概率论与数理统计第一章课后习题及参考答案
- 格式:pdf
- 大小:173.08 KB
- 文档页数:14
第一章 事件与概率1.写出下列随机试验的样本空间。
(1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。
(2)同时掷三颗骰子,记录三颗骰子点数之和。
(3)生产产品直到有10件正品为止,记录生产产品的总件数。
(4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
(5)在单位正方形内任意取一点,记录它的坐标。
(6)实测某种型号灯泡的寿命。
解(1)},100,,1,0{n i n i ==Ω其中n 为班级人数。
(2)}18,,4,3{ =Ω。
(3)},11,10{ =Ω。
(4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。
(5)=Ω{(x,y)| 0<x<1,0<y<1}。
(6)=Ω{ t | t ≥ 0}。
2.设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列各事件,。
(1)A 发生,B 与C 不发生。
(2)A 与B 都发生,而C 不发生。
(3)A ,B ,C 中至少有一个发生。
(4)A ,B ,C 都发生。
(5)A ,B ,C 都不发生。
(6)A ,B ,C 中不多于一个发生。
(7)A ,B ,C 至少有一个不发生。
(8)A ,B ,C 中至少有两个发生。
解 (1)C B A ,(2)C AB ,(3)C B A ++,(4)ABC ,(5)C B A ,(6)C B C A B A ++或C B A C B A C B A C B A +++,(7)C B A ++,(8)BC AC AB ++或ABC BC A C B A C AB ⋃⋃⋃3.指出下列命题中哪些成立,哪些不成立,并作图说明。
(1)B B A B A =(2)AB B A =(3)AB B A B =⊂则若,(4)若A B B A ⊂⊂则,(5)C B A C B A = (6)若Φ=AB 且A C ⊂,则Φ=BC解 : (1) 成立,因为B A B B B A B B A ==))((。
概率论与数理统计习题第一章习题1-1(P 7)1.解:(1)}18,4,3{,⋯=Ω (2)}1|),{22<+=Ωy x y x ( (3) {=Ωt |t},10N t ∈≥(本题答案由经济1101班童婷婷提供) 2.AB 表示只有一件次品,-A 表示没有次品,-B 表示至少有一件次品。
(本题答案由经济1101班童婷婷提供) 3.解:(1)A 1∪A 2=“前两次至少有一次击中目标”;(2)2A =“第二次未击中目标”; (3)A 1A 2A 3=“前三次均击中目标”;(4)A 1⋃A 2⋃A 3=“前三次射击中至少有一次击中目标”; (5)A 3-A 2=“第三次击中但第二次未击中”; (6)A 32A =“第三次击中但第二次未击中”; (7)12A A =“前两次均未击中”; (8)12A A =“前两次均未击中”;(9)(A 1A 2)⋃(A 2A 3)⋃(A 3A 1)=“三次射击中至少有两次击中目标”.(本题答案由陈丽娜同学提供)4.解: (1)ABC(2)ABC(3) ABC (4) A B C(5) ABC (6) AB BC AC (7) A B C (8) (AB) (AC) (BC)(本题答案由丁汉同学提供)5.解: (1)A=BC(2)A =B C(本题答案由房晋同学提供)习题1-2(P 11)6.解:设A=“从中任取两只球为颜色不同的球”,则:112538P(A)=/15/28C C C =(本题答案由顾夏玲同学提供)7.解: (1)组成实验的样本点总数为340C ,组成事件(1)所包含的样本点数为 12337C C ,所以P 1=12337340C C C ⋅ ≈0.2022 (2)组成事件(2)所包含的样本点数为33C ,所以P 2=33340C C ≈0.0001(3)组成事件(3)所包含的样本点数为337C ,所以 P 3=337340C C ≈0.7864 (4)事件(4)的对立事件,即事件A=“三件全为正品”所包含的样本点数为337C ,所以P 4=1-P(A)=1-337340C C ≈0.2136(5)组成事件(5)所包含的样本点数为2133373C C C ⋅+,所以P 5=2133373340+C C C C ⋅ ≈0.01134 (本题答案由金向男同学提供)8.解:(1)组成实验的样本点总数为410A ,末位先考虑有五种选择,首位除去0,有8种选择。
概率论与数理统计习题 第一章 概率论的基本概念习题1-1 设C B A ,,为三事件,用C B A ,,的运算关系表示下列各事件.(1)A 发生,B 与C 不发生, (2)A 与B 都发生,而C 不发生,(3)C B A ,,中至少有一个发生,(4)C B A ,,都发生,(5)C B A ,,都不发生, (6)C B A ,,中不多于一个发生, (7)C B A ,,中不多于两个发生, (8)C B A ,,中至少有两个发生,解(1)A 发生,B 与C 不发生表示为C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生表示为C AB 或AB -ABC 或AB -C (3)A ,B ,C 中至少有一个发生表示为A+B+C (4)A ,B ,C 都发生,表示为ABC(5)A ,B ,C 都不发生,表示为C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生,相当于C A C B B A ,,中至少有一个发生。
故 表示为:C A C B B A ++。
(7)A ,B ,C 中不多于二个发生相当于C B A ,,中至少有一个发生。
故表示为ABC C B A 或++(8)A ,B ,C 中至少有二个发生。
相当于AB ,BC ,AC 中至少有一个发生。
故表示为AB +BC +AC习题1-2 设B A ,为两事件且6.0)(=A P ,7.0)(=B P ,问(1)在什么条件下)(AB P 取得最大值,最大值是多少?(2)在什么条件下)(AB P 取得最小值,最小值是多少?解 由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾).从而由加法定理得P (AB )=P (A )+P (B )-P (A ∪B )(*)(1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6,(2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。
《概率论与数理统计》课后习题解答习题一3.设A ,B ,C 表示三个事件,用A ,B ,C 的运算关系表示下列各事件:(1)A 发生,B 与C 不发生;(2)A 与B 都发生,而C 不发生;(3)A ,B ,C 都发生;(4)A ,B ,C 都不发生;(5)A ,B ,C 中至少有一个发生;(6)A ,B ,C 中恰有一个发生;(7)A ,B ,C 中至少有两个发生;(8)A ,B ,C 中最多有一个发生.解:(1)C B A ; (2)C AB ; (3)ABC ; (4)C B A ;(5)C B A ; (6)C B A C B A C B A ++; (7)BC AC AB ;(8)BC AC AB 或C B C A B A .5.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码.(1)求最小的号码为5的概率;(2)求最大的号码为5的概率.解:设事件A 表示“最小的号码为5”,事件B 表示“最大的号码为5”,由概率的古典定义得(1)121)(31025==C C A P ; (2)201)(31024==C C B P . 6.一批产品共有200件,其中有6件废品,求:(1)任取3件产品恰有1件是废品的概率;(2)任取3件产品没有废品的概率;(3)任取3件产品中废品不少于2件的概率.解:设事件i A 表示“取出的3件产品中恰有i 件废品”)3,2,1,0(=i ,由概率的古典定义得(1)0855.0)(32002194161≈=C C C A P ; (2)9122.0)(320031940≈=C C A P ; (3)0023.0)(32003611942632≈+=+C C C C A A P . 8.从0,1,2,…,9这十个数字中任意取出三个不同的数字,求下列事件的概率:A 表示“这三个数字中不含0和5”; B 表示“这三个数字中包含0或5”; C 表示“这三个数字中含0但不含5”. 解:由概率的古典定义得157)(31038==C C A P ;158)(1)(=-=A P B P ;307)(31028==C C C P 9.已知5.0)(=A P ,6.0)(=B P ,8.0)(=A B P ,求)(AB P 和)(B A P .解:4.08.05.0)|()()(=⨯==A B P A P AB P)]()()([1)(1)()(AB P B P A P B A P B A P B A P -+-=-==3.0)4.06.05.0(1=-+-=10.已知4.0)(=B P ,6.0)(=B A P ,求)(B A P . 解:314.014.06.0)(1)()()()()(=--=--==B P B P B A P B P B A P B A P 11.某种品牌电冰箱能正常使用10年的概率为9.0,能正常使用15年的概率为3.0,现某人购买的该品牌电冰箱已经正常使用了10年,问还能正常用到15年的概率是多少?解:设事件B A ,分别表示“该品牌电冰箱能正常使用10,15年”,依题可知 3.0)()(,9.0)(===B P AB P A P ,则所求的概率为319.03.0)()()|(===A P AB P A B P 12.某人忘记了电话号码的最后一个数字,因而他随意地拨最后一个号码.(1)求他拨号不超过三次而接通的概率;(2)若已知最后一个数字是奇数,那么他拨号不超过三次而接通的概率又是多少?解:设事件A 分别表示“他拨号不超过三次而接通”,事件B 分别表示“最后一个数字是奇数”,则所求的概率为(1)103819810991109101)(=⨯⨯+⨯+=A P (2)53314354415451)|(=⨯⨯+⨯+=B A P 13.一盒里有10个电子元件,其中有7个正品,3个次品.从中每次抽取一个,不放回地连续抽取四次,求第一、第二次取得次品且第三、第四次取得正品的概率. 解:设事件i A 表示“第i 次取得次品”(4,3,2,1=i ),则所求的概率为 )|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =201768792103=⨯⨯⨯= 14.一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别有5箱、3箱、2箱,三厂产品的次品率依次为1.0,2.0,3.0,从这10箱中任取 一箱,再从这箱中任取一件产品,求取得正品的概率.解:设事件321,,A A A 分别表示“产品是甲,乙,丙厂生产的”,事件B 表示“产品是正品”,显然,事件321,,A A A 构成一个完备事件组,且2.0102)(,3.0103)(,5.0105)(321======A P A P A P 7.03.01)|(,8.02.01)|(,9.01.01)|(321=-==-==-=A B P A B P A B P 由全概率公式得83.07.02.08.03.09.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P15.甲、乙、丙三门高炮同时独立地各向敌机发射一枚炮弹,它们命中敌机的概率都是2.0.飞机被击中1弹而坠毁的概率为1.0,被击中2弹而坠毁的概率为5.0,被击中3弹必定坠毁.(1)求飞机坠毁的概率;(2)已知飞机已经坠毁,试求它在坠毁前只被命中1弹的概率.解:设事件i A 表示“飞机被击中i 弹而坠毁”)3,2,1(=i ,事件B 表示“飞机坠毁”,显然,事件321,,A A A 构成一个完备事件组,由二项概率公式计算得008.0)2.0()(,096.0)8.0()2.0()(,384.0)8.0()2.0()(33331223221131======C A P C A P C A P 1)|(,5.0)|(,1.0)|(321===A B P A B P A B P(1)由全概率公式得0944.01008.05.0096.01.0384.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P(2)由贝叶斯公式得407.00944.01.0384.0)|()()|()()|(31111≈⨯==∑=i ii A B P A P A B P A P B A P 16.设甲袋中装有5个红球,4个白球;乙袋中装有4个红球,5个白球.先从甲袋中任取2个球放入乙袋中,然后从乙袋中任取一个球,求取到是白球的概率. 解:设事件i A 表示“从甲袋取出的2个球中有i 个白球”)2,1,0(=i ,事件B 表示“从乙袋中取出的一个球是白球”,显然,事件321,,A A A 构成一个完备事件组,且29254)(C C C A P i i i -=,115)|(i A B P i +=,)2,1,0(=i ,由全概率公式得 5354.09953115)|()()(202925420==+⋅==∑∑=-=i i i i i i i C C C A B P A P B P 17.已知男子有%5是色盲患者,女子有%25.0是色盲患者.现在从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少? 解:设事件A 表示“此人是男性”,事件B 表示“此人是色盲患者”,显然,事件A A ,构成一个完备事件组,且5.0)()(==A P A P ,%25.0)|(%,5)|(==A B P A B P由贝叶斯公式得9524.02120%25.05.0%55.0%55.0)|()()|()()|()()|(≈=⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 18.设机器正常时生产合格品的概率为%98,当机器发生故障时生产合格品的概率为%30,而机器正常(即不发生故障)的概率为%95.某天,工人使用该机器生产的第一件产品是合格品,求机器是正常的概率.解:设事件A 表示“该机器正常”,事件B 表示“产品是合格品”,显然,事件A A ,构成一个完备事件组,且%30)|(%,98)|(%,5)(1)(%,95)(===-==A B P A B P A P A P A P由贝叶斯公式得984.0%30%5%98%95%98%95)|()()|()()|()()|(≈⨯+⨯⨯=+=A B P A P A B P A P A B P A P B A P 19.三人独立地去破译一个密码,他们能够译出的概率分别是51,31,41,问能将密码译出的概率是多少?解:设事件C B A ,,分别表示“第一人,第二人,第三人破译出密码”,显然事件C B A ,,相互独立,且41)(,31)(,51)(===C P B P A P ,则所求的概率为 53)411)(311)(511(1)()()(1)(=----=-=C P B P A P C B A P 20.加工某一零件共需经过四道工序,设第一、二、三、四道工序的次品率分别是02.0,03.0,05.0和03.0.假设各道工序是互不影响的,求加工出来的零件的次品率.解:设事件i A 表示“第i 道工序加工出次品”)4,3,2,1(=i ,显然事件4321,,,A A A A 相互独立,且03.0)(,05.0)(,03.0)(,02.0)(4321====A P A P A P A P ,则所求的概率为)()()()(1)(43214321A P A P A P A P A A A A P -=124.0)03.01)(05.01)(03.01)(02.01(1=-----=21.设第一个盒子里装有3个蓝球,2个绿球,2个白球;第二个盒子里装有2个蓝球,3个绿球,4个白球.现在独立地分别从两个盒子里各取一个球.(1)求至少有一个蓝球的概率;(2)求有一个蓝球一个白球的概率;(3)已知至少有一个蓝球,求有一个蓝球一个白球的概率.解:设事件21,A A 表示“从第一个盒子里取出的球是篮球,白球”,事件21,B B 表示“从第二个盒子里取出的球是篮球,白球”,显然事件i A 与j B 相互独立)2,1;2,1(==j i ,且94)(,92)(,72)(,73)(2121====B P B P A P A P ,则所求的概率为 (1)95)921)(731(1)()(1)(1111=---=-=+B P A P B A P ; (2)631692729473)()()()()(12211221=⨯+⨯=+=+B P A P B P A P B A B A P ; (3))()])([()](|)[(11111221111221B A P B A B A B A P B A B A B A P +++=++ 3516956316)()(111221==++=B A P B A B A P 22.设一系统由三个元件联结而成(如图51-),各个元件独立地工作,且每个元件能正常工作的概率均为p (10<<p ).求系统能正常工作的概率.图51- 解:设事件i A 表示“第i 个元件正常工作”)3,2,1(=i ,事件B 表示“该系统正常工作”,显然,事件321,,A A A 相互独立,且p A P i =)(,则所求的概率为 )()()()(])[()(32132313231321A A A P A A P A A P A A A A P A A A P B P -+=== 3232132312)()()()()()()(p p A P A P A P A P A P A P A P -=-+=24.一批产品中有%20的次品,进行放回抽样检查,共取5件样品.计算:(1)这5件样品中恰有2件次品的概率;(2)这5件样品中最多有2件次品的概率.解:设事件A 表示“该样品是次品”,显然,这是一个伯努利概型,其中%80)(%,20)(,5===A P A P n ,由二项概率公式有(1)2048.0%)80(%)20()2(32255==C P(2)942.0%)80(%)20()(2055205==∑∑=-=k k k k k C k P。
吴赣昌编 《概率论与数理统计》(理工类)三版课后习题解答习题1-31、袋中5个白球,3个黑球,一次任取两个。
(1)求取到的两个求颜色不同的概率;(2)求取到的两个求中有黑球的概率。
解:略2、10把钥匙有3把能打开门,今取两把,求能打开门的概率。
解:设A=“能打开”,则210S n C =法一,取出的两把钥匙,可能只有一把能打开,可能两把都能打开,则112373A n C C C =+ 所以()A Sn P A n = 法二,A ={都打不开},即取得两把钥匙是从另7把中取得的,则27A n C =,所以27210()1()1C P A P A C =-=- 3、两封信投入四个信筒,求(1)前两个信筒没有信的概率,(2)第一个信筒内只有一封信的概率。
解:24S n =(两封信投入四个信筒的总的方法,重复排列)(1)设A=“前两个信筒没有信”,即两封信在余下的两个信筒中重复排列,22A n =;(2)设B=“第一个信筒内只有一封信”,则应从两封信中选一封放在第一个信筒中,再把余下的一封信放入余下的三个信筒中的任一个,1123B n C =带入公式既得两个概率。
4、一副扑克牌52张,不放回抽样,每次取一张,连续抽4张,求花色各异的概率.解:略5、袋中有红、黄、黑色求各一个,有放回取3次,求下列事件的概率。
A=“三次都是红球”;B=“三次未抽到黑球”,C=“颜色全不相同”,D=“颜色不全相同” 解:略6、从0,1,2,,9L 等10个数字中,任意选出不同的三个数字,试求下列事件的概率:1A =‘三个数字中不含0和5’,2A =‘三个数字中不含0或5’,3A =‘三个数字中含0但不含5’.解 3813107()15C P A C ==. 333998233310101014()15C C C P A C C C =+-=, 或 182231014()1()115C P A P A C =-=-=, 2833107()30C P A C ==. 7、从一副52张的扑克牌中任取3张,不重复,计算取出的3张牌中至少有2张花色相同的概率。
第一章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字 你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B 解:(1)()()A B AB AB AB B B ==, (2) ()()A B A B ()A B A B B A A B B ==Ω=.4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
概率论与数理统计第⼀章答案习题1-21. 选择题(1) 设随机事件A ,B 满⾜关系A B ?,则下列表述正确的是( ). (A) 若A 发⽣, 则B 必发⽣. (B) A , B 同时发⽣.(C) 若A 发⽣, 则B 必不发⽣. (D) 若A 不发⽣,则B ⼀定不发⽣.解根据事件的包含关系, 考虑对⽴事件, 本题应选(D).(2) 设A 表⽰“甲种商品畅销, ⼄种商品滞销”, 其对⽴事件A 表⽰( ). (A) 甲种商品滞销, ⼄种商品畅销. (B) 甲种商品畅销, ⼄种商品畅销. (C) 甲种商品滞销, ⼄种商品滞销.(D) 甲种商品滞销, 或者⼄种商品畅销.解设B 表⽰“甲种商品畅销”,C 表⽰“⼄种商品滞销”,根据公式B C B C = , 本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) ⼀袋中有5只球, 其中有3只⽩球和2只⿊球, 从袋中任意取⼀球, 观察其颜⾊; (2) 从(1)的袋中不放回任意取两次球, 每次取出⼀个, 观察其颜⾊; (3) 从(1)的袋中不放回任意取3只球, 记录取到的⿊球个数; (4) ⽣产产品直到有10件正品为⽌, 记录⽣产产品的总件数. 解 (1) {⿊球,⽩球}; (2) {⿊⿊,⿊⽩,⽩⿊,⽩⽩}; (3) {0,1,2};(4) 设在⽣产第10件正品前共⽣产了n 件不合格品,则样本空间为{10|0,1,2,n n += }.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表⽰下列各事件: (1) 仅有A 发⽣;(2) A , B , C 中⾄少有⼀个发⽣; (3) A , B , C 中恰有⼀个发⽣; (4) A , B , C 中最多有⼀个发⽣; (5) A , B , C 都不发⽣;(6) A 不发⽣, B , C 中⾄少有⼀个发⽣. 解 (1) ABC ; (2)A B C ; (3) ABC ABC ABC ;(4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C .4. 事件A i 表⽰某射⼿第i 次(i =1, 2, 3)击中⽬标, 试⽤⽂字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3; (4) A 2-A 3;(5)23A A ; (6)12A A .解 (1) 射⼿第⼀次或第⼆次击中⽬标;(2) 射⼿三次射击中⾄少击中⽬标;(3) 射⼿第三次没有击中⽬标;(4) 射⼿第⼆次击中⽬标,但是第三次没有击中⽬标;(5) 射⼿第⼆次和第三次都没有击中⽬标;(6) 射⼿第⼀次或第⼆次没有击中⽬标.习题1-31. 选择题 (1) 设A, B 为任⼆事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ .(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解由⽂⽒图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解本题答案应选(C).2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).解因()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= ,故()()1P A P B +=. 于是()1.P B p =-0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .解由公式()()()()P A B P A P B P AB =+- 知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB .解由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =.5. 设A , B 是两个事件, 且()0.6P A =, ()0.7P B =.问: (1) 在什么条件下()P AB 取到最⼤值, 最⼤值是多少? (2) 在什么条件下()P AB 取到最⼩值, 最⼩值是多少?解 ()()()()P AB P A P B P A B =+- =1.3()P A B - .(1) 如果A B B = , 即当A B ?时, P B A P =)( ()B =0.7, 则()P AB 有最⼤值是0.6 .(2) 如果)(B A P =1,或者A B S = 时, ()P AB 有最⼩值是0.3 .6. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发⽣的概率.解因为ABCAB ?,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0.由概率⼀般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对⽴事件的概率性质知A ,B , C 全不发⽣的概率是5()()1()12P ABC P A B C P A B C ==-=.习题1-41. 选择题在5件产品中, 有3件⼀等品和2件⼆等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是⼀等品. (B) 恰有1件⼀等品. (C) ⾄少有1件⼀等品. (D) ⾄多有1件⼀等品.解⾄多有⼀件⼀等品包括恰有⼀件⼀等品和没有⼀等品, 其中只含有⼀件⼀等品的113225C C C ?, 没有⼀等品的概率为023225C C C ?, 将两者加起即为0.7. 答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) ⾄少有1件次品的概率; (4) ⾄多有1件次品的概率; (5) ⾄少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )⾄少有1件次品的概率是1-03545350C C C ; (4) ⾄多有1件次品的概率是03545350C C C +12545350C C C ; (5) ⾄少有2件次品的概率是21545350C C C +30545350C C C .3. 袋中有9个球, 其中有4个⽩球和5个⿊球. 现从中任取两个球. 求:(1) 两个球均为⽩球的概率;(2) 两个球中⼀个是⽩的, 另⼀个是⿊的概率; (3)⾄少有⼀个⿊球的概率.解从9个球中取出2个球的取法有29C 种,两个球都是⽩球的取法有24C 种,⼀⿊⼀⽩的取法有1154C C 种,由古典概率的公式知道(1) 两球都是⽩球的概率是2924C C ;(2)两球中⼀⿊⼀⽩的概率是115429C C C ;(3)⾄少有⼀个⿊球的概率是12924C C -.4. 在区间(0, 1)中随机地取两个数, 求下列事件的概率:(1) 两数之和⼩于6 5;(2) 两数之积⼩于14;(3) 以上两个条件同时满⾜;(4) 两数之差的绝对值⼩于12的概率.解设X , Y 为所取的两个数, 则样本空间S = {(X , Y )|0(1) P {X +Y <65}=1441172550.68125-??=≈;(2) P {XY <14}=11411111ln 40.64444dx x+=+≈?;(3) P {X +Y <65, XY <14} =0.2680.932110.2680.932516161()()5545x dx dx x dx x ?+-++-≈0.593.(4) 解设x , y 为所取的两个数, 则样本空间Ω = {(x , y )|012}. 参见图1-1.图1-1 第2题样本空间故 111123222()14AS P A S Ω-===, 其中 S A , S Ω分别表⽰A 与Ω的⾯积.习题1-51. 选择题(1) 设随机事件A , B 满⾜P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件. (C) AB B =. (D)()()P AB P B =.解由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P BA =, 则()0P AB =. (C) 若()()1P AB P AB +=, 则A , B 为对⽴事件. (D) 若(|)1P B A =, 则B 为必然事件.解由条件概率的定义知选(B ).2. 从1,2,3,4中任取⼀个数, 记为X , 再从1,2,…,X 中任取⼀个数, 记为Y ,求P {Y =2}. 解解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813.3. ⼝袋中有b 个⿊球、r 个红球, 从中任取⼀个, 放回后再放⼊同颜⾊的球a 个. 设B i ={第i 次取到⿊球}, 求1234()P B B B B .解⽤乘法公式得到)|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P =.32ar b a r a r b r a r b a b r b b +++?++?+++?+=注意, a = 1和a = 0分别对应有放回和⽆放回抽样.4. 甲、⼄、丙三⼈同时对某飞机进⾏射击, 三⼈击中的概率分别为0.4, 0.5, 0.7. 飞机被⼀⼈击中⽽被击落的概率为0.2, 被两⼈击中⽽被击落的概率为0.6, 若三⼈都击中, 飞机必定被击落. 求该飞机被击落的概率.解⽬标被击落是由于三⼈射击的结果, 但它显然不能看作三⼈射击的和事件. 因此这属于全概率类型. 设A 表⽰“飞机在⼀次三⼈射击中被击落”, 则(0,1,2,3)i B i =表⽰“恰有i 发击中⽬标”.i B 为互斥的完备事件组. 于是没有击中⽬标概率为0()0.60.50.30.09P B =??=, 恰有⼀发击中⽬标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =??+??+??=,恰有两发击中⽬标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =??+??+??=,恰有三发击中⽬标概率为3()0.40.50.70.14P B =??=.⼜已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到 3()()(|)0.360.20.410.60.1410.458.iii P A P B P A B ===?+?+?=∑5. 在三个箱⼦中, 第⼀箱装有4个⿊球, 1个⽩球; 第⼆箱装有3个⿊球, 3个⽩球; 第三箱装有3个⿊球, 5个⽩球. 现任取⼀箱, 再从该箱中任取⼀球.(1) 求取出的球是⽩球的概率;(2) 若取出的为⽩球, 求该球属于第⼆箱的概率.解 (1)以A 表⽰“取得球是⽩球”,i H 表⽰“取得球来⾄第i 个箱⼦”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==6. 某⼚甲、⼄、丙三个车间⽣产同⼀种产品, 其产量分别占全⼚总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取⼀件进⾏检查.(1) 求这件产品是次品的概率;(2) 已知抽得的⼀件是次品, 问此产品来⾃甲、⼄、丙各车间的概率分别是多少?解设A 表⽰“取到的是⼀件次品”, i B (i =1, 2, 3)分别表⽰“所取到的产品来⾃甲、⼄、丙⼯⼚”. 易知,123,,B B B 是样本空间S 的⼀个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.0384.=?+?+?=.(2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ?===,222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ?===,333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ?===.习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成⽴的是( ).(A) A , B 相互独⽴. (B) A , B 不相互独⽴.(C) A , B 互为对⽴事件. (D) A , B 不互为对⽴事件. 解⽤反证法, 本题应选(B).(2) 设事件A 与B 独⽴, 则下⾯的说法中错误的是( ).(A) A 与B 独⽴. (B) A 与B 独⽴. (C)()()()P AB P A P B =. (D) A 与B ⼀定互斥.解因事件A 与B 独⽴, 故A B 与,A 与B 及A 与B 也相互独⽴. 因此本题应选(D).(3) 设事件A 与 B 相互独⽴, 且0(A)(|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B ⼀定互斥. (D)()()()()()P A B P A P B P A P B =+- .解因事件A 与B 独⽴, 故A B 与也相互独⽴, 于是(B)是正确的. 再由条件概率及⼀般加法概率公式可知(A)和(D)也是正确的. 从⽽本题应选(C).2.设A , B 是任意两个事件, 其中A 的概率不等于0和1, 证明 P (B |A )=)(A BP 是事件A 与B 独⽴的充分必要条件.证由于A 的概率不等于0和1, 故题中两个条件概率都存在.充分性. 因事件A 与B 独⽴, 知事件A 与B 也独⽴, 因此()(),()()P B A P B P B A P B ==,从⽽()()P B A P B A =.必要性. 已知()()P BA PB A =, 由条件概率公式和对⽴事件概率公式得到()()()()()1()()P AB P AB P B P AB P A P A P A -==-,移项得[]()1()()()()(),P AB P A P A P B P A P AB -=-化简得 P (AB )=P (A )P (B ), 因此A 和B 独⽴.3. 设三事件A , B 和C 两两独⽴, 满⾜条件:,ABC =?1()()()2P A P B P C ==<, 且9()16P A B C =,求()P A .解根据⼀般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+ .由题设可知 A , B 和C 两两相互独⽴, ,ABC =?1()()()2P A P B P C ==<, 因此有2()()()[()],()()0,P AB P AC P BC P A P ABC P ====?=从⽽29()3()3[()]16P A B C P A P A =-=,于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =.4.某⼈向同⼀⽬标独⽴重复射击, 每次射击命中⽬标的概率为p (0解 “第4次射击恰好第2次命中” 表⽰4次射击中第4次命中⽬标, 前3次射击中有⼀次命中⽬标. 由独⽴重复性知所求概率为1223(1)C p p -.5. 甲、⼄两⼈各⾃向同⼀⽬标射击, 已知甲命中⽬标的概率为 0.7, ⼄命中⽬标的概率为0.8. 求:(1) 甲、⼄两⼈同时命中⽬标的概率;(2) 恰有⼀⼈命中⽬标的概率; (3) ⽬标被命中的概率.解甲、⼄两⼈各⾃向同⼀⽬标射击应看作相互独⽴事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==?=(2)()()0.70.20.30.80.38;P AB P AB +=?+?=(3) ()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总习题⼀1. 选择题:设,,A B C 是三个相互独⽴的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独⽴的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解由于A , B , C 是三个相互独⽴的随机事件, 故其中任意两个事件的和、差、交、并与另⼀个事件或其逆是相互独⽴的, 根据这⼀性质知(A), (C), (D)三项中的两事件是相互独⽴的, 因⽽均为⼲扰项, 只有选项(B)正确..2. ⼀批产品由95件正品和5件次品组成, 先后从中抽取两件, 第⼀次取出后不再放回.求: (1) 第⼀次抽得正品且第⼆次抽得次品的概率; (2) 抽得⼀件为正品, ⼀件为次品的概率.解 (1) 第⼀次抽得正品且第⼆次抽得次品的概率为9551910099396?=.(1) 抽得⼀件为正品,⼀件为次品的概率为95559519.10099198+= 3. 设有⼀箱同类型的产品是由三家⼯⼚⽣产的. 已知其中有21的产品是第⼀家⼯⼚⽣产的, 其它⼆⼚各⽣产41. ⼜知第⼀、第⼆家⼯⼚⽣产的产品中有2%是次品, 第三家⼯⼚⽣产的产品中有4%是次品. 现从此箱中任取⼀件产品, 求取到的是次品的概率.解从此箱中任取⼀件产品, 必然是这三个⼚中某⼀家⼯⼚的产品. 设A ={取到的产品是次品},B i ={取到的产品属于第i 家⼯⼚⽣产}, i =1, 2, 3. 由于B i B j =?(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的⼀个划分. ⼜ P (B 1)=21, P (B 2) =41, P (B 3)=41,P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004,由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221?+?+?=0.025. 4. 某⼚⾃动⽣产设备在⽣产前须进⾏调整. 假定调整良好时, 合格品为90%; 如果调整不成功,则合格品有30%. 若调整成功的概率为75%, 某⽇调整后试⽣产, 发现第⼀个产品合格. 问设备被调整好的概率是多少?解设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=?+?=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ?====.5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02,⽽B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解以D 表⽰事件“将信息A 传递出去”,以D 表⽰事件“将信息B 传递出去”,以R 表⽰事件“接收到信息A ”,以R 表⽰事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====.由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。
第一章 事件与概率1.1 写出下列随机试验的样本空间及表示下列事件的样本点集合。
(1)10件产品中有1件是不合格品,从中任取2件得1件不合格品。
(2)一个口袋中有2个白球、3个黑球、4个红球,从中任取一球,(ⅰ)得白球,(ⅱ)得红球。
解 (1)记9个合格品分别为 921,正正正,, ,记不合格为次,则,,,,,,,,,)()()(){(1913121次正正正正正正正 ,,,,,,,,,)()()()(2924232次正正正正正正正 ,,,,,,,)()()(39343次正正正正正 )}()()(9898次正次正正正,,,,,, A ){(1次正,,,,)(2次正)}(9次正,,(2)记2个白球分别为1 ,2 ,3个黑球分别为1b ,2b ,3b ,4个红球分别为1r ,2r ,3r ,4r 。
则 {1 ,2 ,1b ,2b ,3b ,1r ,2r ,3r ,4r }(ⅰ) A {1 ,2 } (ⅱ) B {1r ,2r ,3r ,4r }1.2 在数学系的学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示被选学生是三年级学生,事件C 表示该生是运动员。
(1) 叙述C AB 的意义。
(2)在什么条件下C ABC 成立? (3)什么时候关系式B C 是正确的? (4) 什么时候B A 成立?解 (1)事件C AB 表示该是三年级男生,但不是运动员。
(2) C ABC 等价于AB C ,表示全系运动员都有是三年级的男生。
(3)当全系运动员都是三年级学生时。
(4)当全系女生都在三年级并且三年级学生都是女生时`。
1.3 一个工人生产了n 个零件,以事件i A 表示他生产的第i 个零件是合格品(n i 1)。
用i A 表示下列事件: (1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅仅只有一个零件是不合格品; (4)至少有两个零件是不合格品。
解 (1)ni i A 1; (2) n i i n i i A A 11; (3) n i ni j j j i A A 11)]([ ;(4)原事件即“至少有两个零件是合格品”,可表示为 nji j i jiAA 1,;1.4 证明下列各式:(1)A B B A ; (2)A B B A (3) C B A )()(C B A ; (4) C B A )()(C B A(5) C B A )( )(C A )(C B (6)ni i ni i A A 11证明 (1)—(4)显然,(5)和(6)的证法分别类似于课文第10—12页(1.5)式和(1.6)式的证法。
概率论与数理统计第一章课后习题及参考答案1.写出下列随机试验的样本空间.(1)记录一个小班一次数学考试的平均分数(以百分制记分);(2)一个口袋中有5个外形相同的球,编号分别为1,2,3,4,5,从中同时取出3个球;(3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数;(4)在单位圆内任意取一点,记录它的坐标.解:(1)}100,,2,1{ =Ω;(2)}345,235,234,145,135,134,125,124,123{=Ω;(3)},2,1{ =Ω;(4)}|),{(22y x y x +=Ω.2.在}10,,2,1{ =Ω,}432{,,=A ,}5,4,3{=B ,}7,6,5{=C ,具体写出下列各式:(1)B A ;(2)B A ;(3)B A ;(4)BC A ;(5)C B A .解:(1),9,10}{1,5,6,7,8=A ,}5{=B A ;(2)}10,9,8,7,6,5,4,3,1{=B A ;(3)法1:}10,9,8,7,6,2,1{=B ,}10,9,8,7,6,1{=B A ,}5,4,3,2{=B A ;法2:}5,4,3,2{===B A B A B A ;(4)}5{=BC ,}10,9,8,7,6,4,3,2,1{=BC ,}4,3,2{=BC A ,}10,9,8,7,6,5,1{=BC A ;(5)}7,6,5,4,3,2{=C B A ,{1,8,9,10}=C B A .3.设}20|{≤≤=Ωx x ,}121|{≤<=x x A ,}2341|{≤≤=x x B ,具体写出下列各式:(1)B A ;(2)B A ;(3)AB ;(4)B A .解:(1)B B A = ,}223,410|{≤<<≤==x x x B B A ;(2)=B A ∅;(3)A AB =,}21,210|{≤<≤≤==x x x A AB ;(4)}231,2141|{<<<≤=x x x B A .4.化简下列各式:(1)))((B A B A ;(2)))((C B B A ;(3)))((B A B A B A .解:(1)A B B A B A B A ==)())(( ;(2)AC B C A B C B B A ==)())((;(3))())()((B A B B A B A B A B A =AB AB A A B A A === )(.5.A ,B ,C 表示3个事件,用文字解释下列事件的概率意义:(1)C B A C A C B A ;(2)BC AC AB ;(3)(C B A ;(4)BC AC AB .解:(1)A ,B ,C 恰有一个发生;(2)A ,B ,C 中至少有一个发生;(3)A 发生且B 与C 至少有一个不发生;(4)A ,B ,C 中不多于一个发生.6.对于任意事件A ,B ,证明:Ω=-A B A AB )(.证:A B B A A B A AB A B A AB )()(==-Ω==Ω=A A A A .7.把事件C B A 表示为互不相容事件的和事件.解:)()[(C A B A A A C B A C B A =-=)(B A A A A C A B A A ==CB A BC A B A A )(=C B A B A A =.8.设0)(>A P ,0)(>B P ,将下列5个数)(A P ,)()(B P A P -,)(B A P -,)()(B P A P +,)(B A P 按有小到大的顺序排列,用符号“≤”联结它们,并指出在什么情况下可能有等式成立.解:因为0)(>A P ,0)(>B P ,)()(B P AB P ≤,故)()()()()()()()()(B P A P B A P A P B A P AB P A P B P A P +≤≤≤-=-≤- ,所以)()()()()()()(B P A P B A P A P B A P B P A P +≤≤≤-≤- .(1)若A B ⊂,则有)()()(B A P B P A P -=-,)()(B A P A P =;(2)若=AB ∅,则有)()(A P B A P =-,)()()(B P A P B A P += .9.已知B A ⊂,3.0)(=A P ,5.0)(=B P ,求)(A P ,)(AB P ,)(B A P 和)(B A P .解:(1)7.0)(1(=-=A P A P ;(2)B A ⊂ ,A AB =∴,则3.0)()(==A P AB P ;(3)2.0)()()()(=-=-=AB P B P A B P B A P ;(4))(1()(B A P B A P B A P -==5.0)]()()([1=-+-=AB P B P A P .10.设有10件产品,其中6件正品,4件次品,从中任取3件,求下列事件的概率.(1)只有1件次品;(2)最多1件次品;(3)至少一件次品.解:从10件产品中任取3件,共有310C 种取法,(1)记=A {从10件产品中任取3件,只有1件次品},只有1件次品,可从4件次品中任取1件次品,共14C 中取法,另外的两件为正品,从6件正品中取得,共26C 种取法.则事件A 共包含2614C C 个样本点,21)(3102614==C C C A P .(2)记=B {从10件产品中任取3件,最多有1件次品},=C {从10件产品中任取3件,没有次品},则C A B =,且A 与C 互不相容.没有次品,即取出的3件产品全是正品,共有36C 种取法,则61)(31036==C C C P ,32)()()()(=+==C P A P C A P B P .(3)易知=C {从10件产品中任取3件,至少有1件次品},则65)(1(=-=C P C P .11.盒子里有10个球,分别标有从1到10的标号,任选3球,记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.解:从10个球中任选3球,共有310C 种选法,(1)记=A {从10个球中任选3球,最小标号为5},事件A 发生,则选出球的最小标号为5,另外两个球的标号只可从6,7,8,9,10这5个数中任选,共有25C 种选法,则121)(31025==C C A P .(2)记=B {从10个球中任选3球,最大标号为5},事件B 发生,则选出球的最大标号为5,另外两个球的标号只可从1,2,3,4这4个数中任选,共有24C 种选法,则201)(31024==C C B P .12.设在口袋中有a 个白球,b 个黑球,从中一个一个不放回地摸球,直至留在在口袋中的球都是同一种颜色为止.求最后是白球留在口袋中的概率.解:设=A {最后是白球留在口袋中},事件A 即把b a +个球不放回地一个一个摸出来,最后摸到的是白球,此概率显然为ba a A P +=)(.13.一间学生寝室中住有6位同学,假定每个人的生日在各个月份的可能性相同,求下列事件的概率:(1)6个人中至少有1人的生日在10月份;(2)6个人中有4人的生日在10月份;(3)6个人中有4人的生日在同一月份.解:设=i B {生日在i 月份},则=i B {生日不在i 月份},12,,2,1 =i ,易知121)(=i B P ,1211)(=i B P ,12,,2,1 =i .(1)设=A {6个人中至少有1人的生日在10月份},则=A {6个人中没有一个人的生日在10月份},66101211(1)]([1)(1)(-=-=-=B P A P A P ;(2)设=C {6个人中有4人的生日在10月份},则62244621041046121115)1211()121()]([)]([)(⋅===C B P B P C C P ;(3)设=D {6个人中有4人的生日在同一月份},则52112121115)()(⋅==C P C D P .14.在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,即交点在这一直径上一个区间内的可能性与此区间的长度成正比,求任意画的弦的长度大于R 的概率.解:设弦与该直径的交点到圆心的距离为x ,已知,当R x 23<,弦长大于半径R ,从而所求的概率为232232=⋅=R R P .15.甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头停泊,它们在同一昼夜内到达的时刻是等可能的,如果甲船的停泊时间是1h ,乙船的停泊时间是2h ,求它们中的任何一艘都不需要等候码头空出的概率.解:设=A {两艘中的任何一艘都不需要等候码头空出},则=A {一艘船到达泊位时必须等待},分别用x 和y 表示第一、第二艘船到达泊位的时间,则}10,20|),{(≤-≤≤-≤=x y y x y x A ,从而1207.0242221232124)()()(2222≈⋅-⋅-=Ω=μμA A P ;8993.0)(1)(≈-=A P A P .16.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被击中,问由甲射中的概率为多少?解:设=A {甲击中目标},=B {乙击中目标},=C {目标被击中},则B A C =,由题设知A 与B 相互独立,且6.0)(=A P ,5.0)(=B P ,所以)()()()()(AB P B P A P B A P C P -+== 8.0)()()()(=-+=B P A P B P A P ,从而43)()()()()|(===C P A P C P AC P C A P .17.某地区位于河流甲与河流乙的汇合点,当任一河流泛滥时,该地区即被淹没,设在某时期内河流甲泛滥的概率是0.1,河流乙泛滥的概率是0.2,又当河流甲泛滥时引起河流乙泛滥的概率为0.3,求在该时期内这个地区被淹没的概率,又当河流乙泛滥时,引起河流甲泛滥的概率是多少?解:=A {甲河流泛滥},=B {乙河流泛滥},=C {该地区被淹没},则B A C =,由题设知1.0)(=A P ,2.0)(=B P ,3.0)|(=A B P ,从而)()()()()(AB P B P A P B A P C P -+== 27.0)|()()()(=-+=A B P A P B P A P ,15.0)()|()()()()|(===B P A B P A P B P AB P B A P .18.设n 件产品中有m 件不合格品,从中任取两件,已知两件中有一件不合格品,求另一件也是不合格品的概率.解:设=A {有一件产品是不合格品},=B {另一件产品也是不合格品},=i D {取出的两件产品中有i 件不合格品},2,1,0=i ,显然,21D D A =,=21D D ∅,2D B AB ==.=Ω{从n 件产品种任取两件},共有2nC 种取法;若1D 发生,即取出的两件产品中有1件不合格品,则该不合格品只能从m 件不合格品中取得,共有1m C 种取法;另一件为合格品,只能从m n -件合格品中取得,共有1m n C -种取法,则事件1D 中共有11m n m C C -个样本点,)1()(2)(2111--==-n n m n m C C C D P n m n m ,类似地,)1()1()(222--==n n m m C C D P n m ,所以)1()1()(2)()()()(2121--+-=+==n n m m m n m D P D P D D P A P ,)1()1()()(2--==n n m m D P AB P ,于是所求概率为121)()()|(---==m n m A P AB P A B P .19.10件产品中有3件次品,每次从其中任取一件,取出的产品不再放回去,求第三次才取得合格品的概率.解:设=i A {第i 次取得合格品},3,2,1=i ,则所求概率为12878792103)|()|()()(213121321=⋅⋅==A A A P A A P A P A A A P .20.设事件A 与B 互不相容,且1)(0<<B P ,证明:)(1)(|(B P A P B A P -=.证: 事件A 与B 互不相容,则0)(=AB P ,)(1)()(1)()()(1)()(()|(B P A P B P AB P A P B P B A P B P B A P B A P -=--=--==.21.设事件A 与B 相互独立,3.0)(=A P ,45.0)(=B P ,求下列各式的值:(1))|(A B P ;(2))(B A P ;(3)(B A P ;(4)|(B A P .解: 事件A 与相互独立,∴事件A 与B 也相互独立,(1)45.0)()|(==B P A B P ;(2))()()()(AB P B P A P B A P -+= )()()()(B P A P B P A P -+=615.0=;(3)385.0)](1)][(1[)(()(=--==B P A P B P A P B A P ;(4)7.0()|(==A P B A P .22.某种动物活到10岁的概率为0.92,活到15岁的概率为0.67,现有一只10岁的该种动物,求其能活到15岁的概率.解:设=A {该种动物能活到10岁},=B {该种动物能活到15岁},显然A B ⊂,由题设可知92.0)(=A P ,67.0)(=B P ,所以9267)()()()()|(===A P B P A P AB P A B P .23.某商店出售的电灯泡由甲、乙两厂生产,其中甲厂的产品占60%,乙厂的产品占40%,已知甲厂产品的次品率为4%,乙厂的次品率为5%.一位顾客随机地取出一个电灯泡,求它是合格品的概率.解:设=A {电灯泡是次品},=1B {电灯泡由甲厂生产},=2B {电灯泡由乙厂生产},则=A {电灯泡是合格品}.由题设可知6.0)(1=B P ,4.0)(2=B P ,04.0)|(1=B A P ,05.0)|(2=B A P ,044.0)|()()|()()(2211=+=B A P B P B A P B P A P ,所以956.0)(1)(=-=A P A P .24.已知男子有5%是色盲患者,女子有0.25%是色盲患者.今从男女人数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?解:设=A {选出的人是色盲患者},=B {选出的人是男性},=B {选出的人是女性},由题设可知21()(==B P B P ,05.0)|(=B A P ,0025.0)|(=B A P ,则2120)|()()|()()|()()|(=+=B A P B P B A P B P B A P B P A B P .25.甲、乙、丙三人独立地向一敌机射击,设甲、乙、丙命中率分别为0.4,0.5和0.7,又设敌机被击中1次、2次、3次而坠毁的概率分别为0.2,0.6和1.现三人向敌机各射击一次,求敌机坠毁的概率.解:设1A ,2A ,3A 分别表示甲、乙、丙射击击中敌机,=i B {敌机被击中i 次},3,2,1=i ,=C {敌机坠毁},则3213213211A A A A A A A A A B =,3213213212A A A A A A A A A B =,3213A A A B =,由题设可知4.0)(1=A P ,5.0)(2=A P ,7.0)(3=A P ,2.0)|(1=B C P ,6.0)|(2=B C P ,1)|(3=B C P ,则)()()()(3213213211A A A P A A A P A A A P B P ++=)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P ++=36.0=,类似地,51.0)(2=B P ,14.0)(3=B P ,由全概率公式得458.0)|()()(31==∑=i i i B C P B P C P .26.三人独立地破译一份密码,已知各人能译出的概率分别为51,31和41.问三人中至少有一人能将此密码译出的概率是多少?解:分别设事件A ,B ,C 为甲、乙、丙破译密码,则三人中至少有一人能将此密码译出可表示为C B A ,有)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++= )()()()()()()()()()()()(C P B P A P C P B P C P A P B P A P C P B P A P +---++=53=.27.甲袋中装有n 只白球、m 只红球,乙袋中装有N 只白球、M 只红球.今从甲袋中任意取一只球放入乙袋中,再从乙袋中任意取一只球,问取到白球的概率是多少?解:设=A {从甲袋中取出白球},=B {从乙袋中取出白球},则由题设可知m n n A P +=)(,m n m A P +=(,11)|(+++=M N N A B P ,1|(++=M N N A B P ,由全概率公式,得)|(()|()()(A B P A P A B P A P B P +=)1)(()1(+++++=N M n m mN N n .28.从区间)1,0(内任取两个数,求这两个数的和小于1.2的概率.解:设x 和y 分别为所取的两个数,显然10≤≤x ,10≤≤y ,即试验的样本空间为边长为1的单位正方形,记}2.1|),{(<+=y x y x A ,由几何概型,有68.0118.08.02111)(=⨯⨯⨯-⨯=A P .29.一个系统由4个元件联结而成(如图),每个元件的可靠性(即元件能正常工作的概率)为r (10<<r ),假设各个元件独立地工作,求系统的可靠性.解:设=i A {第i 个元件能正常工作},4,3,2,1=i ,=B {系统能正常工作},则4314214321)(A A A A A A A A A A B ==,由题知r A P i =)(,i A 相互独立,4,3,2,1=i ,所以)()(431421A A A A A A P B P =)()()(4321431421A A A A P A A A P A A A P -+=)(()()()()()()()()(4321431421A P A P A P A P A P A P A P A P A P A P -+=3)2(r r -=.30.某篮球运动员投篮命中的概率为0.8,求他在5次独立投篮中至少命中2次的概率.解:设=A {该篮球运动员5次独立投篮中至少命中2次},=i B {该篮球运动员5次独立投篮中命中的次数},5,,1,0 =i ,则由题可知5432B B B B A =,10B B A =,i B 互不相容,5,,1,0 =i ,所以)()(1)(1)(10B P B P A P A P --=-=9933.02.08.02.08.0141155005=⋅⋅-⋅⋅-=C C .31.设概率统计课的重修率为5%,若某个班至少一人重修的概率不小于0.95,1324问这个班至少有多少名同学?解:设该班有n 名同学,=A {该班每名同学概率统计课重修},=i B {该班n 名同学中有i 名同学概率统计课重修},=C {该班n 名同学中至少有1名同学概率统计课重修},则 ni i n B B B B C 121===,0B C =,由题可知05.0)(=A P ,n n n C B P C P C P 95.0195.005.01)(1)(1)(000-=⋅⋅-=-=-=,由题意,应有95.095.01=-n ,解得59=n .32.某种灯泡使用时数在1000h 以上的概率为0.6,求3个灯泡在使用1000h 以后最多有1个损坏的概率.解:设=A {该种灯泡使用时数在h 1000以上},=i B {3个灯泡在使用h 1000以后有i 个损坏},3,2,1,0=i ,=C {3个灯泡在使用h 1000以后最多有1个损坏},则10B B C =,由题知6.0)(=A P ,i B 互不相容,3,2,1,0=i ,所以648.06.04.06.04.0)()()(2113300310=⋅⋅+⋅⋅=+=C C B P B P C P .33.甲、乙两名篮球运动员投篮的命中率分别为0.7和0.6,每人投篮3次,求:(1)二人进球数相等的概率;(2)甲比乙进球数多的概率.解:设=A {甲篮球运动员投篮命中},=B {乙篮球运动员投篮命中},=i A {甲篮球运动员投篮命中i 次},3,2,1,0=i ,=i B {乙篮球运动员投篮命中i 次},3,2,1,0=i ,=C {甲、乙进球数相等},=D {甲比乙进球数多},由题可知A 与B 相互独立,i A 相互独立,i B 相互独立,i A 与i B 相互独立,7.0)(=A P ,6.0)(=B P ,i i i i C A P -⋅⋅=333.07.0)(,i i i i C B P -⋅⋅=334.06.0)(,3,2,1,0=i ,(1) 30==i i i B A C ∑∑======303030)()()()()(i i i i i i i i i B P A P B A P B A P C P 3208.0=;(2)3310201)(B A B B A B A D =,从而有))(()(3310201B A B B A B A P D P =)(]([)(3310201B A P B B A P B A P ++= )()()()(33120201B A P B A P B A P B A P +++=)()()()()()()()(33120201B P A P B P A P B P A P B P A P +++=4362.0=.34.若三事件A ,B ,C 相互独立,证明:B A 及B A -都与C 相互独立.证:(1))())((BC AC P C B A P =)()()(ACBC P BC P AC P -+=)()()(ABC P BC P AC P -+=)()()()()()()(C P B P A P C P B P C P A P -+=)()]()()()([C P B P A P B P A P -+=)()]()()([C P AB P B P A P -+=)()(C P B A P =所以B A 与C 相互独立.(2))())((BC AC P C B A P -=-)()(ABC P AC P -=)()()()()(C P B P A P C P A P -=)()]()()([C P B P A P A P -=)()]()([C P AB P A P -=)()(C P B A P -=,所以B A -与C 相互独立.35.设袋中有1个黑球和1-n 个白球,每次从袋中随机摸出一球,并放入一个白球,连续进行,问第k 次摸到白球的概率是多少?解:设=A {第k 次摸到白球},=A {第k 次摸到黑球},A 发生表示前1-k 次摸球摸到的都是白球,第k 次摸到的是黑球.前1-k 次摸球,每次摸到白球的概率均为n n 1-,第k 次摸到黑球的概率为n1,每次摸球相互独立,可知n n n A P k 1)1()(1⋅-=-,则n n n A P A P k 11(1)(1)(1⋅--=-=-.。