正项级数的审敛准则
- 格式:ppt
- 大小:985.50 KB
- 文档页数:43
n 1n 1§ 11-2 常数项级数的审敛法一、正项级数及其审敛法正项级数: U n U n 0⑴n 1显然,部分和数列s n 单调增加:s 1 s 2Sn . s n1.收敛准则定理1正项级数 U n 收敛部分数列S n 有界.n 1n例1判别正项级数亠的收敛性定理2设 U n 和V n 都是正项级数,且U n V . (nn 1n 1则 U n 收敛;反之, n 1 若 U n 发散,则 V n 发散.n 1 n 1 分析: V nn 1,贝U U n 的部分和 n 1 S n U 1 U 2 U n V 1 V 2 V n (n 1,2,),即S n 有界,由TH1知 U n 收敛。
反之,设n 1U n 发散,则n 1V n n 1必发散.因为若V n 收敛,由上面已证结论知 U n 也收敛,与假设矛盾n 11解「sin 2 22221 1 I 2n1 1 22Sin 2n1 1 1 2n2 222n1有上界 级数收敛1,2,).若 V n 收敛,n 12.比较审敛法推论 设 U n 和 V n 都是正项级数,如果级数 V n 收敛,且存在自然数 N,使n 1n 1kv n (k 0)成立,则级数 u n 收敛;如果级数 v n 发散,且当n Nn 1n 1分析:因为级数的每一项同乘不为零的常数 k ,以及去掉级数前面的有限项不会 影响级数的收敛性.注:比较审敛法的:必须有参考级数。
常用:几何级数, p —级数(调级数)例3判别下列级数的敛散性. 当n N 时有U n 时有 u n kv n (k 0)成立,则级数 U n 发散.n 1例2讨论p —级数⑵的收敛性,其中常数p>0.1,当n则書n时,1丄,但调和级数发散,故级数(2)发散. n有1 n pIn 1n p2dxx(nn p 1n 2,3,考虑级数(n 1) 级数(3)的部分和sn1 2卩11 3p 11 =1 1(n 1)p1 = (n 1)p 1因S n 1 .故级数(3)收敛. 由推论 1知,级数⑶当p>1时收敛.总之:p —级数(2)当p 1时发散,当p>1时收敛.(1).n n 121 n 5n 2U nn12 2^2n 5n 2n 8n丄发散,原级数发散 n 1 n(2).1 . 1 sin — n〔 n 1 n 1 U n 原级数收敛3. 比较审敛法的极限形式定理3设 u n 和n 1V n 都是正项级数,n 10 或 lim 土nV n例4判别下列级数的敛散性.4. 比值审敛法能发散.(证略,可参考教材) 例5判别下列级数的敛散性:(1)3 n n lim U n 1 - 1,级数收敛n 13n U n 3⑵n!nlim U n 1 lim n 1 级数发散n 1 2n U nn 2⑶n 1 nxn 1x 0lim U n 1 x0 x 1收敛,x 1 发散x 1发散n U n5.根值审敛法----柯西判别法(1)如果 lim unnV n(0 I),且级数V n 收敛,则级数 U n 收敛;n 1n 11(1) si nn 1 n.1 sinlim n n 10,丄发散 原级数发散n 1 n⑵ 2nta nn 13li mn1 2ntan]3nn2 3n2收敛收敛3,且级数 V n 发散,则级数 U n 发散n 1n 1(2)如果 limU nnV n 定理4设 u n 为正项级数,如果n 1lim 山 nU n则当1级数收敛;U n 11 (或 limnU n)时级数发散; 1时级数可能收敛也可例7判别下列级数的敛散性二、交错级数及其审敛法);(2) limu n 0,n则级数收敛,且其和S U 1,其余项r n 的绝对值r交错级数:U 1 U 2 U 3U 4(4)U 1 U 2 U 3U 4,其中U i ,u都是正数.定理7(莱布尼兹定理)如累交错级数(1)n1U n 满足条件:n 1定理5设 U n 为正项级数,如果lim n U nn 1n,则当 1时级数收敛, 1(或Hm nU n)时级数发散, 例6判别下列级数的敛散性1时级数可能收敛也可能发散.(证略,可参考教材)nU n n11Zn-0(nnn)1,级数收敛—5‘n imn ,n 31,级数发散6根限审敛法(与p —级数作比较)定理6设 u n 为正项级数,n 1(1)如果 lim nu n l 0 或 lim nu nnn,则 U n 发散;n 1⑶如果p 1,而limn p u nl 0nU n 收敛。
正项级数的比较审敛法正项级数的比较审敛法是数学中一种常用的判别级数收敛性的方法。
通过与已知的收敛或发散级数进行比较,我们可以判断一个正项级数的收敛性。
本文将介绍正项级数的比较审敛法的基本原理和应用。
正项级数是指所有项都是非负数的级数。
我们知道,一个正项级数的收敛性与其项的大小相关。
如果一个级数的每一项都小于等于另一个级数的对应项,并且后者收敛,那么我们可以推断前者也收敛。
同样地,如果一个级数的每一项都大于等于另一个级数的对应项,并且后者发散,那么我们可以推断前者也发散。
这就是正项级数的比较审敛法的基本思想。
比较审敛法分为两种情况:比较法和极限比较法。
下面我们将分别介绍这两种方法。
一、比较法比较法是通过比较待判定级数与已知级数的大小关系来判断待判定级数的收敛性。
具体而言,我们选择一个已知的收敛级数和一个待判定级数,然后比较它们的项的大小。
如果待判定级数的每一项都小于等于已知级数的对应项,那么待判定级数也收敛;如果待判定级数的每一项都大于等于已知级数的对应项,那么待判定级数也发散。
比较法的关键在于选择合适的已知级数。
常用的已知级数包括调和级数、几何级数和指数级数等。
例如,我们可以使用调和级数来判断一个正项级数的收敛性。
调和级数是指形如1+1/2+1/3+1/4+...的级数。
根据比较法的原理,如果一个正项级数的每一项都小于等于调和级数的对应项,那么该正项级数也收敛。
二、极限比较法极限比较法是比较法的一种特殊情况。
当我们无法直接比较待判定级数和已知级数的项时,可以通过比较它们的极限值来判断待判定级数的收敛性。
具体而言,我们选择一个已知的收敛级数和一个待判定级数,然后比较它们的极限值。
如果待判定级数的极限值与已知级数的极限值相等或者待判定级数的极限值无穷大,那么待判定级数也收敛;如果待判定级数的极限值与已知级数的极限值比较大,那么待判定级数也发散。
极限比较法的关键在于计算级数的极限值。
对于一些常见的级数,我们可以通过取极限值来判断其收敛性。
正项级数的收敛问题
对于一个级数,我们一般会提出这样两个问题:它是不是收敛的?它的和是多少?显然第一个问题是更重要的,因为如果级数是发散的,那末第二个问题就不存在了。
下面我们来学习如何确定级数的收敛和发散问题。
我们先来考虑正项级数(即每一项a n ≥0的级数)的收敛问题。
判定正项级数敛散性的基本定理
定理:正项级数
收敛的充分与必要条件是部分和S n 上有界.如果S n 上无界,级数发散于正
无穷大。
例如:p 级数:
,当p>1时收敛,当p≤1时发散。
注意:在此我们不作证明。
正项级数的审敛准则
准则一:设有两个正项级数及,而且a n ≤b n (n=1,2,…).如果收敛,那末也收
敛;如果发散,那末也发散.例如:级数是收敛的,因为当n>1时,有≤,而等比级数
是收敛的
准则二:设有两个正项级数与,如果那末这两个级数或者同时收敛,或者
同时发散。
关于此准则的补充问题
如果
,那末当收敛时,也收敛;如果,那末当发散时,
也发散.
例如:是收敛的.因为,而是收敛的.
注意:以上这两个准则来判定一个已知级数的敛散性,都需要另选一个收敛或发散的级数,以资比较.下面我们来学习两个只依赖于已知级数本身的审敛准则.
准则三:设有正项级数.如果极限存在,那末当λ<1时级数收敛,λ>1时级数收敛.
注意:此准则就是达朗贝尔准则.这种判定方法称为检比法.
例如:级数是收敛的,因为当n→∞时,.
准则四(柯西准则):如果极限存在,那末当λ<1级数收敛,λ>1级数发散.
例如:级数是发散的,因为当n→∞时,。
级数的审敛法
级数的审敛法是一种判定级数是否收敛或发散的方法。
下面介绍几种常用的审敛法:
1. 正项级数判别法:如果级数的各项都是非负数,并且级数的通项递减,则该级数收敛。
这是因为正项级数的部分和一定是递增有界的。
2. 比较判别法:设有两个级数∑a_n和∑b_n,如果在有限项后
总有a_n ≤ b_n,则如果∑b_n收敛,∑a_n也收敛;如果∑a_n
发散,∑b_n也发散。
这个方法常用于比较一个级数与已知的
收敛或发散的级数。
3. 比值判别法:对于一个级数∑a_n,如果在有限项后总有
a_(n+1)/a_n ≤ r < 1,则级数绝对收敛;如果在有限项后总有
a_(n+1)/a_n ≥ 1,则级数发散;如果在有限项后总有
a_(n+1)/a_n ≥ r > 1,则级数发散或者条件收敛。
4. 积分判别法:对于一个非负递减的函数f(x),如果∫f(x)dx从
1到无穷收敛,则级数∑f(n)也收敛;如果∫f(x)dx从1到无穷发散,则级数∑f(n)也发散。
这个方法利用了级数与函数的关系。
以上只是一些常用的审敛法,对于特定的级数,可能需要使用其他方法进行判断。