九年级数学下册第一章直角三角形的边角关系小结与复习学案北师大版
- 格式:doc
- 大小:177.50 KB
- 文档页数:3
九年级数学下册第1章直角三角形的边角关系教案北师大版§1.1.1 从梯子的倾斜程度谈起(第1课时)教学目标1、经历探索直角三角形中边角关系的过程2、理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、能够运用三角函数表示直角三角形中两边的比4、能够根据直角三角形中的边角关系,进行简单的计算教学重点和难点重点:理解正切函数的定义难点:理解正切函数的定义教学过程设计一、复习已学过的直角三角形性质和定理(勾股定理和其逆定理,300定理,斜边中线定理等等)二、新课讲授1、你能比较两个梯子哪个更陡吗?你有哪些办法?2、生活问题数学化:⑴如图:梯子AB和EF哪个更陡?你是怎样判断的?⑵以下三组中,梯子AB和EF哪个更陡?你是怎样判断的?ABC 8mα5m 5mβ13m3、直角三角形的边与角的关系(如图,回答下列问题) ⑴Rt △AB 1C 1和Rt△AB 2C 2有什么关系? ⑵222111B AC C B AC C 和有什么关系? ⑶如果改变B 2在梯子上的位置(如B 3C 3)呢? ⑷由此你得出什么结论?4、正切函数(1) 明确各边的名称(2) 的邻边的对边A A A ∠∠=tan(3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。
(4) tanA 的值越大,梯子越陡 5、巩固练习如图,在△ACB 中,∠C = 90°, 1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB = ;3) 若AC = 8,AB = 10,则tanA = ;tanB = ; 三、讲解例题例1 图中表示甲、乙两个自动扶梯,哪一个自动扶梯比较陡?分析:通过计算正切值判断梯子的倾斜程度。
这是上述结论的直接应用。
ABC∠A 的对边∠A 的邻边斜边ABC例2 如图,在△ACB 中,∠C = 90°,AC = 6,43tanB ,求BC 、AB 的长。
第一章直角三角形的边角关系一、本章知识要点:1、锐角三角函数的概念;2、解直角三角形。
二、本章教材分析:(一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。
如何解决这一关键问题,教材采取了以下的教学步骤:1.从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。
显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。
2.教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为,同时也说明了锐角的度数变化了,由30°变为45°后,其对边与斜边的比值也随之变化了,由到。
这样就突出了直角三角形中边与角之间的相互关系。
3.从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。
4.在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌握。
同时要强调三角函数的实质是比值。
防止学生产生sinX=60°,sinX=等错误,要讲清sinA不是sin*A而是一个整体。
如果学生产生类似的错误,应引导学生重新复习三角函数定义。
5.在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。
直角三角形的边角关系回顾与思考【学习目标】1.经历对本章知识的回顾与总结,建立本章的知识框架图。
2.引导学生利用科学计算器寻找任意角的正弦、余弦、正切的关系。
3.通过实际问题求解,进一步体会直角三角形的边角关系在现实生活中的广泛应用。
【学习重难点】重点:归纳直角三角形的边、角之间的关系,利用这些关系式解直角三角形,并利用解直角三角形的有关知识解决实际问题。
难点:利用解直角三角形的有关知识解决实际问题。
【学习过程】问题1:结合图回答:什么是∠A的正弦、余弦、正切?问题2:什么是解直角三角形?问题3:在Rt△ABC中,除直角C外的五个元素间具有什么关系?(1)三边关系:(2)锐角之间关系:(3)边角之间关系:今天我们来复习直角三角形的边角关系的有关内容问题4:(1)tan30°+cos45°+tan60°-cos30°;(2)tan30°•cos30°+sin230°;问题5:根据下列条件,解直角三角形.①a=10,∠B=450;②a= ,c=6 。
问题6:在平地上一点C,测得山顶A的仰角为30°,向山沿直线前进20米到D处,再测得山顶A的仰角为45°,求山高AB。
知识发展点:问题7:如图在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA= ,求AD的长。
问题8:如图,水库的横截面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1: ,斜坡CD的坡度i′=1:1,求斜坡AB的长及坡角α和坝底宽AD(精确到0.1m)易漏点:问题9:如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且 , AB = 4, 则AD的长为()(A)3 (B)(C)(D)问题10:九(1)班的数学课外小组,对公园人工湖中的湖心亭A处到笔直的南岸的距离进行测量.他们采取了以下方案:如图7,站在湖心亭的A处测得南岸的一尊石雕C在其东南方向,再向正北方向前进10米到达B处,又测得石雕C在其南偏东30°方向.你认为此方案能够测得该公园的湖心亭A处到南岸的距离吗?若可以,请计算此距离是多少米(结果保留到小数点后一位)?【学习小结】。
北师大版九年级数学下册:第一章《直角三角形的边角关系——回顾与思考》教学设计一. 教材分析北师大版九年级数学下册第一章《直角三角形的边角关系——回顾与思考》主要内容有锐角三角函数的概念、各锐角三角函数值表、直角三角形的边角关系、三角函数的图像和性质。
本章内容是初中数学的重要知识,也是学习高中数学的基础。
通过本章的学习,使学生掌握锐角三角函数的概念和各锐角三角函数值表,理解直角三角形的边角关系,会用三角函数解决实际问题。
二. 学情分析九年级的学生已经学习了三角函数的基础知识,对直角三角形的性质有一定的了解。
但学生对锐角三角函数的概念和各锐角三角函数值表的理解还不够深入,对直角三角形的边角关系的运用还不够熟练。
因此,在教学过程中,需要加强对学生的引导,让学生在复习旧知识的基础上,加深对新知识的理解。
三. 教学目标1.知识与技能目标:使学生掌握锐角三角函数的概念和各锐角三角函数值表,理解直角三角形的边角关系,会用三角函数解决实际问题。
2.过程与方法目标:通过复习旧知识,激发学生的学习兴趣,培养学生自主学习的能力。
3.情感态度与价值观目标:使学生感受到数学在生活中的应用,增强学生对数学的兴趣和信心。
四. 教学重难点1.教学重点:锐角三角函数的概念、各锐角三角函数值表、直角三角形的边角关系。
2.教学难点:锐角三角函数的概念、各锐角三角函数值表的理解和运用。
五. 教学方法采用启发式教学法、案例教学法和小组合作学习法。
通过复习旧知识,激发学生的学习兴趣,引导学生自主学习,培养学生解决问题的能力。
在教学过程中,注重师生互动,鼓励学生提问、讨论,提高课堂氛围。
六. 教学准备1.教师准备:准备好教学课件、教学素材、练习题等教学资源。
2.学生准备:复习三角函数的基础知识,预习本章内容。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生复习三角函数的基础知识,激发学生的学习兴趣。
例如:“同学们,我们已经学习了哪些三角函数?它们有什么特点?”2.呈现(15分钟)教师利用课件呈现本章内容,引导学生了解本章要学习的内容。
2019年(春)九年级数学下册第一章直角三角形的边角关系小结与复习教案(新版)北师大版【教学内容】小结与复习【教学目标】知识与技能:理解三角函数的定义,识记特殊三角函数值,根据条件熟练解直角三角形过程与方法:通过对本章知识进行回顾,对本章知识结构有系统认识。
情感、态度与价值观:通过学习,了解数学在生产生活中的作用,激发数学学习兴趣。
【教学重难点】重点:熟练记忆特殊角三角值,根据条件选择适当方法解直角三角形。
难点:选择适当方法解直角三角形。
【导学过程】【知识回顾】什么是锐角的正切、正弦和余弦?2、写出30°、45°、60°角的三角函数值3、什么叫解直角三角形?解直角三角形有哪两种形式?【情景导入】本节课我们对本章知识进行回顾。
【新知探究】探究一、例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o,看这栋离楼底部的俯角为60o,热气球与高楼的水平距离为120 m.这栋高楼有多高 (结果精确到0.1m)?探究二、例5如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,海轮所在的B处距离灯塔P有多远?探究三、2、利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC为0.5米,求:横断面(等腰梯形)ABCD的面积;②修一条长为100米的渠道要挖去的土方数.…….【知识梳理】本节课在回顾全章知识基础上,继续对解直角三角形深入学习。
【随堂练习】1.如图所示,图①中,一栋旧楼房由于防火设施较差,想要在侧面墙外修建一外部楼梯,由地面到二楼,再从二楼到三楼,共两段(图②中AB、BC两段),其中CC′=BB′=3.2m.结合图中所给的信息,求两段楼梯AB与BC的长度之和(结果保留到0.1m).(参考数据:sin30°=0.50,cos30°≈0.87,sin35°≈0.57,cos35°≈0.82)2.如图所示,某公司入口处原有三级台阶,每级台阶高为20c m,台阶面的宽为30cm,为了方便残疾人士,拟将台阶改为坡角为12°的斜坡,设原台阶的起点为A,斜坡的起点为C,求AC的长度(精确到1cm).。
第一章小结与复习【学习目标】1.理解三角函数的定义,识记特殊三角函数值,根据条件熟练解直角三角形.2.通过对本章知识进行旧知回顾,对本章知识结构有系统认识.【学习重点】熟练记忆特殊角的三角函数值,根据条件选择适当方法解直角三角形.【学习难点】情景导入 生成问题知识结构框图:解直角三角形⎩⎪⎪⎪⎨⎪⎪⎪⎧直角三角形边角关系⎩⎪⎨⎪⎧锐角三角函数⎩⎪⎨⎪⎧正切正弦、余弦30°、45°、60°角的三角函数值一般三角函数值的计算⎩⎪⎨⎪⎧利用计算器求三角函数值利用计算器求角度解直角三角形⎩⎪⎨⎪⎧已知两边解直角三角形已知一边和一锐角解直角三角形三角函数的应用⎩⎪⎨⎪⎧方位角问题俯角、仰角问题坡度问题利用三角函数测高 自学互研 生成能力知识模块一 锐角三角函数范例1:如图,在矩形ABCD 中,点E 在AB 上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的F 处,若AB =4,BC =5,则tan ∠AFE 的值为( C ) A .43B .45C .34D .45,(范例1题图)),(仿例1题图))仿例1:如图,四边形A BCD 中,AD ∥BC ,CA 是∠BCD 的平分线,且AB⊥AC,AB =4,AD =6,则tan B 等于( B )A .23B .22C .114D .554仿例2:tan 30°·tan 60°+2(sin 45°-1)2=3-2.知识模块二 解直角三角形范例2:长为4m 的梯子在墙上与地面成45°角,作业时调整为60°角(如图),则梯子的顶端沿墙面升高了(23-22)m .,(范例2题图)) ,(仿例题图))仿例:将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是2536cm 2. 知识模块三 三角函数的应用范例3:(徐州中考)如图,轮船从点A 处出发,先航行至位于点A 的南偏西15°且与点A 相距100km 的点B 处,再航行至位于点B 的北偏东75°且与点B 相距200km 的点C 处.(1)求点C 与点A 的距离;(精确到1km )(2)确定点C 相对于点A 的方向.(参考数据:2≈1.414,3≈1.732)解:(1)过A 作AD⊥BC 于点D ,∠A BC =75°-15°=60°.在Rt △ABD 中求得AD =503,BD =50,∴CD =150.在Rt △ADC 中,由勾股定理得AC =1003≈173(km ).(2)由AB 2+AC 2=BC 2,∠BAC =90°,∴∠FAC =75°,∴点C 位于点A 的南偏东75°方向.仿例:如图,小明在大楼30m 高(即PH =30m )的窗口P 处进行观测,测出坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡度i(即tan ∠ABC)为1∶3,点P ,H ,B ,C ,A 在同一个平面上,点H ,B ,C 在同一条直线上,且PH⊥HC.(1)山坡坡角(即∠ABC)的度数等于30°;(2)求A ,B 两点间的距离(结果精确到0.1m ,参考数据:3≈1.732).解:(1)30;(2)由题意得:∠PBH=60°,∠APB =45°,∵∠ABC =30°,∴∠ABP =90°,在Rt △PHB 中,PB =PH sin ∠PBH=203,在Rt △PBA 中,AB =PB =203≈34.6. 答:A ,B 间距离约为34.6m .交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一锐角三角函数知识模块二解直角三角形知识模块三三角函数的应用检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。
第一章直角三角形的边角关系
回顾与思考
(一)教学核心
1.经历回顾与思考,建立本章的知识框架图;
2.利用计算器,发现同角的正弦、余弦、正切之间的关系;
3.进一步体会直角三角形边角关系在现实生活中的广泛应用;
4.体会数形之间的联系,逐步学会利用数形结合的思想分析问题和解决问题;
(二)课时安排
1课时
(三)教学内容
回顾与思考中共设计有四个问题,帮助大家回顾、思考直角三角形中反映边角关系的三角函数的概念,直角三角形中边角关系在现实生活中的广泛应用,体现数形之间的联系。
以及把实际问题数学化的过程,更进一步了解知识间的联系和综合应用。
使三角函数的意义从现实生活中来,而又服务于现实生活中,从现实生活中抽象出数学问题,然后数形结合,用三角函数解决问题。
(四)教学建议
1.教师可以通过一系列的练习题的解答,逐步呈现本章知识点,然后要求学生自己对本章的内容进行小结,随后进行交流,形成知识框架图。
2.可以让学生说一说他们利用三角函数的知识解决了什么实际问题,或利用三角函数解决问题的体会。
3.可以让学生说一说他们在使用计算器解决问题的过程中有什么发现等。
用心爱心专心 1。
第一章直角三角形的边角关系1 锐角三角函数第1课时正切【知识与技能】让学生理解并掌握正切的含义,并能够举例说明;会在直角三角形中说出某个锐角的正切值;了解锐角的正切值随锐角的增大而增大.【过程与方法】让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维的习惯,提高学生运用数学知识解决实际问题的能力.【情感态度】能激发学生学习的积极性和主动性,引导学生自主探索、合作交流,培养学生的创新意识.【教学重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.【教学难点】理解正切的意义,并用它来表示两边的比.一、情景导入,初步认知你能比较两个梯子哪个更陡吗?你有哪些办法?【教学说明】通过实际问题,创设情境,引发学生产生认知盲点,激发学生学习的兴趣和探究的欲望。
.二、思考探究,获取新知(1)Rt△AB1C1和 Rt△AB2C2有什么关系?(2)111B CAC有什么关系(3)如果改变B2的位置(如B3C3)呢?(4)由此你得出什么结论?【教学说明】通过相似沟通了直角三角形中的边、角关系,从而变换角度继续探讨,符合学生的认知规律此时学生的思维豁然开朗,同时培养了学生思维的深刻性.此环节的设计正是数学思维的开阔性,多角度、多方位性的展现师生的共同努力,淋漓尽致地演绎了数学体现在思维艺术上的美,从而解决了本节课的第一个难点.【归纳结论】在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定.这个比叫做∠A 的正切.记作:tanA =A A ∠的对边∠的邻边当锐角A 变化时,tanA 也随之变化。
(5)梯子的倾斜度与tanA 有关系吗?【教学说明】借助几何画板,从运动的角度来实施动态化、形象化、直观化教学.【归纳结论】在这些直角三角形中,当锐角A 的大小确定后,无论直角三角形的大小怎样变化,∠A 的对边与∠A 的邻边的比值总是唯一确定的.所以,倾斜角的对边与邻边的比可以用来描述坡面的倾斜程度.三、运用新知,深化理解1. 见教材P 3上第1题.2. 如图,在 Rt △ABC 中,∠C= 90。
第1章直角三角形的边角关系课题回顾与思考教具目标(一)教学知识点1.经历回顾与思考,建立本章的知识框架图.2.利用计算器,发现同角的正弦、余弦、正切之间的关系。
3.进一步体会直角三角形边角关系在现实生活中的广泛应用.(二)能力训练要求1.体会数形之间的联系,逐步学会利用数形结合的思想分析问题和解决问题.2.进一步体会三角函数在现实生活中的广泛应用,增强应用数学的意识.(三)情感与价值观要求1.在独立思考问题的基础上,积极参与对数学问题的讨论,敢于发表自己的观点.并尊重与理解他人的见解,在交流中获益.2.认识到数学是解决现实问题的重要工具,提高学习数学的自信心.教学重点1.建立本章的知识结构框架图.2.应用三角函数解决现实生活中的问题,进一步理解三角函数的意义.教学难点应用三角函数解决问题教学方法探索——发现法教具准备多媒体演示、计算器教学过程Ⅰ.回顾、思考下列问题,建立本章的知识框架图[师]直角三角形的边角关系,是现实世界中应用广泛的关系之一.通过本章的学习,我们知道了锐角三角函数在解决现实问题中有着重要的作用.如在测量、建筑、工程技术和物理学中,人们常常遇到距离、高度、角度的计算问题,—般来说,这些实际问题的数量关系往往归结为直角三角形中边和角的关系.利用锐角三角函数解决实际问题是本章的重要内容,很多实际问题穿插于各节内容之中.[问题门举例说明,三角函数在现实生活中的应用.[生]例如:甲、乙两楼相距30 m,甲楼高40 m,自甲楼楼顶看乙楼楼顶.仰角为30°,乙楼有多高?(结果精确到1 m)解:根据题意可知:3乙楼的高度为30tn30°=40+30×3=40+103≈57(m),即乙楼的高度约为57 m.[生]例如,为了测量一条河流的宽度,一测量员在河岸边相距180 m的P和Q两点分别测定对岸一棵树T的位置,T在P的正南方向,在Q南偏西50°的方向,求河宽(结果精确到1 m).解:根据题意,∠TPQ=90°,∠PQT=90°-50°=40°,PQ=180 m.则:PT就是所求的河宽.在Rt△TPQ中,PT=180×tan40°=180×0.839≈151 m,即河宽为151 m.[师]三角函数在现实生活中的应用很广泛,下面我们来看一个例子.多媒体演示如图.MN表示某引水工程的一段设计路线从M到N的走向为南偏东30°,在M的南偏东60°的方向上有一点A,以A为圆心,500 m为半径的圆形区域为居民区,取MN上的另一点B,测得BA 的方向为南偏东75°,已知MB=400 m,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?[师生共析]解:根据题意可知∠CMB=30°,∠CMA=60°,∠EBA=75°,MB=400 m,输水路线是否会穿过居民区,关键看A 到MN 的最短距离大于400 m 还是等于400 m ,于是过A 作AD ⊥MN .垂足为D .∵BE//MC .∴∠EBD =∠CMB =30°.∴∠ABN=45°.∠AMD =∠CMA-∠CMB =60°-30°=30°.在Rt △ADB 中,∠ABD =45°,∴tan45°=BD AD ,BD =︒45tan AD =AD , 在Rt △AMD 中.∠AMD=30°,tan30° =MD AD ,MD =︒30tan AD =3AD , ∵MD=MD-BD ,即 3AD-AD =400, AD-200(3+1)m>400m .所以输水路线不会穿过居民区.[师]我们再来看[问题2]任意给定一个角,用计算器探索这个角的正弦、余弦、正切之间的关系.例如∠α=25°,sin α、cos α、tan α的值是多少?它们有何关系呢?[生]sin25°≈0.4226,cos25°≈0.9063,tan25°≈0.4663. 而︒︒25cos 25sin ≈0.4663. 我们可以发现ααcos sin =tan α. [师]这个关系是否对任意锐角都成立呢?我们不妨从三角函数的定义出发来推证一下.[师生共析]如 图,在Rt △ABC 中. ∠C =90°,∵sinA =ABBC cosA =AB AC tanA =ACBC , ∴ACBC AC AB AB BC AB AC AB BC A A =⋅=÷=cos sin =tanA, tanA=A A cos sin . 这就是说,对于任意锐角A ,∠A 的正弦与余弦的商等于∠A 的正切.[师]下面请同学们继续用计算器探索sin α,cos α之间的关系.[生]sin 225°≈0.1787,cos 225°≈0.8213,可以发现:sin 225°+cos 225°≈0.1787+0.8213=1.[师]我们可以猜想任意锐角都有关系:sin 2α+cos 2α=1,你能证明吗?[师生共析]如上图.sinA= AB BC ,cosA=ABAC sin 2A+cos 2A =2222222AB AC BC AB AC AB BC +=+, 根据勾股定理,得BC 2+AC 2=AB 2,∴sin 2A+cos 2A =1,这就是说,对于任意锐角A ,∠A 的正弦与余弦的平方和等于1.[师]我们来看一个例题,看是否可以应用上面的tanA 、sinA 、cosA 之间的关系.已知cosA=53,求sinA .tanA . [生]解:根据sin 2A+cos 2A =1.得sinA =.54)53(1cos 122=-=-A tanA=345354cos sin ==A A . [生]我还有另外一种解法,用三角函数的定义来解.解:∵cosA =.53=∠斜边的邻边A 设∠A 的邻边=3k .斜边=5k .则∠A 的对边=.4)3()5(22k k k =-∴sinA=.5454==∠k k A 斜边的邻边 tanA=.3434==∠∠k k A A 的邻边的对边 [师]问题3:你能应用三角函数解决哪些问题?[生]锐角三角函数反映了直角三角形的边角关系.凡是属于直角三角形的问题或可以转化为直角三角形的问题,都可以用三角函数来解决.[师]我们知道在直角三角形中,除直角外,有两个锐角.两条直角边以及斜边共5个元素,它们之间的关系很丰富.如图:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c .(1)边的关系:a 2+b 2=c 2(勾股定理):(2)角的关系:∠A+∠B =90; (3)sinA=c a ,cosA=c b ,tanA=b a ;sinB=c b ,cosB=c a ,tanB=ab . 利用三角形的全等和直角三角形全等,以及作图,我们知道:当一直角边和斜边确定时,直角三角形唯一确定,即直角三角形的一直角边和斜边已知,则直角三角形中其他元素都可以求出.同学们不妨试一试.[生]例如Rt △ABC 中,∠C =90°.a =4,c=8求b ,∠A 及∠B解:∵a =4,c =8,根据勾股定理可得 b=3422=-a c .∵sinA=c a =2184=, ∴∠A =30°.又∵∠A+∠B =90°,∴∠B =60°.[师]很好,是不是只要知道直角三角形除直角外的两个元素,其余元素就都可以求出呢?[生甲]可以.[生乙]不可以.例如Rt △ABC 中,∠c =90°,∠A =25°.∠B=65°.这样的直角三角形有无数多个,是不唯一确定的,所以其余的元素无法确定.[生丙]我认为已知直角三角形中除直角外的两个元素.其中至少有一个边,就可以求出其余元素.[师]很好,我们来做一个练习.多媒体演示:在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A ,∠B 、∠C 的对边.(1)已知a =3,b =3,求C ,∠A ,∠B .(2)已知b =5,c =10,求a ,∠A ,∠B .(3)已知∠A=45°,c =8,求a ,b ,∠B .[生]解:(1)根据勾股定理c .=23332222=+=+b a .又∵tanA ∴∠A=b a =33=1, ∴∠A=45°. 又∵∠A+∠B =90,∴∠B =45°.(2)根据勾股定理,得a=355102222=-=-b c ,又∵sinB =21105==c b ∴∠B=30°. 又∵∠A+∠B=90°∴∠A=60°.(3)∵sinA=ca ∴=csinA=8×sin45°=42, 又∵cosA =c b ∴b=c ·cosA =8×cos45°=42, 又∵∠A+∠B =90°,∴∠B=45°.[师]实践证明,在直角三角形中,已知除直角外的两个元素(至少有一个是边),利用直角三角形中特殊的边的关系、角的关系、边角关系,就可求出其余所有元素.因此,在现实生活中,如测量、建筑、工程技术和物理学中,常遇到的距离、高度、角度都可以转化到直角三角形中,这些实际问题的数量关系往往就归结为直角三角形中边和角的关系问题.接下来,我们看问题4:如何测量一座楼的高度?你能想出几种办法?[生]有四种方法:第一种:用太阳光下的影子来测量.因为在同一时刻,物体的高度与它的影子的比值是一个定值.测量出物体的高度和它的影子的长度,再测出高楼在同一时刻的影子的长度.利用物体的高度:物体影子的长度=高楼的高度,高楼影子的长度.便可求出高楼的高.第二种:在地面上放一面镜子,利用三角形相似,也可以测量出楼的高度.第三种:用标杆的方法.第四种:利用直角三角形的边角关系求楼的高度.[师]下面就请同学们对本章的内容小结,建立本章内容框架图.[师生共析]本章内容框架如下:Ⅱ.随堂练习1.计算(1)︒-︒︒-︒45cos 60sin 45sin 30cos (2)sin 230°+2sin60°+tan45°-tan60°+cos 230°;(3)原式=.60tan 60tan 60tan 212︒-︒+︒-解:(1)原式=22232223--=1; (2)原式=(21)2+2×23+1-3+(23)2; =4331341+-++ =1+1=2(3)原式=︒-︒-60tan )60tan 1(2=|1-tan60°|-tan60°=tan60°-1-tan60°=-1.2.如图,大楼高30 m ,远处有一塔BC ,某人在楼底A 处测得塔顶的仰角为60°,爬到楼顶D 测得塔顶的仰角为30°,求塔高BC 及楼与塔之间的距离AC(结果19确到0.0l m).解:没AC=x ,BC =y ,在Rt △ABC 中,tan60°=xy ,① 在Rt △BDE 中.tan30°=x y 30-,② 由①得y =3x ,代入②得33=xx 303 . x=153≈25.98(m).将x =153代入y=3x=3×153 =45(m).所以塔高BC 为45 m ,大楼与塔之间的距离为25.98 m .Ⅲ.课时小结本节课针对回顾与思考中的四个问题作了研讨,并以此为基础,建立本章的知识框植架结构图.进一步体验三角函数在现实生活中的广泛应用.Ⅳ.课后作业复习题A 组1,2,5,6,8B 组2.3,4,5,6Ⅴ.活动与探究如图.AC 表示一幢楼,它的各楼层都可到达;BD 表示一个建筑物,但不能到达.已知AC 与BD 地平高度相同,AC 周围没有开阔地带,仅有的测量工具为皮尺(可测量长度)和测角器(可测量仰角、俯角和两视线间的夹角).(1)请你设计一个测量建筑物BD 高度的方案,要求写出测量步骤和必要的测量数据(用字母表示),并画出测量示意图:(2)写出计算BD 高度的表达式.[过程]利用测量工具和直角三角形的边角关系来解决.这里的答案不唯一,下面只写出一种方法供参考.[结果]测量步骤(如图):①用测角器在A 处测得D 的俯角α;②用测角器在A 处测得B 的仰角β ③用皮尺测得AC=am .(2)CD=αtan a ,BE=αtan a ·tan β, BD=a+αβtan tan a . 板书设计回顾与思考本章内容结构框架图:。
第一章小结与复习
【学习目标】
1.理解三角函数的定义,识记特殊三角函数值,根据条件熟练解直角三角形.
2.通过对本章知识进行旧知回顾,对本章知识结构有系统认识.
【学习重点】
熟练记忆特殊角的三角函数值,根据条件选择适当方法解直角三角形.
【学习难点】
情景导入 生成问题
知识结构框图:
解直角三角形⎩⎪⎪⎪⎨⎪
⎪⎪⎧直角三角形边角关系⎩⎪⎨⎪⎧锐角三角函数⎩⎪⎨⎪⎧正切正弦、余弦
30°、45°、60°角的三角函数值一般三角函数值的计算⎩⎪⎨⎪⎧利用计算器求三角函数值利用计算器求角度解直角三角形⎩⎪⎨⎪⎧已知两边解直角三角形
已知一边和一锐角解直角三角形三角函数的应用⎩⎪⎨⎪⎧方位角问题俯角、仰角问题
坡度问题利用三角函数测高 自学互研 生成能力
知识模块一 锐角三角函数
范例1:如图,在矩形ABCD 中,点E 在AB 上,沿CE 折叠矩形ABCD ,使点B 落在AD 边上的F 处,若AB =4,BC =5,则tan ∠AFE 的值为( C ) A .43B .45C .34D .45
,(范例1题图))
,(仿例1题图))
仿例1:如图,四边形A BCD 中,AD ∥BC ,CA 是∠BCD 的平分线,且AB⊥AC,AB =4,AD =6,则tan B 等于
( B )
A .23
B .22
C .114
D .554
仿例2:tan 30°·tan 60°+2(sin 45°-1)2=3-2.
知识模块二 解直角三角形
范例2:长为4m 的梯子在墙上与地面成45°角,作业时调整为60°角(如图),则梯子的顶端沿墙面升高了(23-22)m .
,(范例2题图)) ,(仿例题图))
仿例:将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是2536cm 2. 知识模块三 三角函数的应用
范例3:(徐州中考)如图,轮船从点A 处出发,先航行至位于点A 的南偏西15°且与点A 相距100km 的点B 处,再航行至位于点B 的北偏东75°且与点B 相距200km 的点C 处.
(1)求点C 与点A 的距离;(精确到1km )
(2)确定点C 相对于点A 的方向.(参考数据:2≈1.414,3≈1.732)
解:(1)过A 作AD⊥BC 于点D ,∠A BC =75°-15°=60°.
在Rt △ABD 中求得AD =503,BD =50,∴CD =150.
在Rt △ADC 中,由勾股定理得AC =1003≈173(km ).
(2)由AB 2+AC 2=BC 2
,∠BAC =90°,∴∠FAC =75°,
∴点C 位于点A 的南偏东75°方向.
仿例:如图,小明在大楼30m 高(即PH =30m )的窗口P 处进行观测,测出坡上A 处的俯角为15°,山脚B 处的俯角为60°,已知该山坡的坡度i(即tan ∠ABC)为1∶3,点P ,H ,B ,C ,A 在同一个平面上,点H ,B ,C 在同一条直线上,且PH⊥HC.
(1)山坡坡角(即∠ABC)的度数等于30°;
(2)求A ,B 两点间的距离(结果精确到0.1m ,参考数据:3≈1.732).
解:(1)30;(2)由题意得:∠PBH=60°,∠APB =45°,∵∠ABC =30°,∴∠ABP =90°,在Rt △PHB 中,PB =PH sin ∠PBH
=203,在Rt △PBA 中,AB =PB =203≈34.6. 答:A ,B 间距离约为34.6m .
交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自学互研”得出的结论展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一锐角三角函数
知识模块二解直角三角形
知识模块三三角函数的应用
检测反馈达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思查漏补缺
1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。