(完整)高中基本初等函数总结归纳,推荐文档
- 格式:pdf
- 大小:172.96 KB
- 文档页数:5
基本初等函数知识点总结基本初等函数是数学中常见的一类函数,包括多项式函数、指数函数、对数函数、三角函数和反三角函数等。
它们在数学和实际问题中具有广泛的应用,因此掌握基本初等函数的性质和特点对于学习和理解数学非常重要。
下面将对基本初等函数的知识点进行总结。
一、多项式函数多项式函数是由常数乘以各个整数幂的变量构成的函数。
它的一般形式为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x+a_0$$其中,$a_n, a_{n-1},\dots,a_1,a_0$为常数,$n$为正整数,$a_n \neq 0$。
多项式函数的特点包括:定义域为实数集,值域为实数集,可导且导函数为次数比原来次数低一的多项式函数。
二、指数函数指数函数的一般形式为:$$f(x) = a^x$$其中,$a$为正实数且不等于1。
指数函数的特点包括:定义域为实数集,值域为正实数集,可导且导函数为$a^x\ln a$。
三、对数函数对数函数的一般形式为:$$f(x) = \log_a x$$其中,$a$为正实数且不等于1,$x$为正实数。
对数函数的特点包括:定义域为正实数集,值域为实数集,可导且导函数为$\frac{1}{x\ln a}$。
四、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
它们的一般形式为:$$\sin x, \cos x, \tan x$$其中,$x$为实数。
三角函数的特点包括:定义域为实数集,值域为闭区间[-1, 1],具有周期性,可导且导函数是相关三角函数的倍数。
五、反三角函数反三角函数包括反正弦函数、反余弦函数、反正切函数等。
它们的一般形式为:$$\arcsin x, \arccos x, \arctan x$$其中,$x$在相应的定义域内。
反三角函数的特点包括:定义域为闭区间[-1, 1],值域为实数集,可导且导函数是相关函数的倒数。
基本初等函数的性质还包括:1. 奇偶性对于函数$f(x)$,如果对于定义域内的任意$x$,有$f(-x)=-f(x)$,则称函数为奇函数;如果对于定义域内的任意$x$,有$f(-x)=f(x)$,则称函数为偶函数。
基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。
数学必修四基本初等函数知识点
数学必修四中的基本初等函数包括:
1. 线性函数:y = kx + b,其中 k 和 b 是常数,表示直线的斜率和截距。
2. 幂函数:y = x^a,其中 a 是常数,表示变量 x 的指数次幂。
3. 指数函数:y = a^x,其中 a 是常数,表示变量 x 的底数为 a 的指数函数。
4. 对数函数:y = loga(x),其中 a 是常数且 a>0,表示变量 x 的以 a 为底的对数函数。
5. 二次函数:y = ax^2 + bx + c,其中 a、b、c 是常数,表示一个抛物线。
6. 反比例函数:y = k/x,其中 k 是常数,表示变量 x 和 y 的反比例关系。
7. 正弦函数:y = sin(x),表示一个周期为 2π的正弦曲线。
8. 余弦函数:y = cos(x),表示一个周期为 2π的余弦曲线。
9. 正切函数:y = tan(x),表示一个周期为π的正切曲线。
这些基本初等函数在数学中具有重要的作用,可以用来描述各种数学问题和现象。
同时,它们也是高中数学学习的基础内容,学生需要掌握它们的性质、图像、关系等方
面的知识。
基本初等函数知识点一、函数的定义和性质函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素。
函数通常用f(x)表示,其中x是自变量,f(x)是因变量。
函数有以下性质:1. 定义域和值域:函数的定义域是所有可输入的自变量的集合,值域是所有对应的因变量的集合。
2. 奇偶性:一个函数可以是奇函数或偶函数,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
3. 单调性:函数可以是单调递增或单调递减的。
单调递增函数满足当x1小于x2时,f(x1)小于f(x2);单调递减函数则相反。
二、常见的基本初等函数1. 幂函数:指数函数是形如y=x^n的函数,其中n是一个实数。
根据n的不同取值,幂函数可以分为多种情况,如正幂函数、负幂函数、倒数函数等。
2. 指数函数:指数函数是以指数为自变量的函数,常见的指数函数有以e为底的自然指数函数(y=e^x)和以10为底的常用对数函数(y=log(x))。
3. 对数函数:对数函数是指以某个正实数为底的函数,常见的对数函数有以e为底的自然对数函数(y=ln(x))和以10为底的常用对数函数。
4. 三角函数:三角函数是以角度或弧度为自变量的函数,常见的三角函数有正弦函数(y=sin(x))、余弦函数(y=cos(x))、正切函数(y=tan(x))等。
5. 反三角函数:反三角函数是三角函数的逆函数,常见的反三角函数有反正弦函数(y=arcsin(x))、反余弦函数(y=arccos(x))、反正切函数(y=arctan(x))等。
三、基本初等函数的图像和性质1. 幂函数的图像与性质:平方函数(y=x^2)的图像是一个开口上的抛物线,立方函数(y=x^3)的图像则是一个S形曲线。
幂函数的性质与指数n的奇偶性、正负有关。
2. 指数函数的图像与性质:自然指数函数(y=e^x)具有递增的特点,其图像是一条通过原点且向上增长的曲线。
常用对数函数(y=log(x))的图像则是一条斜率逐渐减小的曲线。
高一数学《基本初等函数》知识点总结一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.u负数没有偶次方根;0的任何次方根都是0,记作。
当是奇数时,,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:,u0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)·;(2);(3).(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>1定义域R定义域R值域y>0值域y>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;二、对数函数(一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)说明:1注意底数的限制,且;2;3注意对数的书写格式.两个重要对数:1常用对数:以10为底的对数;2自然对数:以无理数为底的对数的对数.u指数式与对数式的互化幂值真数=N=b底数指数对数(二)对数的运算性质如果,且,,,那么:1·+;2-;3.注意:换底公式(,且;,且;).利用换底公式推导下面的结论(1);(2).(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:1对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如:,都不是对数函数,而只能称其为对数型函数.2对数函数对底数的限制:,且.2、对数函数的性质:a>1定义域x>0定义域x>0值域为R值域为R在R上递增在R上递减函数图象都过定点(1,0)函数图象都过定点(1,0)(三)幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.例题:1.已知a>0,a0,函数y=ax与y=loga的图象只能是2.计算:①;②=;=;③=3.函数y=log的递减区间为4.若函数在区间上的最大值是最小值的3倍,则a=5.已知,(1)求的定义域(2)求使的的取值范围。
基本初等函数知识点总结1.常数函数:常数函数是指函数的值在定义域内都保持不变的函数。
表示为f(x)=c,其中c是常数。
常数函数的图像是一条平行于x轴的直线。
常数函数的性质是恒等性,即f(x)=f(x'),对于任意x和x'都成立。
2.平方函数:平方函数是指函数的值与自变量的平方成正比的函数。
表示为f(x)=x²。
平方函数的图像是一条开口向上的抛物线。
平方函数的性质是奇偶性,即f(-x)=f(x),对于任意实数x都成立。
3.立方函数:立方函数是指函数的值与自变量的立方成正比的函数。
表示为f(x)=x³。
立方函数的图像是一条通过原点且存在于所有象限的曲线。
立方函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)或f(x₁)>f(x₂)成立。
4.绝对值函数:绝对值函数是指函数的值与自变量的绝对值成正比的函数。
表示为f(x)=,x。
绝对值函数的图像是一条以原点为顶点且对称于y轴的V字形曲线。
绝对值函数的性质是非负性,即对于任意实数x,有f(x)≥0成立。
5.指数函数:指数函数是指函数的值与自变量的指数幂成正比的函数。
表示为f(x)=aˣ,其中a是一个正实数且a≠1、指数函数的图像是一条通过点(0,1)且与x轴和y轴都无交点的曲线。
指数函数的性质是增长性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。
6. 对数函数:对数函数是指函数的值与自变量的对数成正比的函数。
表示为f(x)=logₐ(x),其中a是一个正实数且a≠1、对数函数的图像是一条通过点(1, 0)且与x轴和y轴都无交点的曲线。
对数函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。
7. 三角函数:三角函数包括正弦函数、余弦函数、正切函数等。
正弦函数表示为f(x)=sin(x),余弦函数表示为f(x)=cos(x),正切函数表示为f(x)=tan(x)。
第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。
此时,a 的n 次方根用符号 表示。
当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。
此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。
正的n 次方根与负的n 次方根可以合并成 (a>0)。
注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。
当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。
3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。
有理数指数幂的运算性质同样使用于无理数指数幂。
(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。
基本初等函数综合复习一、知识点总结 1. 对数函数的概念一般地,把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是 . 2. 对数函数y =log a x (a >0,且a ≠1)的图象与性质定义 y =log a x (a >0,且a ≠1)底数a >10<a <1图象定义域 值域 R单调性 在(0,+∞)上是增函数在(0,+∞)上是减函数共点性 图象过定点 ,即x =1时,y =0函数值特点x ∈(0,1)时,y ∈ ;x ∈[1,+∞)时,y ∈ x ∈(0,1)时,y ∈ ;x ∈[1,+∞)时,y ∈ 对称性函数y =log a x 与y =1log ax 的图象关于 对称【易错题1】 如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和C 分别在 函数y 1=3log a x ,y 2=2log a x 和y 3=log a x (a >1)的图象上,则实数a 的值为________。
【题模1】 函数图象(1)底数与图像位置关系:1、指数函数图象恒过(0,1)在第一象限是“底大图高”,2、对数函数图象恒过(1,0):在直线1x =的右侧,当1a >时,底数越大,图象越靠近x 轴;当01a <<时,底数越小,图象越靠近x 轴,即“底大图低”.3、幂函数图象恒过(1,1),在(1,1)右侧:是“指大图高”.2)函数图象变换①y =f (x )―――――→关于x 轴对称y =-f (x ). ②y =f (x )―――――→关于y 轴对称y =f (-x ). ③y =f (x )―――――→关于原点对称y =-f (-x ).④y =a x (a >0且a ≠1)―――――→关于y =x 对称y =log a x (a >0且a ≠1). (3)伸缩变换①y =f (x )――――――――――――――――――――→a >1,横坐标缩短为原来的倍,纵坐标不变0<a <1,横坐标伸长为原来的倍,纵坐标不变 y =f (ax ).②y =f (x )―――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变 y =af (x ). (4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去 y =|f (x )|. ②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象 y =f (|x |). 【讲透例题】1.设0,1a a >≠且,函数2log (2)a y x =++的图象恒过定点P ,则P 点的坐标是A .(1,2)-B .(2,1)-C .(3,2)-D .(3,2)2、不论a 为何值时,函数图象恒过一定点,这个定点坐标是 .3. 函数()2e e x xf x x--=的图像大致为 ( ) A . B . C . D .5、设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是( ) A .y =f (|x |) B .y =-|f (x )| C .y =-f (-|x |) D .y =f (-|x |)6.(多选)若函数y =a x +b -1(a >0,且a ≠1)的图象经过第一、三、四象限,则下列选项中正确的有( )A .a >1B .0<a <1C .b >0D .b <07、已知指数函数()x f x a =,将函数()f x 的图象上的每个点的横坐标不变,纵坐标扩大为原来的3倍,得到函数()g x 的图象,再将()g x 的图象向右平移2个单位长度,所得图象恰好与函数()f x 的图象重合,则a 的值是( ) A .32B .23C .33D .3【相似题练习】1. 已知函数2(log )y x a b =++的图象不经过第四象限,则实数a b 、满足( ) A .1,0a b ≥≥ B .0,1a b >≥ C . 2log 0b a +≥ D .20b a +≥ 2.函数f (x )=ln(x 2+1)的图象大致是( )3、 已知()g x 图像与x y e =关于y 轴对称,将函数()g x 的图像向左平移1个单位长度,得到()f x ,则()f x =( )A. 1x e +B.1x e -C.1x e -+D. 1x e -- 4、(多选题)为了得到函数ln()y ex =的图象,可将函数ln y x =的图象( )A .纵坐标不变,横坐标伸长为原来的e 倍B .纵坐标不变,横坐标缩短为原来的1eC .向上平移一个单位长度D .向下平移一个单位长度 5、函数y =a x -a (a >0,且a ≠1)的图象恒过定点( , ) 6、函数(其中且的图象一定不经过第 象限。