复变函数7.1第7.1节 单叶解析函数的映射性质
- 格式:ppt
- 大小:637.00 KB
- 文档页数:28
单叶解析函数单叶解析函数是指在复平面内,一个函数只有一个解析分支,即在平面内的任何一点,函数的值只有一个确定的取值。
这个函数通常被用来描述一些复杂的物理过程或数学模型,例如电路中的电压和电子的波函数。
单叶解析函数的使用非常广泛,无论是在物理学、工程学还是数学领域都有重要作用。
在物理学中,单叶解析函数可以用来描述电子的行为以及电磁波的传播。
在工程学中,这个函数则被用来解决许多实际问题,比如信号处理和图像处理。
在数学领域中,单叶解析函数则是用来研究函数的性质和特点。
由于单叶解析函数是解析函数的一种,因此它具有与解析函数相同的许多重要性质,比如可导、可积、连续等性质。
这些重要性质使得这个函数可以进行各种精确的计算和分析,而这些计算和分析通常会在科学和工业中得到广泛应用。
对于学习单叶解析函数的人来说,最重要的是理解函数的解析分支。
解析分支即函数在复平面内的某个区域内,函数的取值是唯一的。
其中一个解析分支通常被称为主解析分支。
主解析分支的定义通常是在复平面上选择一个点,将函数在该点的值作为该点的主解析分支的值。
在其他区域内,函数的值可能有多个,但是在主解析分支上,函数的值是唯一的。
理解单叶解析函数的概念以及解析分支的概念对于学习复平面内的其他函数也是非常重要的,因为这些概念都属于复函数论的基础知识之一。
如果想要在领域内取得成功和做出一些有意义的研究,了解这些概念是必不可少的。
总之,单叶解析函数是一种非常重要的函数类型,它在物理学、工程学和数学领域都有广泛的应用。
理解函数的解析分支是学习这个函数的关键,并且对于学习复函数论的其他内容也是非常重要的。
因此,无论你是在学习单叶解析函数还是其他复函数论的知识,都应该注重理解函数的基本性质和概念。
复变函数与解析函数复变函数是数学中一个非常重要的分支,也是其它自然科学中涉及到复数的问题所必须掌握的基础知识。
它的研究对象是由复变量组成的函数,在复平面上有非常丰富的性质和应用。
解析函数是复变函数中的一个重要概念,是指在某个区域内可导的复变函数,它在物理、工程、数学等领域中有着广泛的应用。
一、复变函数基础复数包含实数和虚数两个部分,即 $z=a+b i$,其中 $a$ 和$b$ 是实数,$i$ 是虚数单位,满足 $i^2=-1$。
复平面可使用一个点 $(a,b)$ 表示一个复数 $z=a+b i$,其中向上为正方向,向右为正方向。
我们可以将复平面分为实轴和虚轴两部分,实轴上的点是实数 $a$,虚轴上的点是复数 $b i$。
对于一个复变量 $z=x+y i$,可以分别表示为实部 $x$ 和虚部$y$,即 $x=Re(z), y=Im(z)$。
其中,共轭复数(conjugate complex)的实部不变、虚部相反,即 $z^* = x - yi$。
绝对值定义为模长(modulus)或者复数的模数(magnitude):$|z|=\sqrt{x^2+y^2}$。
表示复数 $z$ 在复平面上到原点的距离。
二、复变函数的概念在实数域上,函数是由一个或多个自变量构成的表达式或规则,对应一个或多个因变量。
像$y=f(x)$ 这样的表达式就是一个函数。
在复数域上,一个函数 $f(z)$ 由一个复变量 $z=x+y i$ 构成,可看作 $(x,y)$ 上的某种标量函数。
即对于 $x,y \in \mathbb{R}$,$z=x+y i \in \mathbb{C}$,$f(z)$ 可以表示为$f(x+yi)=u(x,y)+v(x,y)i$ 的形式,其中 $u(x,y)$ 和 $v(x,y)$ 是实函数。
我们可以把 $\mathbb{C}$ 中的点 $z$ 对应到复平面上,把点$z$ 对应的函数值 $f(z)$,对应到复平面上的另一个点 $w$。
第七章 共形映射前面我们借助于积分、级数等方法研究了解析函数,这一章将用几何的思想来讨论解析函数的性质和应用。
从几何上看:复变函数)(z f w =是从复平面z 到复平面w 之间上的一个映射。
而解析函数所确定的映射(解析变换)是具有一些重要的性质。
它是复变函数论中最重要的概念之一,与物理中的概念有密切的联系,而且对物理学中许多领域有重要的应用。
如应用共形映射成功地解决了流体力学与空气动力学、弹性力学、磁场、电场与热场理论以及其他方面的许多实际问题。
不但如此,20世纪中亚音速及超音速飞机的研制促成了从保形映射理论到拟保形映射理论的发展。
第一节 解析变换的特征首先,讨论一般解析变换的一些性质:定理7.1 设)(z f w =在区域D 内解析且不恒为常数,则D 的像)(D f G =也是一个区域。
证明:首先证明G 是一个开集。
设G w ∈0,则有D z ∈0使得)(00z f w =。
由解析函数零点的孤立性,存在以0z 为心的某个圆周C ,使得C 及C 的内部全包含在D 内,除0z 外,在C 及C 的内部,0)(w z f -都不为零, 故存在,0>δ 在C 上δ≥-|)(|0w z f . 对于满足δ<-||0w w 的w ,在C 上,有|||)(|00w w w z f ->≥-δ. 由Rouche 定理,在C 的内部,w w w z f w z f -+-=-00)()(和0)(w z f -在C 内有相同个数的零点,即0w 的邻域δ<-||0w w 包含在D 内。
由于)(z f 是连续的,所以G 显然是连通的。
下面研究单叶解析函数的映射性质。
我们知道:设函数w=f (z )在区域D 内解析,并且在任意两不同点,函数所取的值都不同,则称它为区域D 上的单叶解析函数,简称即为单叶函数。
利用证明定理7.1的方法,我们可以得到:引理7.1 设函数f (z )在0z 点解析,且0z 为0)(w z f -的p 阶零点,则对充分小的正数ρ,存在着一个正数μ,使得当μ<-<||00w w 时,w z f -)(在ρ<-<||00z z 内有p 个一阶零点。
定义6 (1) 函数自变量x 所在区域G 称定义域,点x 称原像;y 所在区域D 称值域,点y 称像;f 也可叫做映射或变换.(2)如果一个点0x 只有一个0y 与之对应则称f 为单值的;如果一个点0x 有多余一个0y 与之对应则称f 为多值的.(3)如果任意两个1x ,2x ()21x x ≠对应的y 也不同,则称f 是单叶的;如果存在两个或两个以上的点1x ,2x , ()j i x x j i ≠≠,对应同一个0y ,则称f 是多叶的.单值函数()x f y =又是单叶的,则称()x f y =为一一对应的.定义7(1)把解析函数所构成的映射(变换)称为解析映射(变换);(2)原曲线在点0z 的切线正方向到变换后的像曲线在像点)(00z f =ω的切线正方向的角称为变换)(z f =ω在点0z 的一个旋转角;(3)像曲线Γ上的两个像点)(z f =ω和)(00z f =ω之间的距离0ωωω-=∆与原像曲线C 上相应的两个原像点z 和0z 之间的距离0z z z -=∆之比的极限z C z z ∆∆∈→∆ω0lim称为变换)(z f =ω在点0z 的一个收缩率. 定理8(保域性)设平面泛复函)(z f =ω在区域D 内解析且不恒为常数,则D 的像集)(D f G =也是一个区域.证明:第一步:先证)(D f G =是开集(即G 中每一个点都是内点). 设G ∈0ω,则存在D z ∈0,使得)(00z f =ω.要证0y 是G 的内点,只需证明,当*ω与0ω充分接近时,*ω仍属于G ,即存在0ω的一个领域()G U ⊂δω,0.要证这个结果,只需证明,当*ω与0ω充分接近时,方程)(*z f =ω在区域D 内有解即可. 当0*ωω=时,结论显然成立;当0*ωω≠时,由推论3知,存在()G U ⊂δω,0, 使得当()G U ⊂∈δωω,00*时,必有0z 的空心邻域D z U ⊂)(00,)(*z f =ω在)(00z U 内有解,即G ∈*ω.所以)(D f G =是开集.第二步:再证)(D f G =具有连通性(即对G 内任意两点,都能找到全含在G 内的一条折线将它们连接起来). 对于G 内任意两点)(11z f =ω和)(22z f =ω,因为D 是区域,则可以在D 内取一条全含于D 的连接1z 和2z 的折线C :)(t z z =(21t t t ≤≤,)(11t z z =,)(22t z z =) 其像曲线Γ:[])(t z f =ω(21t t t ≤≤)就是全含于G 的折线连接1ω和2ω. 综上所述,)(D f G =必为区域. 推论5 若)(z f =ω在区域D 内单叶解析,则D 的像集)(D f G =也是一个区域. 证明:因为)(z f =ω在区域D 内单叶解析,必有)(z f =ω在区域D 内解析且不恒为常数,由定理4,结论成立. 定理5 (保角性)。