单片机实验数据采集_AD转换
- 格式:doc
- 大小:264.50 KB
- 文档页数:6
实验六 ADC0809AD转换实验一、实验目的1、掌握ADC0809AD芯片的工作原理和使用方法。
2、掌握如何使用51单片机配合ADC0809AD芯片实现模拟量转换。
二、实验原理ADC0809AD是一种8位分辨率、并行输出、单通道,3MHz 工作速率的A/D转换器。
ADC 有两个输入电压端子,IN+和IN-,它们之间加入了一个内部参考电压源(RE),所以在输入模拟信号时常在IN+端连接信号输入,而IN-端接地。
当选用RE = +2.5 V时,IN+的输入范围约为0-VREF,在本实验中选用的是RE = +5 V,所以IN+的输入范围约为0-5V。
当外部触发信号TRIGGER开启后,ADC执行转换操作。
在转换时,电压采样保持时间通常为 100 ns,最长转换时间为 200 us,当转换结束时,ADC将数字输出置在低电平并发出一个中断请求(INTR)信号。
转换结果可以通过 8个输出线路(DB0-DB7)获得。
三、实验器材2、*1 9针座(1x9 Pin Socket)。
3、*1 51单片机学习板。
4、*1 电阻10KΩ。
5、*1 电压源。
6、*1 面包板。
7、*5 条杜邦线。
四、实验步骤1、根据下表将ADC0809AD芯片插入到面包板中。
ADC0809AD引脚码ADC0809AD引脚名称功能1 A0- A/D输入(低、多路)引脚17 AGND 模拟地18 VREF/2 参考电压输出19 VCC 数字电源2、将9脚座插入面包板的横向边缘上。
3、使用杜邦线将ADC0809AD转换器连接到学习板上,并根据原理部分对芯片引脚进行接线。
4、将一个10KΩ的电阻连接到ADC0809AD芯片的IN+引脚和GND之间。
6、使用杜邦线将ADC0809AD芯片的DB0-DB7引脚连接到学习板的P0.0-P0.7引脚上。
7、将学习板的P0.0-P0.7引脚转为输出模式。
五、实验代码#include <reg52.h>// SFR位定义sfr ADC_CONTR = 0xBC; // ADC控制寄存器sfr ADC_RES = 0xBD; // ADC结果寄存器sfr ADC_RESL = 0xBE; // ADC结果低字节寄存器sfr P0 = 0x80; // P0口// 公用函数void delay(int time) // 延时函数{int i, j;for (i = 0; i < time; i++) {for (j = 0; j < 125; j++);}}while (1) {ADC_CONTR |= 0x08; // 开始转换while (!(ADC_CONTR & 0x10)); // 等待转换结束P0 = ADC_RES; // 将结果输出到P0口delay(1000); // 延时1000ms}}根据程序分析,程序采用了循环语句控制ADC的转换、输出,程序中实现的是ADC的一次转换。
8292924809基于单片机的AD转换电路专业:班级:学号:组员:指导老师:年月日目录键入章标题(第 1 级) (1)键入章标题(第2 级) (2)键入章标题(第3 级) (3)键入章标题(第 1 级) (4)键入章标题(第2 级) (5)键入章标题(第3 级) (6)引言A/D转换是指将模拟信号转换为数字信号,这在信号处理、信号传输等领域具有重要的意义。
常用的A/D转换电路有专用A/D集成电路、单片机ADC模块,前者精度高、电路复杂,后者成本低、设计简单。
基于单片机的A/D转换电路在实际电路中获得了广泛的应用。
一般的A/D转换过程是通过采样、保持、量化和编码4个步骤完成的,这些步骤往往是合并进行的.当A/D转换结束时,ADC输出一个转换结束信号数据。
CPU可由多种方法读取转换结果:a查询方式;b中断方式;c DMA方式。
通道8为A/D转换器,ADC0809是带有8为A/D转换器、8路多路开关以及微处理机兼容的控制逻辑的CMOS组件。
它是逐次逼近式A/D转换器,可以和单片机直接接口。
ADC0809由一个8路模拟开关、一个地址锁存与译码器、一个A/D转换器和一个三态输出锁存器组成.多路开关可选通8个模拟通道,允许8路模拟量分时输出,共用A/D转换器进行转换。
三台输出锁存器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据.一个实际系统中需用传感器把各种物理参数测量出来,并转换为电信号,在经过A/D转换器,传送给计算机;微型计算机加工后,通过D/A转换器去控制各种参数量。
一、实验方案的选择与分析1.1复位电路方案单片机在开机时都需要复位,以便中央处理器CPU以及其他功能部件都处于一个确定的初始状态,并从这个状态开始工作。
51的RST引脚是复位信号的输入端.复位电平是高电平有效持续时间要有24个时钟周期以上。
本系统中单片机时钟频率为6MHz则复位脉冲至少应为4us.方案一:上电复位电路上电瞬间,RST端的的电位与Vcc相同,随着电容的逐步充电,充电电流减小,RST电位逐渐下降。
单片机AD模数转换实验报告一、实验目的和要求1、掌握单片机与ADC0809的接口设计方法。
2、掌握Proteus软件与Keil软件的使用方法。
二、设计要求。
1、用Proteus软件画出电路原理图,在单片机的外部扩展片外三总线,并通过片外三总线与0809接口。
2、在0809的某一模拟量输入通道上接外部模拟量。
3、在单片机的外部扩展数码管显示器。
4、分别采用延时和查询的方法编写A/D 转换程序。
5、启动A/D转换,将输入模拟量的转换结果在显示器上显示。
三、电路原理图。
图1、电路仿真图四、实验程序流程框图和程序清单。
1、查询法:ORG 0000HSTART: LJMP MAINORG 0100HMAIN: MOV SP, #2FH NT: MOV DPTR, #0FF78H MOVX @DPTR, A LOOP: JB P3.3, LOOP MOVX A, @DPTR MOV B, #51 DIV AB MOV R0, A MOV A, B MOV B, #5 DIV AB MOV R1, A MOV R2, B LCALL DIR SJMP NT DIR: MOV R7, #0 SJMP LOOP1 BH: MOV A, R1 MOV R2, A LOOP1: MOV DPTR, #WK MOV A, R7 MOVC A, @A+DPTR MOV P2, A MOV DPTR, #DK MOV A, R2 MOVC A, @A+DPTR MOV P1, A LCALL DELAY INC R7 CJNE R7, #2, BH MOV DPTR, #WK MOV A, R7 MOVC A, @A+DPTR MOV P2, A MOV DPTR, #DK MOV A, R0 MOVC A, @A+DPTR ANL A, #7FH MOV P1, A LCALL DELAY RET DELAY: M OV R5, #01H DL1: MOV R4, #8EH DL0: MOV R3, #02H DJNZ R3, $ DJNZ R4, DL0 DJNZ R5, DL1 RET WK: DB 10H DB 20H DB 40H DK: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H ENDdisplay 送百分位字符代码送位选信号延时1ms 送十分位字符代码送位选信号延时1ms 送个位及小数点字符代码送位选信号延时1ms 熄灭第四位数码管延时1ms 返回display 送百分位字符代码送位选信号延时1ms 送十分位字符代码送位选信号延时1ms 送个位及小数点字符代码送位选信号延时1ms 熄灭第四位数码管延时1ms 返回2、延时法:ORG 0000H START: LJMP MAIN ORG 0100H MAIN: MOV SP, #2FH LOOP: MOV DPTR, #0FF78H MOVX @DPTR, A LCALL DELAY MOVX A, @DPTR MOV B, #51 DIV AB MOV R0, A MOV A, B MOV B, #5 DIV AB MOV R1, A MOV R2, B LCALL DIR SJMP LOOP DIR: MOV R7, #0 SJMP LOOP1 BH: MOV A, R1 MOV R2, A LOOP1: MOV DPTR, #WK MOV A, R7 MOVC A, @A+DPTR MOV P2, A MOV DPTR, #DK MOV A, R2 MOVC A, @A+DPTR MOV P1, A LCALL DELAY INC R7 CJNE R7, #2, BH MOV DPTR, #WK MOV A, R7 MOVC A, @A+DPTR MOV P2, A MOV DPTR, #DK MOV A, R0 MOVC A, @A+DPTR ANL A, #7FH MOV P1, A LCALL DELAY RET DELAY: M OV R5, #01H DL1: MOV R4, #8EH DL0: MOV R3, #02H DJNZ R3, $ DJNZ R4, DL0 DJNZ R5, DL1 RET WK: DB 10H DB 20H DB 40H DK: DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H开始启动AD 延时从AD中取数据数据处理结束调显示子函数END五、实验结果。
重庆交通大学学生实验报告实验课程名称单片机原理与应用实验名称A/D转换实验实验类型验证性实验开课实验室语音楼单片机原理实验室学院信息科学与工程学院学生姓名学号开课时间2012至2013学年第 2 学期实验评佑等级很好好一般差实验操作能力实验结果实验分析实验思考总结实验成绩教师签名一、实验目的:1.了解ADC0809/ADC0808的工作原理;2.掌握单片机与ADC0809/ADC0808接口原理;3.熟悉CPU中断方式和查询方式读取A/D转换结果的程序设计方法。
二、实验内容:以查询工作方式应用程序,分别启动8路模拟输入通道进行A/D转换,8路转换结果存储在内部数据存储器首地址为30H开始的单元内,并将第0路转换结果送到P1口显示。
按照以上原理完成以下要求:1.用中断方式编写并调试出一个程序;2.用查询方式编写并调试出一个程序;3.用调用显示子程序方法,将转换结果在显示块上显示出来;4.将采样结果以8个LED显示进行编码,以得到将0V—5V区间分为256级显示效果;5.用C51重新编写程序实现上述要求的C程序。
用Proteus仿真软件运行硬件电路仿真设计。
三、实验步骤:1.硬件设计。
参考指导书中所列数码管显示的元器件以及实验程序参考框图,利用Proteus仿真软件,作出其电路图。
2.利用Keil仿真软件编写程序,将其编写好的程序进行调试。
四、实验调试及结果:<一>实验调试方法:1、打开Keil程序,执行菜单命令“ Project”—>“New Project”创建“ 0808AD 转换”项目,并选择单片机型号为AT89C51。
2、执行菜单命令“file”—>“New”创建文件,输入源程序,保存为“0808AD 转换.c”。
在“Project”栏的File项目管理窗口中右击文件组,选择“Add Filesto Group Source Group1”,将源程序“0808AD转换.c”添加到项目中。
单片机实验报告姓名: XX班级: XXXXX学号: XXXXXXX专业:电气工程与自动化实验1 名称:数据采集_A/D转换一、实验目的⑴掌握A/D转换与单片机接口的方法;⑵了解A/D芯片0809 转换性能及编程方法;⑶通过实验了解单片机如何进行数据采集。
二、实验设备装有proteus和keil软件的电脑一台三、实验说明及实验原理:A/D 转换器大致分有三类:一是双积分A/D 转换器,优点是精度高,抗干扰性好,价格便宜,但速度慢;二是逐次逼近式A/D转换器,精度、速度、价格适中;三是并联比较型A/D转换器,速度快,价格也昂贵。
实验用ADC0809属第二类,是8位A/D转换器。
每采集一次一般需100μs。
由于ADC0809A/D 转换器转换结束后会自动产生EOC 信号(高电平有效),取反后将其与8031 的INT0 相连,可以用中断方式读取A/D转换结果。
ADC0809 是带有8 位A/D转换器、8 路多路开关以及微处理机兼容的控制逻辑的CMOS组件。
它是逐次逼近式A/D转换器,可以和单片机直接接口。
(1) ADC0809 的内部逻辑结构由图1.1 可知,ADC0809 由一个8 路模拟开关、一个地址锁存与译码器、一个A/D 转换器和一个三态输出锁存器组成。
多路开关可选通8 个模拟通道,允许8 路模拟量分时输入,共用A/D 转换器进行转换。
三态输出锁器用于锁A/D 转换完的数字量,当OE 端为高电平时,才可以从三态输出锁存器取走转换完的数据。
(2) ADC0809 引脚结构ADC0809各脚功能如下:D7 ~ D0:8 位数字量输出引脚。
IN0 ~ IN7:8位模拟量输入引脚。
VCC:+5V工作电压。
GND:地。
REF(+):参考电压正端。
REF(-):参考电压负端。
START:A/D转换启动信号输入端。
ALE:地址锁存允许信号输入端。
(以上两种信号用于启动A/D转换).EOC:转换结束信号输出引脚,开始转换时为低电平,当转换结束时为高电平。
实验AD转换实验AD转换⼀、实验⽬的了解STC单⽚机ADC的结构;掌握STC单⽚机ADC的使⽤。
⼆、实验原理STC15F2K60S2单⽚机内含8路10位⾼速AD转换器,速度可达30万次/秒。
单⽚机P1⼝既可作为普通I/O⼝,也可作为AD转换器模拟电压输⼊⼝。
AD转换器相关的寄存器如表1所⽰。
表1 ADC转换相关寄存器P1ASF某⼀位为“1”,P1⼝对应的引脚设为模拟功能。
某⼀位为“0”,对应的引脚设为普通I/O。
②ADC控制寄存器ADC_CONTRADC_POWER=1,打开AD转换器电源(关闭电源可降低功耗,ADC初次上电需适当延时,再启动AD转换)。
SPEED1、SPEED0选择AD转换速度。
ADC_FLAG:ADADC_START:AD转换启动控制。
CHS2、CHS1、CHS0:选择模拟输⼊通道P1.0~P1.7。
转换结果存放在ADC_RES和ADC_RESL寄存器中,当CLK_DIV.5/ADRJ=0时,ADC_RES为结果的⾼8位,ADC_RESL为结果的低2位(如表2所⽰)。
当CLK_DIV.5/ADRJ=1时,ADC_RES为结果的⾼2位,ADC_RESL为结果的低8位(如表3所⽰)。
STC15F2K60S2的AD 转换器以Vcc 为参考电压,当ADRJ=0时,10位转换结果与输⼊模拟电压的关系由式(1)计算:VccVin 10240]:ADC_RESL[10],:ADC_RES[7= (1)如果只取⾼8位,则由式(2)计算: VccVin 2560]:ADC_RES[7=……………………………………...…………………(2)当ADRJ=1时,10位转换结果与输⼊模拟电压的关系由式(3)计算:VccVin10240]:ADC_RESL[70],:ADC_RES[1=…………………………………(3)如果单⽚机Vcc 电压不稳,会引起AD 转换误差,在实际应⽤中,可⽤⼀路AD 采样外部的基准电压(如⽤TL431基准电源),另⼀路AD 采样被测电压,按式(4)计算:转换结果基准电转换结果被测VrefVin 源电压= (4)三、实验环境Windows XP ; Keil µ V ision 4; STC-ISP-6.28。
班级电科 081 班姓名龚浪学号 ************ 实验名称电脑时钟程序实验指导教师马光喜理学院时间:2011年月日实验十一 A/D转换器接口实验一.实验目的⑴熟悉单片机与A/D转换芯片的接口方法。
⑵了解A/D转换芯片的转换性能及编程方法。
⑶通过实验了解单片机如何进行数据采集。
二.实验内容利用电位器提供模拟量输入,输入到0809的IN3输入端,编制程序,将模拟量转换成数字量,并在数码管显示出来。
三.实验步骤1.在Proteus中画出实验电路ADC0808转换原理电路3.进入Keil C51组合软件的操作环境,编辑源程序并进行编译;4.设置Proteus 与Keil C51之间的连接;5.程序设计(1)进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,若完毕则把数据通过P1端口读入,经过数据处理之后经P0口从数码管上显示。
(2)进行A/D转换之前,要启动转换的方法:CBA=011选择第三通道Start的正脉冲(start从0→1→0)起动AD转换,本程序中用P2^0控制。
(3)本程序用C语言编写,代码如下://EXP11#include <reg51.h>sbit start=P2^0;//控制起动转换信号sbit finish=P2^1;//转换结束标志sbit ale=P2^2; //地址锁存信号#define address P3 //地址口#define date P1 //数据口#define disp P0 //显示口void transform(); //AD转换函数void main(){start=0;while(1)transform();//循环调用AD转换函数}//**********************//AD转换函数//**********************void transform (){start=1; //正脉冲起动AD转换start=0;address=0x3f;//送地址给AD转换ale=1; //锁存地址while(1)//等待转换结束{if(finish==1)//转换完成{disp=date;// 取走数据ale=0; //撤消地址锁存信号break;//跳出循环进行下一次AD转换}}}6.运行、调试程序和结果检查⑴采用单步,设置断点等方法,态观察程序走向是否正确。
实验二 AD转换实验实验预习要求1、学习 MSP430F6638 单片机中ADC12的配置方法。
2、了解ADC转换原理。
一、实验目的1、了解AD转换原理及LED灯的控制方法。
2、掌握MSP430F6638 中ADC12的配置使用方法。
3、结合电位器与ADC12模块实现对LED灯的控制。
二、实验器材PC 机,MSP430F6638 EVM,USB数据线,万用表,信号发生器。
三、实验内容1、验证性实验:利用MSP430F6638开发板上的拨盘电位器,控制改变AD转换的输入电压值,转换后的数字量显示在段式液晶上面。
使用万用表测得当前输入电压,通过计算得到转换后的理想的数字量与液晶显示的数字量进行比较。
2、设计性实验:AD转换结束会产生中断,编写AD中断服务程序。
利用信号发生器输出信号(例如正弦波、三角波信号)作为AD转换的输入,根据输入电压的大小控制LED灯的亮灭(例如随着输入电压值的增大,LED1到LED5按顺序点亮;随着输入电压值减小,LED灯按顺序熄灭),LED和单片机IO口连接如下图所示。
图2.1 LED灯电路原理图四、实验原理模数转换器(ADC)是指将连续的模拟信号转换为离散的数字信号的器件。
真实世界 的模拟信号,例如温度、压力、声音或者图像等,需要转换成更容易储存、处理和发射的数 字形式。
在A/D 转换中,因为输入的模拟信号在时间上是连续的,而输出的数字信号是离 散量,所以进行转换时只能按一定的时间间隔对输入的模拟信号进行采样,然后再把采样值 转换为输出的数字量。
通常A/D 转换需要经过采样、保持量化、编码几个步骤。
ADC12 电 路如下图所示。
图2.2 ADC12 模块结构框图ADC12 模块中由以下部分组成:输入的16 路模拟开关,ADC 内部电压参考源,ADC12 内核,ADC 时钟源部分,采集与保持/触发源部分,ADC 数据输出部分,ADC 控制寄存器等组成。
ADC12 的模块内核是共用的,通过前端的模拟开关来分别完成采集输入。
单片机实验报告
姓名: XX
班级: XXXXX
学号: XXXXXXX
专业:电气工程与自动化
实验1 名称:数据采集_A/D转换
一、实验目的
⑴掌握A/D转换与单片机接口的方法;
⑵了解A/D芯片0809 转换性能及编程方法;
⑶通过实验了解单片机如何进行数据采集。
二、实验设备
装有proteus和keil软件的电脑一台
三、实验说明及实验原理:
A/D 转换器大致分有三类:一是双积分A/D 转换器,优点是精度高,抗干扰性好,价格便宜,但速度慢;二是逐次逼近式A/D转换器,精度、速度、价格适中;三是并联比较型A/D转换器,速度快,价格也昂贵。
实验用ADC0809属第二类,是8位A/D转换器。
每采集一次一般需100μs。
由于ADC0809A/D 转换器转换结束后会自动产生EOC 信号(高电平有效),取反后将其与8031 的INT0 相连,可以用中断方式读取A/D转换结果。
ADC0809 是带有8 位A/D转换器、8 路多路开关以及微处理机兼容的控制逻辑的CMOS组件。
它是逐次逼近式A/D转换器,可以和单片机直接接口。
(1) ADC0809 的内部逻辑结构
由图1.1 可知,ADC0809 由一个8 路模拟开关、一个地址锁存与译码器、一个A/D 转换器和一个三态输出锁存器组成。
多路开关可选通8 个模拟通道,允许8 路模拟量分时输入,共用A/D 转换器进行转换。
三态输出锁器用于锁A/D 转换完的数字量,当OE 端为高电平时,
才可以从三态输出锁存器取走转换完的数据。
(2) ADC0809 引脚结构
ADC0809各脚功能如下:
D7 ~ D0:8 位数字量输出引脚。
IN0 ~ IN7:8位模拟量输入引脚。
VCC:+5V工作电压。
GND:地。
REF(+):参考电压正端。
REF(-):参考电压负端。
START:A/D转换启动信号输入端。
ALE:地址锁存允许信号输入端。
(以上两种信号用于启动A/D转换).
EOC:转换结束信号输出引脚,开始转换时为低电平,当转换结束时为高电平。
OE:输出允许控制端,用以打开三态数据输出锁存器。
CLK:时钟信号输入端(一般为500KHz)。
A、B、C:地址输入线。
(3) ADC0809 对输入模拟量要求:信号单极性,电压范围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。
地址输入和控制线:4 条ALE为地址锁存允许输入线,高电平有效。
当ALE 线为高电平时,地址锁存与译码器将A,B,C 三条地址线的地址信号进行锁存,经译码后被选中的通道的模拟量进转换器进行转换。
A,B 和C为地址输入线,用于选通IN0-IN7 上的一路模拟量输入。
通道选择表如下表所示。
C B A 选择模拟通道
0 0 0 IN0
0 0 1 IN1
0 1 0 IN2
0 1 1 IN3
1 0 0 IN4
1 0 1 IN5
1 1 0 IN6
1 1 1 IN7
数字量输出及控制线:11条
ST 为转换启动信号。
当ST 上跳沿时,所有内部寄存器清零;下跳沿时,开始进行A/D 转换;在转换期间,ST应保持低电平。
EOC为转换结束信号。
当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。
输出转换得到的数据;OE=0,输出数据线呈高阻状态。
D7-D0为数字量输出线。
CLK 为时钟输入信号线。
因ADC0809 的内部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ,
VREF(+),VREF(-)为参考电压输入。
(4) ADC0809应用说明
(1). ADC0809内部带有输出锁存器,可以与AT89S51单片机直接相连。
(2).初始化时,使ST和OE信号全为低电平。
(3).送要转换的哪一通道的地址到A,B,C端口上。
(4).在ST端给出一个至少有100ns 宽的正脉冲信号。
(5).是否转换完毕,我们根据EOC信号来判断。
(6).当EOC变为高电平时,这时给OE为高电平,转换的数据就输出给单片机了
四、实验任务
1.硬件电路设计:设计基于单片机控制的AD转换应用电路。
AD转换芯片采用ADC0809。
ADC0809 的通道IN3 输入0-5V 之间的模拟量,通过ADC0809 转换成数字量在数码管上以十进制形成显示出来。
ADC0809 的VREF接+5V 电压。
2. 软件设计:程序设计内容
(1) 进行A/D转换时,采用查询EOC的标志信号来检测A/D转换是否完毕,经过数据处
理之后在数码管上显示。
(2) 进行A/D转换之前,要启动转换的方法:
ABC=110 选择第三通道。
ST=0,ST=1,ST=0产生启动转换的正脉冲信号。
五:电脑上proteus显示的实验图如下:
运行时
六;实验程序
#include<reg51.h>
#define uchar unsigned char
#define uint unsigned int //头文件
uchar code DSY_CODE[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; sbit CLK=P1^3;
sbit ST=P1^2;
sbit EOC=P1^1;
sbit OE=P1^0;
void DelayMS(uint ms) //延时
{ uchar i;
while(ms--) for(i=0;i<120;i++);
} 流程图
void Display_Result(uchar d)
{
P2=0xf7;
P0=DSY_CODE[d%10];
DelayMS(5);
P2=0xfb;
P0=DSY_CODE[d%100/10];
DelayMS(5);
P2=0xfd;
P0=DSY_CODE[d/100];
DelayMS(5);
}
void main() //主程序
{
TMOD=0x02;
TH0=0x14;
TL0=0x00;
IE=0x82;
TR0=1;
P1=0x3f;
while(1)
{
ST=0;ST=1;ST=0;
while(EOC==0);
OE=1;
Display_Result(P3);
OE=0;
}
}
void Timer0_INT() interrupt 1
{
CLK=~CLK; }
七:实验内容:
1)按照上图选择正确的原件并连接好图;
2)在keil编程环境下编写程序,完成实验功能。
3)在KEIL环境下编程,编译生成HEX文件,将HEX文件下载到实验系统中。
调节电位
器RV3观察数码管上显示的数据。