概率论与数理统计同济大学第1章
- 格式:doc
- 大小:154.00 KB
- 文档页数:3
概率论与数理统计练习题 系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件2.下面各组事件中,互为对立事件的有 [ B ](A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品}(C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}3.下列事件与事件A B -不等价的是 [ C ](A )A AB - (B )()A B B ⋃- (C )A B (D )A B4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C](A )二人都没射中 (B )二人都射中(C )二人没有都射着 (D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D](A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A](A ){|01}x x ≤< (B ){|01}x x <<(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<<⋃≤<+∞7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为 [ A](A )C A C B ; (B )C AB ;(C )C AB C B A BC A ; (D )A B C .8、设随机事件,A B 满足()0P AB =,则 [ D ](A ),A B 互为对立事件 (B) ,A B 互不相容(C) AB 一定为不可能事件 (D) AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB φ=,则称A 与B 互不相容或互斥 。
1.4 电炉上安装了4个温控器.在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电.事件A 表示“电炉断电”.4个温控器显示的温度按递增顺序记作(),1,2,3,4,i T i =即(1)(2)T T ≤≤(3)T (4).T ≤试问,4个事件()0{}(1,2,3,4)i T t i ≥=中,哪一个恰等于A ?1.6 已知N 件产品中有M 件是不合格品,今从中随机地抽取n 件.试求,(1)n 件中恰有k 件不合格品的概率;(2)n 件中至少有一件不合格品的概率.假定k M ≤且n k N M -≤-.1.7 一个口袋里装有10只球,分别编上号码1,…,10,随机地从口袋里取3只球.试求:(1)最小号码是5的概率;(2)最大号码是5的概率.1.8一份试卷上有6道题.某位学生在解答时由于粗心随机地犯了4处不同的错误.试求,(1)这4处错误发生在最后一道题上的概率;(2)这4处错误发生在不同题上的概率;(3)至少有3道题全对的概率.1.9 在单位圆内随机地取一点Q ,试求以Q 为中点的弦长超过1的概率.1.10 在长度为T 的时间段内,有两个长短不等的信号随机地进入接收机.长信号持续时间为1()t T ≤,短信号持续时间为2()t T ≤.试求这两个信号互不干扰的概率.1.11 设,A B 是两个事件,已知()0.5,()0.7,()0.8P A P B P A B === ,试求()P A B -与()P B A -.1.12 设,,A B C 是三个事件,已知()()()0.3,()0.2,()P A P B P C P AB P BC ====()0P CA ==.试求,,A B C 中至少有一个发生的概率与,,A B C 全不发生的概率.1.13 设,A B 是两个事件,已知()0.3,()0.6,P A P B ==试在下列两种情况中分别求出()P A B 与()P A B .(1) 事件,A B 互不相容;(2)事件,A B 有包含关系.1.14 一个盒子中装有10只晶体管,其中有3只是不合格品.现在作不放回抽样:接连取2次,每次随机地取1只.试求下列事件的概率.(1)2只都是合格品;(2)1只是合格品,1只是不合格品;(3)至少有1只是合格品.1.15 某商店出售晶体管,每盒装100只,且已知每盒混有4只不合格品.商店采用“缺一赔十”的销售方式:顾客买一盒晶体管,如果随机地取1只发现是不合格品,商店要立刻把10只合格品的晶体管放在盒子中,不合格的那只晶体管不再放回.顾客在一个盒子中随机地先后取3只进行测试,试求他发现全是不合格品的概率.1.16 设,A B 是两个相互独立的事件,已知()0.3,P A =()0.65P A B = .试求()P B .1.18 设情报员能破译一份密码的概率为0.6.试问,至少要使用多少名情报员才能使破译一份密码的概率大于95%?假定各情报员能否破译这份密码是相互独立的.1.19 把一枚硬币独立的掷两次.事件i A 表示“掷第i 次时出现正面”,1,2i =;事件3A 表示“正、反面各出现一次”.试证,123,,A A A 两两独立,但不相互独立.1.20 有2n 个元件,每个元件的可靠度都是p .试求下列两个系统的可靠度.假定每个元件是否正常工作是相互独立的.(1)每n 个元件串联成一个子系统,再把这两个子系统并联;(2)每两个元件并联成一个子系统,再把这n 个子系统串联.次命中的概率;(2)至少有4次命中的概率;(3)至多有4次命中的概率.1.24 某厂生产的钢琴中有70%可以直接出厂,剩下的钢琴经调试后,其中80%可以出厂,20%被定为不合格品不能出厂.现该厂生产了(2)n 架钢琴,假定各架钢琴的质量是相互独立的,试求:(1)任意一架钢琴能出厂的概率;(2)恰有两架钢琴不能出厂的概率;(3)全部钢琴都能出厂的概率.1.25 某年级有甲、乙、丙三个班级,各班人数分别占年级总人数的1/4,1/3,5/12,已知甲、乙、丙三个班级中集邮人数分别占该班1/2,1/4,1/5,试求:(1)从该年级中随机地选取一个人,此人为集邮者的概率;(2)从该年级中随机地选取一个人,发现此人为集邮者,此人属于乙班的概率. 1弹而坠毁的概率为0.1,被击中2弹而坠毁的概率为0.5,被击中3弹必定坠毁.(1)试求飞机坠毁的概率;(2)已知飞机坠毁,试求它在坠毁前只有命中1弹的概率.1.27 已知甲袋中装有a只红球,b只白球;乙袋中装有c只红球,d只白球.试求下列事件的概率:(1)合并两只口袋,从中随机地取一只球,该球是红球;(2)随机地取一只袋,再从该袋中随机地取一只球,该球是红球;(3)从甲袋中随机地取出一只球放人乙袋,再从乙袋中随机地取出一只球,该球是红球.1.30 一个盒子装有6只乒乓球,其中4只是新球.第一次比赛时随机地从盒子中取出2只乒乓球,使用后放回盒子.第二次比赛时又随机地从盒子中取出2只乒乓球.(1)试求第二次取出的球全是新球的概率;(2)已知第二次取出的球全是新球,试求第一次比赛时取的球恰含一个新球的概率.。
概率论与数理统计练习题系 专业 班 姓名 学号第一章 随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件2.下面各组事件中,互为对立事件的有 [ B ](A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品}(B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品}(C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个}(D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品}3.下列事件与事件A B -不等价的是 [ C ](A )A AB - (B )()A B B ⋃- (C )AB (D )AB4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ⋃表示 [ C](A )二人都没射中 (B )二人都射中(C )二人没有都射着 (D )至少一个射中5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D](A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A](A ){|01}x x ≤< (B ){|01}x x <<(C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<<⋃≤<+∞7.在事件A ,B ,C 中,A 和B 至少有一个发生而C 不发生的事件可表示为 [ A](A )C A C B ; (B )C AB ;(C )C AB C B A BC A ; (D )A B C .8、设随机事件,A B 满足()0P AB =,则 [ D ](A ),A B 互为对立事件 (B) ,A B 互不相容(C) AB 一定为不可能事件 (D) AB 不一定为不可能事件二、填空题1.若事件A ,B 满足AB φ=,则称A 与B 互不相容或互斥 。
第一随机事件一、随机象在自然界和人社会生活中普遍存在着两象:一是在一定条件下必然出的象,称确定性象。
例如: (1)一物体从高度h(米)垂直下落,t (秒)后必然落到地面,且当高度h一定,可由公式h 1 gt 2得到,t2h / g(秒)。
2(2)异性荷相互吸引,同性荷相互排斥。
⋯另一是在一定条件下我事先无法准确知其果的象,称随机象。
例如:(1) 在相同条件下抛同一枚硬,我无法事先知将出正面是反面。
(2)将来某日某种股票的价格是多少。
⋯概率就是以数量化方法来研究随机象及其律性的一数学学科。
二、随机了随机象的律性行研究 , 就需要随机象行重复察,我把随机象的察称随机,并称, E 。
例如,察某射手固定目行射;抛一枚硬三次 , 察出正面的次数;某市 120 急救一昼夜接到的呼叫次数等均随机。
随机具有下列特点:(1)可重复性;可以在相同的条件下重复行;(2)可察性;果可察 , 所有可能的果是明确的;(3)不确定性:每次出的果事先不能准确知。
三、本空尽管一个随机将要出的果是不确定的 , 但其所有可能果是明确的 , 我把随机的每一种可能的果称一个本点 , e(或);它的全体称本空 , S ( 或 ).例如:(1) 在抛一枚硬察其出正面或反面的中有两个本点:正面、反面 . 本空S={ 正面,反面 } 或 S { e1 , e2 }( e1正面, e2反面 ) 。
(2)在将一枚硬抛三次,察正面 H、反面 T 出情况的中,有 8 个本点,本空: S { HHH , HHT , HTH , THH , HTT , THT , TTH ,TTT }。
(3)在抛一枚骰子,察其出的点数的中,有 6 个本点: 1 点,2 点,3 点,4 点,5 点,6 点,本空可 S {1 ,2,3,4,5,6} 。
(4)察某交台在一天内收到的呼叫次数,其本点有无多个:i 次,i =0,1,2,3,⋯,本空可S {0,1,2,3,⋯}。
(5)在一批灯泡中任意抽取一个,其寿命,其本点也有无多个( 且不可数) :t小,本空可S { t | 0t}=[0,+] 。
1.4 电炉上安装了4个温控器.在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电.事件A 表示“电炉断电”.4个温控器显示的温度按递增顺序记作(),1,2,3,4,i T i =即(1)(2)T T ≤≤(3)T (4).T ≤试问,4个事件()0{}(1,2,3,4)i T t i ≥=中,哪一个恰等于A ?
1.6 已知N 件产品中有M 件是不合格品,今从中随机地抽取n 件.试求,(1)n 件中恰有k 件不合格品的概率;(2)n 件中至少有一件不合格品的概率.假定k M ≤且n k N M -≤-.
1.7 一个口袋里装有10只球,分别编上号码1,…,10,随机地从口袋里取3只球.试求:(1)最小号码是5的概率;(2)最大号码是5的概率.
1.8一份试卷上有6道题.某位学生在解答时由于粗心随机地犯了4处不同的错误.试求,(1)这4处错误发生在最后一道题上的概率;(2)这4处错误发生在不同题上的概率;(3)至少有3道题全对的概率.
1.9 在单位圆内随机地取一点Q ,试求以Q 为中点的弦长超过1的概率.
1.10 在长度为T 的时间段内,有两个长短不等的信号随机地进入接收机.长信号持续时间为1()t T ≤,短信号持续时间为2()t T ≤.试求这两个信号互不干扰的概率.
1.11 设,A B 是两个事件,已知()0.5,()0.7,()0.8P A P B P A B === ,试求()P A B -与()P B A -.
1.12 设,,A B C 是三个事件,已知()()()0.3,()0.2,()P A P B P C P AB P BC ====()0P CA ==.试求,,A B C 中至少有一个发生的概率与,,A B C 全不发生的概率.
1.13 设,A B 是两个事件,已知()0.3,()0.6,P A P B ==试在下列两种情况中分别求出()P A B 与()P A B .(1) 事件,A B 互不相容;(2)事件,A B 有包含关系.
1.14 一个盒子中装有10只晶体管,其中有3只是不合格品.现在作不放回抽样:接连取2次,每次随机地取1只.试求下列事件的概率.(1)2只都是合格品;(2)1只是合格品,1只是不合格品;(3)至少有1只是合格品.
1.15 某商店出售晶体管,每盒装100只,且已知每盒混有4只不合格品.商店采用“缺一赔十”的销售方式:顾客买一盒晶体管,如果随机地取1只发现是不合格品,商店要立刻把10只合格品的晶体管放在盒子中,不合格的那只晶体管不再放回.顾客在一个盒子中随机地先后取3只进行测试,试求他发现全是不合格品的概率.
1.16 设,A B 是两个相互独立的事件,已知()0.3,P A =()0.65P A B = .试求()P B .
1.18 设情报员能破译一份密码的概率为0.6.试问,至少要使用多少名情报员才能使破译一份密码的概率大于95%?假定各情报员能否破译这份密码是相互独立的.
1.19 把一枚硬币独立的掷两次.事件i A 表示“掷第i 次时出现正面”,1,2i =;事件3A 表示“正、反面各出现一次”.试证,123,,A A A 两两独立,但不相互独立.
1.20 有2n 个元件,每个元件的可靠度都是p .试求下列两个系统的可靠度.假定每个元件是否正常工作是相互独立的.(1)每n 个元件串联成一个子系统,再把这两个子系统并联;(2)每两个元件并联成一个子系统,再把这n 个子系统串联.
次命中的概率;(2)至少有4次命中的概率;(3)至多有4次命中的概率.
1.24 某厂生产的钢琴中有70%可以直接出厂,剩下的钢琴经调试后,其中80%可以出厂,20%被定为不合格品不能出厂.现该厂生产了(2)
n 架钢琴,假定各架钢琴的质量是相互独立的,试求:(1)任意一架钢琴能出厂的概率;(2)恰有两架钢琴不能出厂的概率;(3)全部钢琴都能出厂的概率.
1.25 某年级有甲、乙、丙三个班级,各班人数分别占年级总人数的1/4,1/3,5/12,已知甲、乙、丙三个班级中集邮人数分别占该班1/2,1/4,1/5,试求:(1)从该年级中随机地选取一个人,此人为集邮者的概率;(2)从该年级中随机地选取一个人,发现此人为集邮者,此人属于乙班的概率. 1弹而坠毁的概率为0.1,被击中2弹而坠毁的概率为0.5,被击中3弹必定坠毁.(1)试求飞机坠毁的概率;(2)已知飞机坠毁,试求它在坠毁前只有命中1弹的概率.
1.27 已知甲袋中装有a只红球,b只白球;乙袋中装有c只红球,d只白球.试求下列事件的概率:(1)合并两只口袋,从中随机地取一只球,该球是红球;(2)随机地取一只袋,再从该袋中随机地取一只球,该球是红球;(3)从甲袋中随机地取出一只球放人乙袋,再从乙袋中随机地取出一只球,该球是红球.
1.30 一个盒子装有6只乒乓球,其中4只是新球.第一次比赛时随机地从盒子中取出2只乒乓球,使用后放回盒子.第二次比赛时又随机地从盒子中取出2只乒乓球.(1)试求第二次取出的球全是新球的概率;(2)已知第二次取出的球全是新球,试求第一次比赛时取的球恰含一个新球的概率.。