S +++ 的值.15、如图(1),已知直线m x y +-=21与反比例函数xk y =的图象在第一象限内交于A 、B 两点(点A 在点B 的左侧),分别于x 、y 轴交于C 、D ,AE ⊥x 轴于E.(1)若OE·CE=12,求k 的值;(2)如图(2),作BF ⊥y 轴于F ,求证:EF ∥CD ;(3)在(1)(2)的条件下,5=EF ,52=AB ,P 是x 轴正半轴上一点,且△PAB 是以P 为直角顶点的等腰直角三角形,求P 点的坐标.(1)(2)16、已知直线62+-=-k y x 和143+=+k y x ,若它们的交点在第四象限内.(1)求k 的取值范围;(2)若k 为非负整数,点A 的坐标为(2,0),点P 在直线62+-=-k y x 上,求使△PAO 为等腰三角形的点P 的坐标.17、A 市、B 市和C 市分别有某种机器10台、10台和8台,现决定把这些机器支援给D 市18台,E 市10台.已知从A 市调运一台机器到D 市、E 市的运费分别为200元和800元,从B 市调运一台机器到D 市、E 市的运费分别为300元和700元,从C 市调运一台机器到D 市、E 市的运费分别为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器全部调运完毕后,求总运费w (元)关于x (台)的函数式,并求w 的最大值和最小值;(2)设从A 市调x 台到D 市,从B 市调y 台到D 市,当28台机器全部调运完毕后,用x ,y 表示总运费w (元),并求w 的最大值和最小值.18、直线133+-=x y 与x 轴、y 轴分别交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角三角形ABC ,其中∠BAC=90°.如果第二象限内有一点P (a ,21),使△ABP 的面积和△ABC 的面积相等,求a 的值.文式思维教育,传播知识,分享快乐19、如图,在直角坐标系中,点1O 的坐标为(1,0),⊙1O 与x 轴交于原点O 和点A ,又点B 、C 的坐标分别为(-1,0),(0,b ),且30<<b ,直线l 是过B 、C 点的直线.(1)当点C 在线段OC 上移动时,过点1O 作l D O 直线⊥1,交l 于D ,若a S S CBO BOC=∆∆1,试求b a 与的函数关系式及a 的取值范围.20、某仓储系统有20条输入传送带、20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(a ),每条输出传送带每小时出库的货物流量如图(b ),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(c ),则在0时至2时有多少条输入传送带在工作?在4至5时有多少条输入传送带和输出传送带在工作?。
初中数学中考复习考点知识与题型专题讲解专题11 一次函数【知识要点】考点知识一变量与函数变量:在一个变化过程中数值发生变化的量。
常量:在一个变化过程中数值始终不变的量。
【注意】1、变量是可以变化的,而常量是已知数,且它是不会发生变化的。
2、区分常量和变量就是在某个变化过程中该量的值是否发生变化。
函数的定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
【函数概念的解读】1、有两个变量。
2、一个变量的数值随另一个变量的数值变化而变化。
3、对于自变量每一个确定的值,函数有且只有一个值与之对应。
函数定义域:一般的,一个函数的自变量x允许取值的范围,叫做这个函数的定义域。
确定函数定义域的方法:(自变量取值范围)(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
函数值概念:如果在自变量取值范围内给定一个值a,函数对应的值为b,那么b叫做当自变量取值为a时的函数值。
函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。
函数的取值范围:使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
画函数图像的一般步骤:1、列表2、描点3、连线函数图像上点的坐标与解析式之间的关系:1、将点的坐标代入到解析式中,如解析式两边成立,则点在解析式上,反之,不在。
2、两个函数图形交点的坐标就是这两个解析式所组成的方程组的解。
函数的三种表示法及其优缺点1、解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
教学文档
中考数学知识点:一次函数的解析公式
一次函数的解析公式包含了我们所熟知的点斜式,也包含常用到的两点式和截距式。
一次函数的解析式
当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)。
①点斜式:y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点);
②两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y2)两点),
③截距式:x/a+y/b=1(a、b分别为直线在x、y轴上的截距)。
解析式表达的局限性:
①所需条件较多(2个点,因为使用待定系数法需要列一个二元一次方程组);
②、③不能表达没有斜率的直线(即垂直于x轴的直线;注意“没有斜率的直线平行于y轴〞表述不准,因为x=0与y轴重合);
x轴的正半轴逆时针旋转到直线所成的角(直线与x轴正方向所成的角)称为直线的倾斜角。
设一直线的倾斜角为α,则该直线的斜率k=tanα。
倾斜角的范围为(0,π)。
并不是全部的解析式够可以表达平行于坐标轴的直线和过原点的直线。
.。
中考数学必背知识点及公式
1. 一次函数的标准式:y = kx + b;斜率 k 的计算公式:k =
(y2 - y1) ÷ (x2 - x1)
2. 二元一次方程组:ax + by = c;dx + ey = f;解法有消元法和代入法。
3. 垂直、平行线的判定方法:(1)两条直线斜率乘积等于-1,则它们垂直;(2)两条直线斜率相等,则它们平行。
4. 三角形内角和公式:三角形内角和等于 180 度。
5. 相似三角形边长、角度的关系:(1)相似三角形的对应边
长成比例;(2)相似三角形的对应内角相等。
6. 直角三角形中的三角函数公式:正弦函数:sinθ = 对边 ÷斜边;余弦函数:cosθ = 邻边 ÷斜边;正切函数:tanθ = 对边 ÷
邻边。
7. 平面坐标系中两点间的距离公式:√[(x2 - x1)² + (y2 - y1)²]
8. 平行四边形的面积公式:S = 底 ×高。
9. 三角形的面积公式:S = 底 ×高 ÷ 2。
10. 圆的周长公式:C = 2πr 或C = πd (其中 r 为圆的半径,d
为圆的直径)。
11. 圆的面积公式:S = πr²。
12. 锐角三角形中任意两边的关系:两边之和大于第三边。
13. 任意三角形中角度与对边的关系:(1)任意两边之间的夹角小于对应的角的大小;(2)任意两角之间的棱长比大于角对应的正弦值。
中考数学复习题纲—10 函数(一次函数、正比例函数)函 数x 数量(标量):一些量在取定度量单位后,可用一个实数来表示。
如距离、时间、面积、质量等。
向量(矢量):一些量不但有大小,而且有方向。
如位移、速度、力等。
量常量:在某一变化过程中,始终保持不变的量叫做常量。
在某一变化过程中,如果对每一个实数 ,可以按变量:y y x xy 照某一确定的对应法则,得到唯一一个实数 ,那么就称 是关于 的一个函数,其中 叫做自变量, 叫做因变量。
自变量的广义解释:任何一个系统(或模型)都是由各种变量构成的,当我们分析这些系统(或模型)时,可以选择研究其中一些变量对另一些变量的影响,那么我们选择的这些变量就称为自变量,而被影响的量就被称为因变量。
例如:我们可以分析人体这个系统中,呼吸对于维持生命的影响,那么呼吸就是自变量,而生命维持的状态被认为是因变量。
系统和模型可以是一个二元函数这么简单,也可是整个社会这样复杂。
:::⎧⎧⎨⎪⎩⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩满足解析式的坐标所表示的点都在图象上函数与点的坐标在图象上的点的坐标都满足解析式函数列表法不必通过计算就可以知道自变量与因变量的对应关系。
表示方法解析法便于用解析式去研究函数的性质。
图象法可以从整体上直观形象地表示出函数的变化情况。
函数与二次函数的一些基本性质:⇔点图象坐标解析式(即图象所对应的方程)1. 坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式,因此判断平面直角坐标系中的一个点是否在函数图象上,只需把点的坐标代入函数解析式进行检验,能满足函数解析式的表明点在图象上,不满足函数解析式的则表明点不在图象上。
2. 求两个函数的交点坐标,即求这两个函数解析式组成的二元方程组的解。
3. 在解决有关函数的问题时,要注意利用平面直角坐标系中X 轴与Y 轴之间的夹角为直角、以及勾股定理等平面几何知识,要能很熟练地求出函数与坐标轴的交点坐标。
第10讲一次函数一、知识清单梳理知识点一:一次函数的概念及其图象、性质关键点拨与对应举例1.一次函数的相关概念(1)概念:一般来说,形如y=kx+b(k≠0)的函数叫做一次函数.特别地,当b =0时,称为正比例函数.(2)图象形状:一次函数y=kx+b是一条经过点(0,b)和(-b/k,0)的直线.特别地,正比例函数y=kx的图象是一条恒经过点(0,0)的直线.例:当k=1时,函数y=kx+k-1是正比例函数,2.一次函数的性质k,b符号K>0,b>0K>0,b<0K>0,b=0k<0,b>0k<0,b<0k<0,b=0(1)一次函数y=kx+b中,k确定了倾斜方向和倾斜程度,b确定了与y轴交点的位置.(2)比较两个一次函数函数值的大小:性质法,借助函数的图象,也可以运用数值代入法.例:已知函数y=-2x+b,函数值y随x的增大而减小(填“增大”或“减小”).大致图象经过象限一、二、三一、三、四一、三一、二、四二、三、四二、四图象性质y随x的增大而增大y随x的增大而减小3.一次函数与坐标轴交点坐标(1)交点坐标:求一次函数与x轴的交点,只需令y=0,解出x即可;求与y轴的交点,只需令x=0,求出y即可.故一次函数y=kx+b(k≠0)的图象与x轴的交点是⎝⎛⎭⎪⎫-bk,0,与y轴的交点是(0,b);(2)正比例函数y=kx(k≠0)的图象恒过点(0,0).例:一次函数y=x+2与x轴交点的坐标是(-2,0),与y轴交点的坐标是(0,2).知识点二:确定一次函数的表达式4.确定一次函数表达式的条件(1)常用方法:待定系数法,其一般步骤为:①设:设函数表达式为y=kx+b(k≠0);②代:将已知点的坐标代入函数表达式,解方程或方程组;③解:求出k与b的值,得到函数表达式.(2)常见类型:①已知两点确定表达式;②已知两对函数对应值确定表达式;③平移转化型:如已知函数是由y=2x平移所得到的,且经过点(0,1),则可设要求函数的解析式为y=2x+b,再把点(0,1)的坐标代入即可.(1)确定一次函数的表达式需要两组条件,而确定正比例函数的表达式,只需一组条件即可.(2)只要给出一次函数与y轴交点坐标即可得出b的值,b值为其纵坐标,可快速解题. 如:已知一次函数经过点(0,2),则可知b=2.5.一次函数图象的平移规律:①一次函数图象平移前后k不变,或两条直线可以通过平移得到,则可知它们的k值相同.②若向上平移h单位,则b值增大h;若向下平移h单位,则b值减小h.例:将一次函数y=-2x+4的图象向下平移2个单位长度,所得图象的函数关系式为y=-2x+2.知识点三:一次函数与方程(组)、不等式的关系6.一次函数与方程一元一次方程kx+b=0的根就是一次函数y=kx+b(k、b是常数,k≠0)的图象与x轴交点的横坐标.例:(1)已知关于x的方程中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( ) A .方差 B .中位数C .众数D .平均数【答案】A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可. 故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差2.如图,C ,B 是线段AD 上的两点,若AB CD =,2BC AC =,则AC 与CD 的关系为( )A .2CD AC =B .3CD AC =C .4CD AC =D .不能确定【答案】B【解析】由AB=CD ,可得AC=BD ,又BC=2AC ,所以BC=2BD ,所以CD=3AC. 【详解】∵AB=CD , ∴AC+BC=BC+BD , 即AC=BD , 又∵BC=2AC , ∴BC=2BD , ∴CD=3BD=3AC. 故选B . 【点睛】本题考查了线段长短的比较,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍转化线段之间的数量关系是十分关键的一点. 3.关于二次函数2241y x x =+-,下列说法正确的是( ) A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3 【答案】D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.4.将一些半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依次规律,第7个图形的小圆个数是()A.56 B.58 C.63 D.72【答案】B【解析】试题分析:第一个图形的小圆数量=1×2+2=4;第二个图形的小圆数量=2×3+2=8;第三个图形的小圆数量=3×4+2=14;则第n个图形的小圆数量=n(n+1)+2个,则第七个图形的小圆数量=7×8+2=58个. 考点:规律题5.如图,∠AOB=45°,OC是∠AOB的角平分线,PM⊥OB,垂足为点M,PN∥OB,PN与OA相交于点N,那么PMPN的值等于()A.12B.22C3D3【答案】B【解析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴PMPN=22.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.6.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线【答案】C【解析】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.7.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10【答案】B【解析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1, ∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线, ∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM , ∵∠FCE=∠FCM , ∴∠EFC=∠ECF , ∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2. 故选B .8.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为( )A.6,5 B.6,6 C.5,5 D.5,6 【答案】A【解析】根据众数、中位数的定义分别进行解答即可.【详解】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为662=6,故选A.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:则下列叙述正确的是()A.这些运动员成绩的众数是5B.这些运动员成绩的中位数是2.30C.这些运动员的平均成绩是2.25D.这些运动员成绩的方差是0.0725【答案】B【解析】根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.【详解】由表格中数据可得:A、这些运动员成绩的众数是2.35,错误;B、这些运动员成绩的中位数是2.30,正确;C、这些运动员的平均成绩是2.30,错误;D、这些运动员成绩的方差不是0.0725,错误;故选B.【点睛】考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.10.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB 的长等于()A.2cm B.3cm C.6cm D.7cm【答案】D【解析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.【详解】因为,AB=10cm,BC=4cm,所以,AC=AB-BC=10-4=6(cm)因为,点D是线段AC的中点,所以,CD=3cm,所以,BD=BC+CD=3+4=7(cm)故选D【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.二、填空题(本题包括8个小题)11.化简:a ba b b a+--22=__________.【答案】a+b【解析】将原式通分相减,然后用平方差公式分解因式,再约分化简即可。
初二数学下册:【一次函数】性质,6大考点+例题解析,抓紧记!考纲要求:1.理解一次函数的概念,会利用待定系数法确定一次函数的表达式.2.会画一次函数的图象,掌握一次函数的基本性质,平移的方法.3.体会一次函数与一元一次方程不等式的关系。
4.一次函数的与三角形面积的问题.命题趋势:一次函数是中考的重点,主要考查一次函数的定义、图像、性质及其实际应用,有时与方程、不等式相结合.题型有选择题、填空题、解答题.中考数学一次函数知识梳理:一、一次函数和正比例函数的定义一般地,如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.特别地,当b=0时,一次函数y=kx+b就成为y=kx(k是常数,k≠0),这时y叫做x的正比例函数.二、一次函数的图像与性质1.一次函数的图像(1)一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b/k,0)的一条直线.(2)正比例函数y=kx(k≠0)的图像是经过点(0,0)和(1,k)的一条直线.(3)因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两个点即可.2.一次函数图象的性质一次函数y=kx+b的图象可由正比例函数y=kx的图象平移得到,b>0,上移b个单位;b<0,下移|b|个单位.三、利用待定系数法求一次函数的解析式四、一次函数与方程、方程组及不等式的关系1.y=kx+b与kx +b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x轴交点的横坐标.2.一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点.3.一次函数的平移y=kx+b遵循左加右减原则如果向左平移a个单位,可得y=k(x+a)+b如果向上平移a个单位,可得y=kx+b+a 通过以上对一次函数的整体了解和综合的学习,快速掌握一次函数,就从下面的六大考点出发,每个考点的精髓和解题的技巧唐老师都在例题的下方给大家进行了总结,记得一定要牢记。
一次函数考点分析及典型试题【专题综述】一次函数的图象和性质正比例函数的图象和性质【方法解读】1.一次函数的意义及其图象和性质⑴.一次函数:若两个变量x、y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x 的一次函数(x是自变量,y是因变量〕特别地,当b=0时,称y是x的正比例函数.⑵.一次函数的图象:一次函数y=kx+b 的图象是经过点()(0,,0)bkb -,的一条直线,正比例函数y=kx 的图象是经过原点(0,0)的一条直线,如下表所示.⑶.一次函数的性质:y=kx +b(k 、b 为常数,k ≠0)当k >0时,y 的值随x 的值增大而增大;当k <0时,y 的值随x 值的增大而减小.⑷.直线y=kx +b(k 、b 为常数,k ≠0)时在坐标平面内的位置与k 在的关系. ①直线经过第一、二、三象限(直线不经过第四象限); ②直线经过第一、三、四象限(直线不经过第二象限); ③直线经过第一、二、四象限(直线不经过第三象限); ④直线经过第二、三、四象限(直线不经过第一象限);2.一次函数表达式的求法⑴.待定系数法:先设出式子中的未知系数,再根据条件列议程或议程组求出未知系数,从而写出这个式子的方法,叫做待定系数法,其中的未知系数也称为待定系数。
⑵.用待定系数法求出函数表壳式的一般步骤:⑴写出函数表达式的一般形式;⑵把已知条件(自变量与函数的对应值)公共秩序 函数表达式中,得到关于待定系数的议程或议程组;⑶解方程(组)求出待定系数的值,从而写出函数的表达式。
⑶.一次函数表达式的求法:确定一次函数表达式常用 待定系数法,其中确定正比例函数表达式,只需一对x 与y 的值,确定一次函数表达式,需要两对x 与y 的值。
类型1:正比例函数和一次函数的概念【例1】若函数(1)my m x =-是正比例函数,则该函数的图象经过第 象限.类型2:一次函数的图像【例2】(2017上海市)如果一次函数y =kx +b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )类型3:正比例函数和一次函数解析式的确定基础知识归纳:确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k .确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b .解这类问题的一般方法是待定系数法.基本方法归纳:求正比例函数解析式只需一个点的坐标,而求一次函数解析式需要两个点的坐标. 注意问题归纳:数形结合思想,将线段长度,图形面积与点的坐标联系起来是关键,同时注意坐标与线段间的转化时符号的处理.【例3】(2017天津)用A 4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x (x 为非负整数). (1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 … 甲复印店收费(元) 0.52… 乙复印店收费(元)0.62.4…(2)设在甲复印店复印收费y 1元,在乙复印店复印收费y 2元,分别写出y 1,y 2关于x 的函数关系式; (3)当x >70时,顾客在哪家复印店复印花费少?请说明理由.类型4:一次函数图象与坐标轴围成的三角形的面积基础知识归纳:直线y =kx +b 与x 轴的交点坐标为(bk-,0),与y 轴的交点坐标为(0,b );直线与两坐标轴围成的三角形的面积为S△=12|bk|·|b|=22||bk.基本方法归纳:直线与两坐标轴交点是关键.注意问题归纳:对于k不明确时要分情况讨论,否则容易漏解.【例4】(2017怀化)一次函数y=﹣2x+m的图象经过点P(﹣2,3),且与x轴、y轴分别交于点A、B,则△AOB的面积是()A.12B.14C.4D.8【例5】(2017浙江省台州市)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.类型5:一次函数的应用基础知识归纳:主要涉及到经济决策、市场经济等方面的应用.利用一次函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.基本方法归纳:利用函数知识解应用题的一般步骤:(1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案..注意问题归纳:读图时首先要弄清横纵坐标表示的实际意义,还要会将图象上点的坐标转化成表示实际意义的量;自变量取值范围要准确,要满足实际意义.【例6】(2017四川省凉山州)为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:篮球排球进价(元/个)8050售价(元/个)10570(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【强化训练】1.(2017内蒙古呼和浩特市)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.(2017内蒙古赤峰市)将一次函数y=2x﹣3的图象沿y轴向上平移8个单位长度,所得直线的解析式为()A.y=2x﹣5B.y=2x+5C.y=2x+8D.y=2x﹣83. (2017枣庄)如图,直线243y x=+与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(32-,0)D.(52-,0)4.(2017山东省菏泽市)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2B.x<2C.x>﹣1D.x<﹣15.(2017山东省泰安市)已知一次函数y=kx﹣m﹣2x的图象与y轴的负半轴相交,且函数值y随自变量x 的增大而减小,则下列结论正确的是()A.k<2,m>0B.k<2,m<0C.k>2,m>0D.k<0,m<0 6. (2017四川省南充市)小明从家到图书馆看报然后返回,他离家的距离y与离家的时间x之间的对应关系如图所示,如果小明在图书馆看报30分钟,那么他离家50分钟时离家的距离为km.7. (2017吉林省长春市)甲、乙两车间同时开始加工一批服装.从幵始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.(1)甲车间每小时加工服装件数为件;这批服装的总件数为件.(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.8. (2017宁夏)某商店分两次购进A.B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)A B购进所需费用(元)第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.9. (2017黑龙江省龙东地区)为了推动“龙江经济带”建设,我省某蔬菜企业决定通过加大种植面积、增加种植种类,促进经济发展.2017年春,预计种植西红柿、马铃薯、青椒共100公顷(三种蔬菜的种植面积均为整数),青椒的种植面积是西红柿种植面积的2倍,经预算,种植西红柿的利润可达1万元/公顷,青椒1.5万元/公顷,马铃薯2万元/公顷,设种植西红柿x公顷,总利润为y万元.(1)求总利润y(万元)与种植西红柿的面积x(公顷)之间的关系式.(2)若预计总利润不低于180万元,西红柿的种植面积不低于8公顷,有多少种种植方案?(3)在(2)的前提下,该企业决定投资不超过获得最大利润的18在冬季同时建造A、B两种类型的温室大棚,开辟新的经济增长点,经测算,投资A种类型的大棚5万元/个,B种类型的大棚8万元/个,请直接写出有哪几种建造方案?10. (2017四川省广安市)正方形A1B1C1O,A2B2C2C1,A3B3C3C2…按如图所示放置,点A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,则A n的坐标是.。
中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。
2. 一次函数的图像:是不经过原点的一条直线。
3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。
专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。
中考数学复习专项知识总结—一次函数(中考必备)知识要点1、定义定义1:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数。
定义2:一般地,形如y=kx+b(k,b是常数,k≠0)的函数叫做一次函数。
当b=0时,y=kx+b即y=kx,是正比例函数。
所以说正比例函数是一种特殊的一次函数。
2、一次函数的图象及其性质正比例函数的图象及性质:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,称为直线y=kx。
y=kx经过象限升降趋势增减性k>0三、一从左向右上升y随着x的增大而增大k<0二、四从左向右下降y随着x的增大而减小一次函数的图象及性质:一次函数y=kx+b(k、b是常数,k≠0)的图象是一条直线,称为直线y=kx+b。
当k>0时,直线y=kx+b从左向右上升,即y随着x 的增大而增大;当k<0时,直线y=kx+b从左向右下降,即y随着x的增大而减小。
y=kx+b经过象限升降趋势增减性k>0,b>0三、二、一从左向右上升y随着x的增大而增大k>0,b<0三、四、一k<0,b>0二、一、四从左向右下降y随着x的增大而减小k<0,b<0二、三、四3、待定系数法定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法。
函数解析式y=kx+b 满足条件的两定点(x1,y1)与(x2,y2)一次函数的图象直线l4、一次函数与方程(组)及不等式(组)方程(组)的解与相应函数的交点坐标是相对应的。
找到函数的交点坐标,也就找到了对应方程(组)的解,反之一样。
对于不等式(组)的解集也可以通过其对应的函数图象来解决。
5、函数与实际问题(适用于一次函数、二次函数、反比例函数)在研究有关函数的实际问题时,要遵循一审、二设、三列、四解的方法:第1步:审题。
认真读题,分析题中各个量之间的关系;第2步:设自变量。
根据各个量之间的关系设满足题意的自变量;第3步:列函数。
【例题讲解】知识点一:函数的概念1. 函数: 一般地,在某个变化过程中,有两个变量x 和y ,如果给定一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是自变量,y 是因变量。
2. 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
一般从整式(取全体实数),①分式(分母不为0)、②二次根式(被开方数为非负数)、③实际意义几方面考虑3. 常量:在某变化过程中不发生改变的量。
变量:在某变化过程中发生改变的量。
4. 函数的表示方法:①列表法;②关系式(解析)法;③图像法。
题型一:函数概念例1:根据函数图象的定义,下列几个图象表示函数的是( )A .B .C .D .例2:下列等式中,是x 的函数的有( )个(1)123=-y x ;(2)122=+y x ;(3)1=xy ;(4)x y =. A .1个 B .2个 C .3个 D .4个 题型二:函数自变量取值范围 例1:(2013•湛江)函数3+=x y 中,自变量x 的取值范围是( )A .3->xB .3-≥xC .3-≠xD .3-≤x例2:(2013•包头)在函数131y x =-中,自变量x 的取值范围是( ) A.13x < B. 13x ≠- C. 13x ≠ D. 13x >例3:(2012•自贡) 函数112-+-=x x y 中,自变量x 的取值范围是 .举一反三:1. (2012•怀化)在函数23y x =-中,自变量x 的取值范围是( )A .x >32B .32x ≤C .32x ≠D .32x ≥2. (2013•眉山)函数12y x =-中自变量x 的取值范围是( )A .2=xB .2≠xC .2>xD .2<x3. (2013•南通)函数21x y x +=-的自变量x 的取值范围是( ) A .1>x B .2-≥x C .1≠x D .1<x 4. (2013•内江)函数112-+=x x y 中自变量x 的取值范围是 。
考点08 一次函数的图象和性质一次函数的图象与性质是中考数学中比较重要的一个考点,也是知识点牵涉比较多的考点。
各地对一次函数的图象与性质的考察也主要集中在一次函数表达式与平移、图象的性质、图象与方程不等式的关系以及一次函数图象与几何图形面积等五个方面。
也因为一次函数是一个结合型比较强的知识点,所以其图象和性质也是后续函数问题学习的一个基础。
故考生在复习这块知识点时,需要特别熟记对应考点的方法规律。
一、一次函数的图象与平移二、一次函数的性质三、待定系数法求解一次函数的表达式四、一次函数与方程、不等式的关系五、一次函数与三角形面积考向一:一次函数的图象与平移一.一次函数的图象二.一次函数图象的画法1.下列函数:①y =4x ;②y =﹣;③y =;④y =﹣4x +1,其中一次函数的个数是( )A .1B .2C .3D .4【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:y =﹣4x ,y =﹣,y =﹣4x +1都符合一次函数的定义,属于一次函数;y =是反比例函数,综上所述,其中y 是x 的一次函数的个数有3个.故选:C.一次函数的图象是经过点和点的一条直线2.如图,在平面直角坐标系中,函数y=k(x﹣1)(k>0)的图象大致是( )A.B.C.D.【分析】根据一次函数图象的特点对四个选项进行逐一分析即可.【解答】解:∵y=k(x﹣1)(k>0),∴一次函数图象过点(1,0),y随x的增大而增大,故选项B符合题意.故选:B.3.如图,同一直角坐标系中,能表示一次函数y=x+kb和y=kx+b(k、b为常数,且k≠0)的图象是( )A.B.C.D.【分析】根据一次函数的系数与图象的关系逐项分析即可.【解答】解:A、一次函数y=kx+b的图象经过第二、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的图象与y轴交于正半轴,则kb>0,kb>0与kb<0相矛盾,不符合题意;B、一次函数y=kx+b的图象经过第一、三、四象限,则k>0,b<0,则kb<0;而一次函数y=x+kb的一次项系数为正,与题干图形相矛盾,不符合题意;C、一次函数y=kx+b的图象经过第一、二、四象限,则k<0,b>0,则kb<0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb<0与kb<0相一致,符合题意;D、一次函数y=kx+b的图象经过第二、三、四象限,则k<0,b<0,则kb>0;而一次函数y=x+kb的图象与y轴交于负半轴,则kb<0.kb>0与kb<0相矛盾,不符合题意;故选:C.4.在平面直角坐标系中,直线是函数y=6x﹣2的图象,将直线l平移后得到直线y=6x+2,则下列平移方式正确的是( )A.将1向右平移4个单位长度B.将1向左平移4个单位长度C.将1向上平移4个单位长度D.将1向下平移4个单位长度【分析】利用一次函数图象的平移规律,右加左减,上加下减,即可得出答案.【解答】解:设将直线y=6x﹣2向左平移a个单位后得到直线y=6x+2(a>0),∴6(x+a)﹣2=6x+2,解得:a=,故将直线y=6x﹣2向左平移个单位后得到直线y=6x+2,同理可得,将直线y=6x﹣2向上平移4个单位后得到直线y=6x+2,观察选项,只有选项C符合题意.故选:C.5.直线y=2x﹣4向上平移2个单位后所得的直线与x轴交点的坐标是 (1,0) .【分析】利用一次函数平移规律,上加下减进而得出平移后函数解析式,再求出图象与坐标轴交点即可.【解答】解:直线y=2x﹣4沿y轴向上平移2个单位,则平移后直线解析式为:y=2x﹣4+2=2x﹣2,当y=0时,则x=1,故平移后直线与x轴的交点坐标为:(1,0).故答案为:(1,0).6.如图,在同一平面直角坐标系中,一次函数y1=k1x+b1与y2=k2x+b2的图象分别为直线l1和直线l2,下列结论正确的是( )A.k1k2<0B.k1+k2<0C.b1﹣b2>0D.b1b2>0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图象位置,可得k1<0,b1<0,k2<0,b2>0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图象过四、二、三象限,∴k1<0,b1<0,∵一次函数y=k2x+b2的图象过一、二、四象限,∴k2<0,b2>0,∴A、k1•k2>0,故A不符合题意;B、k1+k2<0,故B符合题意;C、b1﹣b2<0,故C不符合题意;D、b1•b2<0,故D不符合题意;故选:B.考向二:一次函数的性质对于任意一次函数y=kx+b(k≠0),点A (x1,y1)B(x2,y2)在其图象上1.一次函数y=﹣3x+1的图象经过( )A.第一、二、四象限B.第一、三、四象限C.第一、二、三象限D.第二、三、四象限【分析】利用一次函数的性质即可确定直线经过的象限.【解答】解:∵y=﹣3x+1,∴k<0,b>0,故直线经过第一、二、四象限.故选:A.2.已知点A(﹣3,y1),B(﹣1,y2)都在直线y=(m2+1)x+m上,则y1,y2的大小关系是( )A.y1>y2B.y1<y2C.y1=y2D.大小不确定【分析】利用偶次方的非负性,可得出m2≥0,进而可得出k=m2+1>0,利用一次函数的性质,可得出y随x的增大而增大,结合﹣3<﹣1,可得出y1<y2.【解答】解:∵m2≥0,∴k=m2+1>0,∴y随x的增大而增大.又∵点A(﹣3,y1),B(﹣1,y2)都在直线y=(m2+1)x+m上,且﹣3<﹣1,∴y1<y2.故选:B.3.已知A(x1,y1),B(x2,y2)是关于x的函数y=(m﹣1)x图象上的两点,当x1<x2时,y1<y2,则m 的取值范围是( )A.m>0B.m<0C.m>1D.m<1【分析】由“当x1<x2时,y1<y2”,可得出y随x的增大而增大,结合一次函数的性质,可得出m﹣1>0,解之即可得出m的取值范围.【解答】解:∵当x1<x2时,y1<y2,∴y随x的增大而增大,∴m﹣1>0,解得:m>1,∴m的取值范围是m>1.故选:C.4.对于一次函数y=﹣2x+1的相关性质,下列描述错误的是( )A .函数图象经过第一、二、四象限B .图象与y 轴的交点坐标为(1,0)C .y 随x 的增大而减小D .图象与坐标轴调成三角形的面积为【分析】根据一次函数的性质分别判断后即可确定正确的选项.【解答】解:A .∵k =﹣2<0,b =1>0,∴函数图象经过第一、二、四象限,正确,不符合题意;B .当x =0时,y =1,∴函数图象与y 轴的交点坐标为(0,1),错误,符合题意;C .∵k =﹣2<0,∴y 的值随着x 增大而减小,正确,不符合题意;D .令y =0可得y =1,∴函数图象与坐标轴围成的三角形面积为:×1×=,故D 正确,不符合题意.故选:B .5.已知点(﹣2,y 1),(2,y 2)都在直线y =2x ﹣3上,则y 1 < y 2.(填“<”或“>”或“=”)【分析】由k =2>0,利用一次函数的性质可得出y 随x 的增大而增大,再结合﹣2<2即可得出y 1<y 2.【解答】解:∵k =2>0,∴y 随x 的增大而增大,又∵﹣2<2,∴y 1<y 2.故答案为:<.考向三:待定系数法求一次函数的解析式1.一个正比例函数的图象过点(﹣2,3),它的表达式为( )A.B.C.D.【分析】利用待定系数法即可求解.【解答】解:设函数的解析式是y=kx.根据题意得:﹣2k=3.解得:k=﹣.故函数的解析式是:y=﹣x.故选:A.2.已知一次函数y=mx﹣4m,当1≤x≤3时,2≤y≤6,则m的值为( )A.2B.﹣2C.2或﹣2D.m的值不存在【分析】结合一次函数的性质,对m分类讨论,当m>0时,一次函数y随x增大而增大,此时x=1,y =2且x=3,y=6;当m<0时,一次函数y随x增大而减小,此时x=1,y=6且x=3,y=2;最后利用待定系数法求解即可.【解答】解:当m>0时,一次函数y随x增大而增大,∴当x=1时,y=2且当x=3时,y=6,令x=1,y=2,解得m=,不符题意,令x=3,y=6,解得m=﹣6,不符题意,当m<0时,一次函数y随x增大而减小,∴当x=1时,y=6且当x=3时,y=2,令x=1,y=6,解得m=﹣2,令x=3,y=2,解得m=﹣2,符合题意,故选:B.3.已知y与x成正比例,且当x=2时,y=﹣3.则当x=﹣时,y= .【分析】设y=kx,把x=2,y=﹣3代入,求出k得到函数解析式,把x=﹣代入函数解析式,求出即可.【解答】解:根据题意,设y=kx,把x=2,y=﹣3代入得:﹣3=2k,解得:k=﹣,∴y与x的函数关系式为y=﹣x,把x=﹣代入y=﹣x,得y=﹣×(﹣)=,故答案为:.4.已知一次函数的图象经过A(2,0),B(0,4)两点.(1)求此一次函数表达式;(2)试判断点(﹣1,6)是否在此一次函数的图象上.【分析】(1)设一次函数的解析式为y=kx+b(k≠0),再把A(2,0),B(0,4)代入求出k的值即可;(2)把x=﹣1代入(1)中函数解析式进行检验即可.【解答】解:(1)设一次函数的解析式为y=kx+b(k≠0),∵A(2,0),B(0,4)在函数图象上,∴,解得,∴一次函数的解析式为:y=﹣x+4;(2)由(1)知,函数解析式为:y=﹣x+4,∴当x=﹣1时,y=5≠6,∴点(﹣1,6)不一次函数的图象上.5.如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C(0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).求n的值及直线AD 的解析式.【分析】(1)把C (0,6)代入函数解析式,可得答案.(2)先求D 的坐标,再利用待定系数法求解AD 的解析式.【解答】解:(1)直线y =﹣2x +a 与y 轴交于点C (0,6),∴﹣2×0+a =6,∴a =6,∴直线的解析式为y =﹣2x +6;(2)点D (﹣1,n )在y =﹣2x +6上,∴n =﹣2×(﹣1)+6=8,∴D (﹣1,8),设直线AD 的解析式为y =kx +b ,把点A (﹣3,0)和D (﹣1,8)代入得,解得,∴直线AD 的解析式为y =4x +12.考向四:一次函数与方程不等式间的关系的交点坐标由函数图象直接写出不等式解集的方法归纳:1.已知方程2x ﹣1=﹣3x +4的解是x =1,则直线y =2x ﹣1和y =﹣3x +4的交点坐标为( )A .(1,0)B .(1,1)C .(﹣1,﹣3)D .(﹣1,1)【分析】把x =1代入直线解析式y =2x ﹣1求出y 的值即可得到交点坐标.【解答】解:∵x =1是方程2x ﹣1=﹣3x +4的解,∴把x =1代入y =2x ﹣1,得y =2×1﹣1=1.∴交点坐标为(1,1).故选:B .2.如图,直线y =ax +b (a ≠0)过点A (0,1),B (2,0),则关于x 的方程ax +b =0的解为 x =2 .【分析】所求方程的解,即为函数y =ax +b 图象与x 轴交点横坐标,确定出解即可.【解答】解:方程ax +b =0的解,即为函数y =ax +b 图象与x 轴交点的横坐标,∵直线y =ax +b 过B (2,0),∴方程ax +b =0的解是x =2,故答案为:x =2.3.如图,一次函数y =2x +1的图象与y =kx +b 的图象相交于点A ,则方程组的解是( )A.B.C.D.【分析】先求点A的横坐标,然后根据两条直线的交点坐标即可写出方程组的解.【解答】解:y=3代入y=2x+1得2x+1=3,解得x=1,所以A点坐标为(1,3),所以方程组的解是.故选:B.4.如图,已知直线y=ax+b和直线y=kx交于点P,若二元一次方程组的解为x、y,则x+y= 3 .【分析】根据由图象可知,直线y=ax+b和直线y=kx交于点P(1,2),即可确定二元一次方程组的解,进一步求值即可.【解答】解:由图象可知,直线y=ax+b和直线y=kx交于点P(1,2),∴二元一次方程组的解为,∴x+y=1+2=3,故答案为:3.5.若定义一种新运算:,例如:2@4=2+4﹣3=3,2@1=2﹣1+3=4,下列说法:①(﹣1)@(﹣2)=4;②若x@(x+2)=5,则x=3;③x@2x=3的解为x=2;④函数y=(x2+1)@1与x轴交于(﹣1,0)和(1,0).其中正确的个数是( )A.4B.3C.2D.1【分析】根据新定义,逐项判断即可.【解答】解:(﹣1)@(﹣2)=﹣1﹣(﹣2)+3=4,故①正确;∵x@(x+2)=x+(x+2)﹣3=2x﹣1,∴x@(x+2)=5即是2x﹣1=5,解得x=3,故②正确;当x<2x,即x>0时,∵x@2x=3,∴x+2x﹣3=3,解得x=2;当x≥2x,即x≤0时,∵x@2x=3,∴x﹣2x+3=3,解得x=0,∴x@2x=3的解是x=2或x=0,故③错误;∵x2+1≥1,∴y=(x2+1)@1=x2+1﹣1+3=x2+3,令y=0得x2+3=0,方程无实数解,∴函数y=(x2+1)@1与x轴无交点,故④错误;∴正确的有①②,共2个,故选:C.6.如图,已知一次函数y1=kx﹣b与y2=nx函数图象相交于点M,当kx﹣b=nx时,x的值是 1 ,当y1>y2时,x的取值范围是 x<1 ,当y1<y2时,x的取值范围是 x>1 .【分析】根据两条直线的交点、结合图象解答即可.【解答】解:由图象可知,当kx﹣b=nx时,x的值是1,当y1>y2时,x的取值范围是x<1,当y1<y2时,x的取值范围是x>1.故答案为:1,x<1,x>1.7.小时在学习了一次函数知识后,结合探究一次函数图象与性质的方法,对新函数y=2﹣|x﹣1|及其图象进行如下探究.(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:x…﹣3﹣2﹣1012345…y…﹣2﹣1m1210n﹣2…其中m= 0 ,n= ﹣1 .(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质: 当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大 .(3)当时,x的取值范围为 x≤﹣1或x≥2 .【分析】(1)把x=﹣1和x=4分别代入解析式即可得到m、n的值;(2)利用描点法画出图象,观察图象可得出函数的性质;(3)利用图象即可解决问题.【解答】解:(1)把x=﹣1代入y=2﹣|x﹣1|得,y=2﹣|﹣1﹣1|=0,∴m=0;把x=4代入y=2﹣|x﹣1|得,y=2﹣|4﹣1|=﹣1,∴n=﹣1;故答案为:0,﹣1;(2)画出函数的图象如图:观察图象可知:当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大;故答案为:当x>1时,y随x的增大而减小;当x<1时,y随x的增大而增大;(3)画出一次函数y=x+的图象,观察图象可知:当时,x的取值范围为x≤﹣1或x≥2,故答案为:x≤﹣1或x≥2.考向五:一次函数与三角形面积一.一次函数与坐标轴围成三角形面积的规律方法归纳1.一次函数y=kx+b(k≠0)与坐标轴交点规律与x轴交点坐标(,0)故:当k、b同号时,直线交于x轴负半轴;当k、b异号时,直线交于x轴正半轴对于直线y=kx+b(k≠0)与y轴交点坐标(0,b)故:当b>0时,直线交于y轴正半轴;当b<0时,直线交于y轴负半轴2.求两直线交点坐标方法:联立两直线解析式,得二元一次方程组,解方程组得交点坐标;3.求三角形面积时,三角形有边在水平或者竖直边上,常以这条边为底,再由底所对顶点的坐标确定高;二.一次函数图象与几何图形动点面积1.此类问题需要将动点所在几何图形与一次函数图象同时分析,对照一次函数图象得出动点所在几何图形的边长信息2.对函数图象的分析重点抓住以下两点:①分清坐标系的x轴、y轴的具体意义②特别分析图象的拐点——拐点一般表示动点运动到几何图形的一个顶点3.动点所在几何图形如果是特殊图形,如等腰三角形、等腰直角三角形、含30°的直角三角形,注意对应图形性质与辅助线的应用。
初中数学函数知识点归纳整理函数向来是初中数学的重头戏,但由于难度较大,不少学生在考试时,经常在函数题上丢分严重。
为此,以下是店铺分享给大家的初中数学函数知识点,希望可以帮到你!初中数学一次函数知识点一、定义与定义式自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx (k为常数,k≠0)二、一次函数的性质1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。
所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。
函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。
函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。
函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。
换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。
一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。
注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。
平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。
2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。
3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。
3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。
2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。
一次函数学问点总结:一次函数:一次函数图像及性质是中考必考的内容之一。
中考试题中分值约为10分左右题型多样,形式敏捷,综合应用性强。
甚至有存在探究题目出现。
主要考察内容:①会画一次函数的图像,并驾驭其性质。
②会依据条件,利用待定系数法确定一次函数的解析式。
③能用一次函数解决实际问题。
④考察一ic函数及二元一次方程组,一元一次不等式的关系。
打破方法:①正确理解驾驭一次函数的概念,图像和性质。
②运用数学结合的思想解及一次函数图像有关的问题。
③驾驭用待定系数法球一次函数解析式。
④做一些综合题的训练,进步分析问题的实力。
函数性质:1.y的改变值及对应的x的改变值成正比例,比值为k. 即:y=kx+b〔k,b为常数,k≠0〕,∵当x增加m,k〔x+m)+b=y+km,km/m=k。
2.当x=0时,b为函数在y轴上的点,坐标为(0,b)。
3当b=0时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4.在两个一次函数表达式中:当两一次函数表达式中的k一样,b也一样时,两一次函数图像重合;当两一次函数表达式中的k一样,b不一样时,两一次函数图像平行;当两一次函数表达式中的k不一样,b不一样时,两一次函数图像相交;当两一次函数表达式中的k不一样,b一样时,两一次函数图像交于y轴上的同一点〔0,b〕。
假设两个变量x,y间的关系式可以表示成Y=KX+b(k,b为常数,k不等于0〕那么称y 是x的一次函数图像性质1.作法及图形:通过如下3个步骤:〔1〕列表.〔2〕描点;[一般取两个点,依据“两点确定一条直线〞的道理,也可叫“两点法〞。
一般的y=kx+b(k≠0〕的图象过〔0,b〕和〔-b/k,0〕两点画直线即可。
正比例函数y=kx(k≠0〕的图象是过坐标原点的一条直线,一般取〔0,0〕和〔1,k〕两点。
〔3〕连线,可以作出一次函数的图象——一条直线。
因此,作一次函数的图象只需知道2点,并连成直线即可。
2019 年式性质
1.在正比例函数时,x 与y 的商一定。
在反比例函数时,x 与y 的积一定。
在y = kx+b ( k , b 为常数,k0)中,当x 增大m 倍时,函数值y 则增大m 倍,反之,当x 减少m 倍时,函数值y 则减少m 倍。
2•当x = 0时,b 为一次函数图像与y 轴交点的纵坐标,该点的坐标为(0, b )。
3•当b = 0时,一次函数变为正比例函数。
当然正比例函数为分外的一次函 数。
4.在两个一次函数表达式中:
当两个一次函数表达式中的k 相同,b 也相同时,则这两个一次函数的图像
重合;
当两个一次函数表达式中的k 不相同,b 不相同时,则这两个一次函数的图 像相交; 当两个一次函数表达式中的k 不相同,b 相同时,则这两个一次函数图像交 于 y 轴上的同一点( 0, b );
当两个一次函数表达式中的k 互为负倒数时,则这两个一次函数图像互相 垂直。
5.两个一次函数(y1 = k1x+b1, y2= k2x+b2)相乘时(k0),得到的的新 函数为二次函数,
该函数的对称轴为-( k2b1+k1b2) /(2k1k2);
当 k1, k2 正负相同时,二次函数开口向上;
死记硬背是一种传统的教学方式 ,在我国有悠长的历史。
但随着素质教育的
开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式 ,渐渐为人们所
摒弃;而另一方面 ,老师们又为提高学生的语文素养煞费苦心。
其实 ,只要应用得
当, “死记硬背 ”与提高学生素质并不矛盾。
相反 ,它恰是提高学生语文水平的严重 前提和基础。
当 k1,k2 正负相反时,二次函数开口向下。
当两个一次函数表达式中的
平行;
k 相同,b 不相同时,则这两个一次函数的图像
教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
二次函数与y 轴交点为( 0,b2b1 )。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。
”于是看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而大凡学堂里的先生则称为“教师”或“教习”。
可见,“教师”
一说是比较晚的事了。
如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。
辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。
6•两个一次函数(y1 = ax+b, y2= cx+d)之比,得到的新函数y3=(ax+b)
/ (cx+d)为反比性函数,渐近线为x=- b/a , y= c/a。