cst电磁场仿真实验报告
- 格式:doc
- 大小:358.00 KB
- 文档页数:6
电磁场仿真实验报告运用ansoft求解静电场一.计算题目验证两个半径为6mm轴线相距20mm带电密度分别10C/m和-10C/m的无限长导体圆柱产生的电场与两个相距16mm的带电密度分别为10C/m和-10C/m的无限长导线产生的电场是否相同。
二.计算导体圆柱产生的电场圆柱的半径为6mm,轴线相距20mm,左圆柱带电-10C/m,右圆柱带电10C/m。
图2-1模型设定图2-2材质设定图2-3-1边界条件设定图2-3-2初始条件设定1图2-3-3初始条件设定2图2-4求解目标设定图2-5-1求解设定图2-5-2网格设定图2-6-1结果显示:电压图2-6-2结果显示:电压图2-6-3结果显示:电压图2-7-1结果显示:电场强度图2-7-2结果显示:电场强度图2-7-3结果显示:电场强度图2-8-1结果显示:电场强度矢量图2-8-2结果显示:电场强度矢量图2-8-3结果显示:电场强度矢量图2-9-1结果显示:能量图2-9-2结果显示:能量图2-9-3结果显示:能量三.计算直导线产生的电场导线相距16mm,半径0.1mm,左导线带电-10C/m,右导线带电10C/m。
图3-1模型设定图3-2材质设定图3-3-1边界条件设定图3-3-2初始条件设定图3-3-3初始条件设定图3-4求解目标设定图3-5-1求解设定图3-5-2网格设定图3-6-1结果显示:电压图3-6-2结果显示:电压图3-6-3结果显示:电压图3-7-1结果显示:电场强度图3-7-2结果显示:电场强度图3-7-3结果显示:电场强度图3-8-1结果显示:电场强度矢量图3-8-2结果显示:电场强度矢量图3-8-3结果显示:电场强度矢量图3-9-1结果显示:能量图3-9-2结果显示:能量图3-9-3结果显示:能量四.结论在长直导线的计算过程中,由于尺寸比较小,使得结果显示并不尽如人意,但我们依然可以从电压、电场强度矢量的结果中发现,两者产生的电场是非常相似的。
实验名称:射频仿真算法研究与应用实验目的:1. 理解射频信号的基本特性及其在通信系统中的应用。
2. 掌握射频仿真算法的基本原理和方法。
3. 通过仿真实验,验证射频算法在实际应用中的有效性。
实验时间:2023年X月X日实验设备:1. 电脑一台,安装有射频仿真软件(如CST Microwave Studio、HFSS等)。
2. 射频仿真算法相关教材和参考资料。
实验内容:一、射频信号的基本特性1. 射频信号的定义及其在通信系统中的作用。
2. 射频信号的频谱特性、调制方式、传输损耗等。
二、射频仿真算法基本原理1. 电磁场仿真算法的基本原理,如有限元法(FEM)、时域有限差分法(FDTD)等。
2. 射频电路仿真算法的基本原理,如传输线理论、电路方程等。
三、仿真实验1. 仿真实验一:天线辐射特性- 设计并仿真一个天线,分析其辐射特性,如增益、方向图、极化等。
- 通过仿真结果,验证天线设计的合理性和可行性。
2. 仿真实验二:射频电路性能分析- 设计并仿真一个射频电路,如滤波器、放大器等。
- 分析电路的性能,如插入损耗、带宽、线性度等。
- 通过仿真结果,优化电路设计,提高性能。
3. 仿真实验三:通信系统性能评估- 设计并仿真一个通信系统,如无线局域网(WLAN)、蜂窝移动通信等。
- 评估通信系统的性能,如误码率、吞吐量、覆盖范围等。
- 通过仿真结果,分析系统优缺点,为实际应用提供参考。
实验结果与分析:一、天线辐射特性仿真1. 天线设计参数:长度为0.5λ,宽度为0.1λ,馈电点位于天线底部。
2. 仿真结果:天线增益约为5dBi,方向图在水平方向呈尖锐的主瓣,垂直方向呈较宽的主瓣。
3. 分析:天线设计合理,具有良好的辐射特性,满足实际应用需求。
二、射频电路性能分析1. 电路设计参数:采用传输线理论,设计一个低通滤波器,截止频率为1GHz。
2. 仿真结果:滤波器插入损耗约为0.5dB,带宽为1GHz,线性度良好。
3. 分析:电路设计合理,滤波器性能满足实际应用需求。
魔T 的CST 仿真报告一.魔T性质①四个端口完全匹配;②进入E臂的信号,将由两侧臂等幅反相输出,而不进入H臂;③进入H臂的信号,将由两侧臂等幅同相输出,而不进入E臂;④不仅E臂和H臂相互隔离,而且两侧壁也相互隔离;⑤进入一侧臂的信号,将由E臂和H臂等分输出,而不进入另一侧臂;⑥若两侧臂同时加入信号错误!未找到引用源。
,E臂输出的信号为错误!未找到引用源。
,H臂输出的信号则等于错误!未找到引用源。
二.实验步骤1,设置工作平面属性Size:100;width:50;Shap width:5.。
2,建模_选择立方体(1)Solid1;Xmin:-50;Xmax:50;Ymin:-10;Ymax:10;Zmin:0;Zmax:50。
(2)Solid2:Umin:-25;Umax:25;Vmin:-10;Vmax:10;Wmin:0;Wmax:30.(3)Solid3:Umin:-10;Umax:10;Vmin:-25;Vmax:25;Wmin:0;Wmax:30.3、设置波导端口选择一个面,选择Solve→Waveguide Port,得到端口1,同理得到端口2,4。
4、设置求解频率:Solve→Frequency…:5、Monitor:6、瞬态求解器设置:7、查看结果。
TIME SIGNALS 当一端口输入时,各输出当二端口输入时,各输出当四端口输入时,各输出S-PARAMETER MAGNITUDE IN DB port 1 输入:PORT 4 输入:设定求解器求解的频段为 3.4GHz—4GHz,监视器观察的频率为3.6GHz(由后面将会知道该频率大于截止频率)。
信号从1端口加入,我们可以用E面T的基本理论对其进行分析。
(1).1端口截止频率由下图显示:截止频率为2.99743GHz。
由仿真的结果可知,1端口的截止频率,前面设置的工作频率为f=3.6GHz,故导波主模不会被衰减掉。
(2).导波从1端口输入信号从各端口输出如下图所示(对数坐标①对于信号从1端口输入,1端口与4端口隔离,从而4端口没有信号输出,上图仿真的结果显示出4端口输出O41为零。
基于CST软件的PCB板电磁兼容仿真技术研究一、本文概述随着电子技术的飞速发展,电子设备在日常生活中的应用越来越广泛,从家用电器到通信设备,再到航空航天设备,电子设备无处不在。
然而,随着电子设备数量的增加,电磁兼容性问题也日益凸显。
电磁兼容性(EMC)是指设备或系统在共同的电磁环境中能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。
在电子设备的设计和制造过程中,电磁兼容性的分析和优化至关重要。
本文主要研究基于CST软件的PCB板电磁兼容仿真技术。
CST是一款强大的电磁仿真软件,广泛应用于电磁场分析、电磁兼容性分析、天线设计等领域。
本文首先介绍了电磁兼容性的基本概念和重要性,然后详细阐述了CST软件的基本原理和功能特点,接着重点探讨了使用CST软件进行PCB板电磁兼容仿真的方法和流程,包括模型建立、仿真设置、结果分析等步骤。
本文旨在通过深入研究基于CST软件的PCB板电磁兼容仿真技术,为电子设备的设计和制造提供一种有效的电磁兼容性分析和优化方法。
本文也期望通过分享实际案例和经验,为同行提供参考和借鉴,共同推动电磁兼容仿真技术的发展。
二、CST软件介绍CST(Computer Simulation Technology)是一款广泛应用的电磁场仿真软件,被工程师和研究人员用于模拟和分析各种电磁兼容性问题。
CST软件具有高度的集成性和灵活性,可以精确地模拟从低频到高频,从直流到微波的电磁现象。
该软件提供了丰富的工具和算法,可以模拟复杂的电磁环境和设备,预测和优化产品的电磁兼容性。
CST软件的主要特点包括其强大的求解器,支持多种电磁场求解方法,如时域有限差分法(FDTD)、频域有限积分法(FIT)等。
这些求解器可以适应不同的仿真需求,从简单的电路分析到复杂的三维电磁场模拟。
CST软件还具有强大的后处理功能,可以将仿真结果以直观的方式呈现出来,帮助用户更好地理解和分析电磁兼容性问题。
在PCB板电磁兼容仿真方面,CST软件提供了专业的PCB板模块,可以模拟和分析PCB板上的电磁场分布、信号传输和干扰等问题。
本科实验报告课程名称:电磁场与微波实验姓名:wzh学院:信息与电子工程学院专业:信息工程学号:xxxxxxxx指导教师:王子立选课时间:星期二9-10节2017年 6月17日CopyrightAs one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life.——Wzh实验报告课程名称:电磁场与微波实验指导老师:王子立成绩:__________________实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量同组学生姓名:矩形波导馈电角锥喇叭天线CST仿真一、实验目的和要求1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。
2.熟悉 CST 软件的基本使用方法。
3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。
二、实验内容和原理1. 喇叭天线概述喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。
合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。
因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。
喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反射的能量很小。
本科实验报告课程名称:电磁场与微波实验姓名:wzh学院:信息与电子工程学院专业:信息工程学号:xxxxxxxx指导教师:王子立选课时间:星期二9-10节2017年 6月 17日CopyrightAs one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life.——W z h实验报告课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量同组学生姓名:矩形波导馈电角锥喇叭天线CST仿真一、实验目的和要求1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。
2.熟悉 CST 软件的基本使用方法。
3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。
二、实验内容和原理1. 喇叭天线概述喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。
合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。
因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。
喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反射的能量很小。
第1篇一、实验目的本次实验旨在通过磁力仿真分析,探究电磁铁磁力大小与电流大小、线圈匝数、铁芯材料等因素之间的关系,并验证理论分析的正确性。
二、实验原理电磁铁的磁力大小与电流大小、线圈匝数、铁芯材料等因素有关。
根据安培环路定律和法拉第电磁感应定律,电磁铁的磁感应强度B可以表示为:\[ B = \mu_0 \cdot \frac{N \cdot I}{l} \]其中,\(\mu_0\)为真空磁导率,N为线圈匝数,I为电流大小,l为线圈长度。
三、实验材料1. 仿真软件:COMSOL Multiphysics2. 电磁铁模型:铁芯、线圈、导线3. 电流源、电压源、电阻等元件4. 铁芯材料:软磁性材料、硬磁性材料四、实验步骤1. 建立电磁铁模型:使用COMSOL Multiphysics软件建立电磁铁模型,包括铁芯、线圈、导线等部分。
2. 设置边界条件:根据实验需求设置边界条件,如电流源、电压源、电阻等。
3. 材料属性:根据实验需求设置铁芯材料属性,包括磁导率、电阻率等。
4. 求解:使用COMSOL Multiphysics软件进行仿真求解,得到电磁铁的磁感应强度分布。
5. 结果分析:分析仿真结果,验证理论分析的正确性,并探究电磁铁磁力大小与电流大小、线圈匝数、铁芯材料等因素之间的关系。
五、实验结果与分析1. 电流大小对磁力的影响:仿真结果表明,随着电流大小的增加,电磁铁的磁感应强度也随之增加。
这与理论分析相符,说明电流大小对电磁铁磁力有显著影响。
2. 线圈匝数对磁力的影响:仿真结果表明,随着线圈匝数的增加,电磁铁的磁感应强度也随之增加。
这与理论分析相符,说明线圈匝数对电磁铁磁力有显著影响。
3. 铁芯材料对磁力的影响:仿真结果表明,不同铁芯材料对电磁铁磁力有显著影响。
软磁性材料具有较高的磁导率,因此电磁铁磁力较大;而硬磁性材料磁导率较低,电磁铁磁力较小。
六、结论1. 电磁铁磁力大小与电流大小、线圈匝数、铁芯材料等因素有关。
电子科技大学自动化工程学院标准实验报告(实验)课程名称微波技术与天线电子科技大学教务处制表电子科技大学实验报告学生姓名:学号:指导教师:实验地点:实验时间:一、实验室名称:C2-513二、实验项目名称:微波技术与天线CST仿真实验三、实验学时:6学时四、实验目的:1、矩形波导仿真(1)、熟悉CST仿真软件;(2)、能够使用CST仿真软件进行简单矩形波导的仿真、能够正确设置仿真参数,并学会查看结果和相关参数。
2、带销钉T接头优化(1)、增强CST仿真软件建模能力;(2)、学会使用CST对参数扫描和参数优化功能。
3、微带线仿真学习利用CST仿真微带线及微带器件。
4、设计如下指标的微带线高低阻抗低通滤波器截止频率:2GHz截止频率处衰减:小于1dB带外抑制:3.5GHz插入损耗大于20dB端口反射系数:<15dB端口阻抗:50欧姆。
五、实验内容:1、矩形波导仿真(1)、熟悉CST仿真软件的基本操作流程;(2)、能够对矩形波导建模、仿真,并使用CST的时域求解器求解波导场量;(3)、在仿真软件中查看电场、磁场,并能够求解相位常数、端口阻抗等基本参数。
2、带销钉T接头优化(1)、使用CST对带销钉T接头建模;(2)、使用CST参数优化功能对销钉的位置优化;(3)、通过S参数分析优化效果。
3、微带线仿真(1)、基本微带线的建模;(2)、学习微带线的端口及边界条件的设置。
4、微带低通滤波器设计(1)、根据参数要求计算滤波器的各项参数;(2)、学习微带滤波器的设计方法;(3)、利用CST软件设计出符合实验要求的微带低通滤波器。
六、实验器材(设备、元器件):计算机、CST软件。
七、实验步骤:(简述各个实验的实验步骤)1、矩形波导仿真:①. 建模:建立矩形波导的模型(86.4mm*43.2mm*200mm);②. 设置端口;③. 设置频率:将频率设置为2.17-3.3GHz,仿真高次模的时候将上限频率设置成6GHz;④. 仿真;⑤. 端口计算,场监视器:得到S11图以及场分布图;⑥. 计算β和Zwave参数2、带销钉T接头优化:①. 建模:建立带销钉T接头模型;②. 设置端口;③. 设置边界条件;④. 设置频率;④. 仿真;⑤. 扫参;⑥. 优化微带线仿真:①. 建模:建立微带线模型;②. 设置端口;③. 设置边界条件;④. 设置频率;④. 仿真;⑤. 扫参;⑥. 优化4、微带低通滤波器设计:①. 根据指标选择滤波器阶数;②. 确定原型电路;③. 确定基本结构;④. 在CST中,利用理想元件来验证;⑤. 利用CST时域仿真微带线的方法来得到特定阻抗的微带宽度,并通过微带线理论的公式计算特定阻抗的微带长度八、实验结果及分析:1、矩形波导仿真:矩形波导模型及端口图S11参数图f=3时的电场图f=3时的磁场图计算f=5.2时的电场图(高次模)f=5.2时的磁场图(高次模)高次计算2、带销钉T接头优化:带销钉T接头模型图及端口图扫参图参数优化图优化后反射系数图3、微带线仿真:模型图特性阻抗曲线图端口电场图端口磁场图4、微带低通滤波器设计:模型图优化前的S db图理想原件验证图优化后的S db图九、实验结论:1. 使用CST对矩形波导进行建模,并求解波导场量(如图1-3~图1-6),在仿真软件中查看电场、磁场,求解相位常数,端口阻抗(等基本参数。
电磁场数值方法仿真实验实验项目:FDTD方法模拟电磁波传播班级:姓名:学号:指导教师:实验日期:一、实验目的要求1、了解数值方法的基本原理,熟悉时域有限差分方法(FDTD)的计算思路。
2、学习Matlab语言,学习编程的基本技巧和编程思路。
3、加强对电磁波理论的了解。
4、形象展示电磁波的传播过程。
二、实验内容利用FDTD(时域有限差分法)方法模拟电磁波传播过程三、实验结果四、原程序五、附录(matlab程序)%FDTD_1.1.m. 1D FDTD simulation in free space clear allmax_time = 400;max_space=200;E=zeros(max_space,1); %Initialize Electric arrayH=E; %Initialize Magnetic arraycenter_problem_space=max_space/2; % center of the problem spacet0=40; % center of the incident pulsespread=12; % width of the incident pulsefor n=1:max_time%Inner loop E-Increments electric wave in spacefor k=2:max_spaceE(k)=E(k)+eta *( H(k-1)-H(k) );end%Hardsource-imposes a value on the gridpulse=exp((-0.5)*( (t0-n)/spread )^2);E(center_problem_space )=pulse +E(center_problem_space );for j=1:(max_space-1)H(j)=H(j)+eta*(E(j)-E(j+1));%plot progreesion of the electric wavefigure(1);plot(E);%axis([1 max_space -1.1 1.1]);title('FDTD Simulation of and electric pulse in Free Space');xlabel('problem space');ylabel('E_x');pause(0.00001);end%Plots electric and magnetic fields at max_time figure(2);subplot(2,1,2);plot(E,'r');title('Simulation of Electric Pulse');ylabel('E_x');axis([0 max_space -1.1 1.1]);subplot(2,1,1);plot(H,'g');ylabel('H_y');title('Simulation of Magnetic Pulse');axis([0 max_space -1.1 1.1]);六、心得体会通过这次实验,加深了我对C语言以及MATLAB的理解以及运用,锻炼了我的程序编写能力,同时初步了解了电磁工程仿真与设计的相关知识。
cst多物理场仿真案例
CST多物理场仿真的一个案例是关于电磁散射的调控。
具体仿真过程如下:
1. 软件版本:使用CST2019-SP7版本的CST微波工作室(MWS)和设计工作室(DS)。
2. 仿真配置:仿真频率范围设置为0-1GHz,网格剖分密度为1/20波长。
仿真区域背景材料为空气,外围设置吸波边界条件(open addspace)。
3. 建模与求解:仿真包含一个平面波激励,一个外加电压源激励,25个二
极管以及剩余的金属和介质部分。
具体来说,集总加载结构包含25个周期
单元,每个单元大小为6cm6cm。
每个单元包含金属贴片(黄色)和单个
二极管(蓝色),周期单元阵列上下边界设置馈线。
由+X方向的外加偏置
电压源(红色)控制所有二极管的导通与截止,-Z边界处设置平面波激励。
以上信息仅供参考,如需了解更多信息,建议查阅相关文献或咨询专业人士。
电磁场仿真实验报告第一篇:电磁场仿真实验报告电磁场仿真实验报告电气工程学院 2011级2班 2011302540056 黄涛实验题目:有一极长的方形金属槽,边宽为1m,除顶盖电位为100sin(pi*x)V外,其它三面的电位均为零,试用差分法求槽内点位的分布。
1、有限差分法的原理它的基本思想是将场域划分成网格,用网格节点的差分方程近似代替场域内的偏微分方程,然后解这些差分方程求出离散节点上位函数的值。
一般来说,只要划分得充分细,其结果就可达到足够的精确度。
差分网格的划分有多种不同的方式,这里将讨论二维拉普拉斯方程的正方形网格划分法。
如下图1所示,用分别平行与x,y轴的两组直线把场域D划分成许多正方行网格,网格线的交点称为节点,两相邻平行网格线间的距离h称为步距。
用表示节点处的电位值。
利用二元函数泰勒公式,可将与节点(xi,yi)直接相邻的节点上的电位值表示为上述公式经整理可得差分方程这就是二维拉普拉斯方程的差分格式,它将场域内任意一点的位函数值表示为周围直接相邻的四个位函数值的平均值。
这一关系式对场域内的每一节点都成立,也就是说,对场域的每一个节点都可以列出一个上式形式的差分方程,所有节点的差分方程构成联立差分方程组。
已知的边界条件经离散化后成为边界点上已知数值。
若场域的边界正好落在网格点上,则将这些点赋予边界上的位函数值。
一般情况下,场域的边界不一定正好落在网格节点上,最简单的近似处理就是将最靠近边界点的节点作为边界节点,并将位函数的边界值赋予这些节点。
2、差分方程的求解方法:简单迭代法先对静电场内的节点赋予迭代初值,其上标(0)表示初始近似值。
然后再按下面的公式:进行多次迭代(k=0,1,2,3…)。
当两次邻近的迭代值差足够小时,就认为得到了电位函数的近似数值解。
实验程序: a=zeros(135,135);for i=1:135 a(i,i)=1;end;for i=1:7 a(15*i+1,15*i+2)=-0.25;a(15*i+1,15*i+16)=-0.25;a(15*i+1,15*i-14)=-0.25;end for i=1:7 a(15*i+15,15*i+14)=-0.25;a(15*i+15,15*i+30)=-0.25;a(15*i+15,15*i)=-0.25;enda(1,2)=-0.25;a(1,16)=-0.25;a(121,122)=-0.25;a(121,106)=-0.25;a(135,134)=-0.25;a(135,120)=-0.25;a(15,14)=-0.25;a(15,30)=-0.25;for i=2:14 a(i,i-1)=-0.25;a(i,i+1)=-0.25;a(i,i+15)=-0.25;end for i=122:134 a(i,i-1)=-0.25;a(i,i+1)=-0.25;a(i,i-15)=-0.25;end for i=1:7 for j=2:14;a(15*i+j,15*i+j-1)=-0.25;a(15*i+j,15*i+j+1)=-0.25;a(15*i+j,15*i+j+15)=-0.25;a(15*i+j,15*i+j-15)=-0.25;end end b=a^(-1);c=zeros(135,1);for i=121:135 c(i,1)=25;end d=b*c;s=zeros(11,17);for i=2:16 s(11,j)=100*sin(pi.*i);end for i=1:9 for j=1:15 s(i+1,j+1)=d(15*(i-1)+j,1);end end subplot(1,2,1),mesh(s)axis([0,17,0,11,0,100])subplot(1,2,2),contour(s,32)实验结果如下:***010***65432151015以上是划分为135*135个网格的过程,同理可有如下数据:(1)将题干场域划分为16个网格,共有25各节点,其中16个边界的节点的电位值是已知,现在要解的是经典场域内的9个内节点的电位值。
电子科技大学自动化工程学院标准实验报告(实验)课程名称微波技术与天线电子科技大学教务处制表电子科技大学实验报告学生姓名:学号:指导教师:实验地点:实验时间:一、实验室名称:C2-513二、实验项目名称:微波技术与天线CST仿真实验三、实验学时:6学时四、实验目的:1、矩形波导仿真(1)、熟悉CST仿真软件;(2)、能够使用CST仿真软件进行简单矩形波导的仿真、能够正确设置仿真参数,并学会查看结果和相关参数。
2、带销钉T接头优化(1)、增强CST仿真软件建模能力;(2)、学会使用CST对参数扫描和参数优化功能。
3、微带线仿真学习利用CST仿真微带线及微带器件。
4、设计如下指标的微带线高低阻抗低通滤波器截止频率:2GHz截止频率处衰减:小于1dB带外抑制:3.5GHz插入损耗大于20dB端口反射系数:<15dB端口阻抗:50欧姆。
五、实验内容:1、矩形波导仿真(1)、熟悉CST仿真软件的基本操作流程;(2)、能够对矩形波导建模、仿真,并使用CST的时域求解器求解波导场量;(3)、在仿真软件中查看电场、磁场,并能够求解相位常数、端口阻抗等基本参数。
2、带销钉T接头优化(1)、使用CST对带销钉T接头建模;(2)、使用CST参数优化功能对销钉的位置优化;(3)、通过S参数分析优化效果。
3、微带线仿真(1)、基本微带线的建模;(2)、学习微带线的端口及边界条件的设置。
4、微带低通滤波器设计(1)、根据参数要求计算滤波器的各项参数;(2)、学习微带滤波器的设计方法;(3)、利用CST软件设计出符合实验要求的微带低通滤波器。
六、实验器材(设备、元器件):计算机、CST软件。
七、实验步骤:(简述各个实验的实验步骤)1、矩形波导仿真:①. 建模:建立矩形波导的模型(86.4mm*43.2mm*200mm);②. 设置端口;③. 设置频率:将频率设置为2.17-3.3GHz,仿真高次模的时候将上限频率设置成6GHz;④. 仿真;⑤. 端口计算,场监视器:得到S11图以及场分布图;⑥. 计算β和Zwave参数2、带销钉T接头优化:①. 建模:建立带销钉T接头模型;②. 设置端口;③. 设置边界条件;④. 设置频率;④. 仿真;⑤. 扫参;⑥. 优化微带线仿真:①. 建模:建立微带线模型;②. 设置端口;③. 设置边界条件;④. 设置频率;④. 仿真;⑤. 扫参;⑥. 优化4、微带低通滤波器设计:①. 根据指标选择滤波器阶数;②. 确定原型电路;③. 确定基本结构;④. 在CST中,利用理想元件来验证;⑤. 利用CST时域仿真微带线的方法来得到特定阻抗的微带宽度,并通过微带线理论的公式计算特定阻抗的微带长度八、实验结果及分析:1、矩形波导仿真:矩形波导模型及端口图S11参数图f=3时的电场图f=3时的磁场图计算f=5.2时的电场图(高次模)f=5.2时的磁场图(高次模)高次计算2、带销钉T接头优化:带销钉T接头模型图及端口图扫参图参数优化图优化后反射系数图3、微带线仿真:模型图特性阻抗曲线图端口电场图端口磁场图4、微带低通滤波器设计:模型图优化前的S db图理想原件验证图优化后的S db图九、实验结论:1. 使用CST对矩形波导进行建模,并求解波导场量(如图1-3~图1-6),在仿真软件中查看电场、磁场,求解相位常数,端口阻抗(等基本参数。
CST学习报告CST学习报告第1章 CST仿真基本流程:使⽤CST进⾏仿真,⼀般都要包括如下步骤:1.1 选择合适的⼯作室:加速器领域,常应⽤的⼯作室有:微波⼯作室,电磁⼯作室,粒⼦⼯作室。
如下图所⽰:1.2 选择合适的模板:CST模板定义了仿真该类型的问题的⼀些基本设置,1.3 定义尺⼨:在⼯具栏solve unit中定义,如下图所⽰。
在后⾯的仿真设置中,除⾮系统提⽰,单位都会按这个标准来设置。
1.4 进⾏建模利⽤WCS⼯具栏(局部坐标),curve(曲线)和object(物体)⼯具栏中的命令进⾏建模。
1.5 设置必要的电磁元件所有必要的设置都在solve栏中。
例如微波⼯作室中端⼝(Waveguide ports ordiscrete ports)的设置,如不设置则⽆法进⾏对应的仿真操作,⽐如在微波⼯作室中,如果不定义端⼝,则⽆法进⾏Transient Solver和Frequency DomainSolver的求解。
1.6 设置背景材料和边界条件在solve栏中进⾏设置背景材料是指在计算域中未被填充的部分应填充的材料,边界条件是指计算域边界的设置,后⾯有详细说明1.7 Mesh设置在Mesh栏中进⾏Mesh设置,Mesh设置将直接影响到仿真结果的正确性,故应特别重视。
1.8 启动求解器solve→某solver 进⾏仿真⼯作需对每个求解器的原理有充分的认识,按照求解器实际情况进⾏仿真设置⼯作。
1.9 得到结果:仿真后在navigation tree→1D Results 或者2D/3D Results中看看到仿真结果。
1.10 结果后处理:在result→选择适当的选项对结果进⾏后处理。
特别是Template Based Postporcessing利⽤结果后处理模板进⾏结果的后处理计算。
第2章仿真⼊门实例:2.1 光阴极微波电⼦枪初步建模及简单研究选择模板:选择模板为particle tracking,如下图所⽰:保存⽂件点击File Save,将⽂件命名为Particle Tracking.cst。
477吉林大学学报(信息科学版)第41卷的研究热点[5⁃6]㊂在复杂的电磁环境中,车辆的电控系统极易受到干扰和破坏,对车辆安全性造成严重威胁㊂车辆所面临的大功率电磁辐射干扰主要有传播辐射㊁自然电磁辐射和人为电磁辐射[7],其中人为电磁辐射是现代化信息战争面临的关键性问题㊂人为电磁辐射的主要来源是电磁脉冲武器,它是一种性能独特㊁威力强大且软硬杀伤兼备的现代信息化作战武器,形成高空电磁脉冲(HEMP:High Altitude Electromagnetic Pulse),能对较大范围内的车辆内部线束及关键电子设备同时实施压制性和摧毁性的破坏[8⁃9]㊂笔者以某民用吉普车作为模型进行研究,考虑车辆关键金属结构㊁线缆和电子设备建立电磁仿真模型,对车辆线束电磁辐射敏感度问题进行深入研究㊂通过对车辆线束电磁响应的主要影响因素进行统计分析,得到不同参数下线缆感应电压和感应电流的峰值关系曲线,分析了线缆长度㊁距车底高度㊁相对距离㊁终端电阻㊁导体半径㊁绝缘层厚度等因素影响下车辆线缆耦合电磁干扰的统计规律,得到了相关的定性结论㊂研究结果可以为车辆线束的电磁兼容性设计提供参考㊂1 车辆线束电磁辐射敏感度特性仿真分析车辆线束作为车辆电路网络的主体,起着交换电子设备的数据信号和传递电源信号的作用,可以说没有车辆线束也就不存在车辆电路[10]㊂如图1a所示,车辆线束是由电线㊁联插件和包裹胶带构成㊂对整车而言,线束是以仪表板为核心分别向前㊁后延伸㊂车辆线束的分类可依据其基本功能,分为电池线束㊁发动机线束㊁变速箱线束㊁燃油喷嘴线束㊁仪表板线束㊁车身线束㊁车门线束和车灯线束等,如图1b 所示㊂车辆线束大多由铜质软线构成,根据实现不同的功能而选择不同的规格[11]㊂目前,国内外学者针对车辆线束电磁兼容问题的研究主要集中在车辆线束的串扰㊁电磁辐射和电磁辐射敏感度[12]㊂其中车辆线束的电磁辐射敏感度问题是车辆线束电磁兼容领域较为重要的研究方向,也是车辆电磁兼容性设计的主要预测目标[13]㊂图1 整车线束图Fig.1 Vehicle harness预测车辆线束电磁辐射敏感度需要利用实验手段获取大量样本数据,由于成本㊁实验场地的限制,针对该问题的预测较为困难㊂因而通过仿真分析获取线缆感应电压和感应电流,进而基于仿真数据预测HEMP环境下车辆线束系统的抗毁伤能力是一种不错的选择[14]㊂笔者以某民用吉普车为模型,对模型进行材料㊁零件和结构简化,以峰值为50kV/m的HEMP为激励源,建立仿真模型(见图2),开展辐照条件下车辆线束电磁辐射敏感度特性仿真分析㊂根据线缆的参数,设置线缆材料㊁直径和绝缘体半径的参数,文中所有线缆均采用铜单芯线,图3为铜单芯线横截面示意图,内层为铜芯,外层包裹绝缘层㊂选择线缆终端电阻为50Ω并接地㊂线束仿真如图4所示,将探针放置在线缆模型车辆的两端㊂由于笔者主要研究线缆辐照敏感度仿真,因此选择 transient co⁃simulation”进行场路协同仿真[15]㊂图5为感应电压随时间变化图,可看到随着时间增加,感应电压呈衰弱趋势㊂图6为感应电流随时间变化图㊂通过多组峰值数据可得到同一参数变化时的感应电压和感应电流变化趋势㊂ 图2 车辆线束电磁仿真模型 图3 线缆横截面示意图 Fig.2 Electromagnetic simulation model Fig.3 Cross section of cable of vehicle harness 图4 线束仿真图Fig.4 Harness simulation 图5 感应电压结果Fig.5 Results of induced voltage 图6 感应电流结果Fig.6 Results of induced current 2 车辆线束电磁辐射敏感度影响因素统计分析2.1 线缆长度的影响图7为感应电压与感应电流峰值随线缆长度变化的趋势图㊂随着线缆长度增长,线缆上的感应电压577第5期霍佳雨,等:基于CST 的电磁脉冲效应分析仿真实验研究和感应电流峰值都增大,且变化速率基本不变㊂说明线缆长度越长,HEMP 对车辆线束的威胁越大,实际布线时尽量选择最短路径以减少线缆长度㊂图7 感应电压与感应电流峰值随线缆长度变化趋势Fig.7 Variation trend of induced voltage and induced current peak value with cable length 2.2 线缆距车底高度的影响图8为感应电压与感应电流峰值随线缆距车底高度不同而变化的趋势图㊂图8 感应电压与感应电流峰值随距车底高度变化趋势Fig.8 Variation trend of induced voltage and induced current peak value with the height from the car bottom 随着线缆距离车底高度的增大,线缆上的感应电压和感应电流峰值都增大㊂说明距离车底越高,HEMP 对车辆线束的威胁越大,实际布线时尽量降低线缆距离地面的高度㊂2.3 相对距离的影响图9为感应电压与感应电流峰值随不同线缆相对距离改变而变化的趋势图㊂图9 感应电压与感应电流峰值随线缆相对距离变化趋势Fig.9 Variation trend of peak induced voltage and current with relative cable distance 随着线缆相对距离的增大,线缆上的感应电压和感应电流峰值都减小㊂说明线缆相对距离越小,HEMP 对车辆线束的威胁越大,实际布线时应尽量加大导线相对距离㊂2.4 终端电阻的影响图10为感应电压与感应电流峰值随终端电阻不同而变化的趋势图㊂随着终端电阻的增大,线缆上677吉林大学学报(信息科学版)第41卷的感应电压峰值不断增大,而感应电流峰值不断减小,二者的变化速率都逐渐减慢㊂说明在考虑不同终端电阻下HEMP 对车辆线束的威胁时,应综合考虑电压和电流两方面的防护,选取恰当阻值㊂图10 感应电压与感应电流峰值随终端电阻变化趋势Fig.10 Variation trend of induced voltage and induced current peak value with terminal resistance 2.5 导体半径的影响图11为感应电压与感应电流峰值随线缆导体半径不同而变化的趋势图㊂图11 感应电压与感应电流峰值随导体半径变化趋势Fig.11 Variation trend of peak value of induced voltage and induced current with conductor radius 随着线缆导体半径的增大,线缆上的感应电压和感应电流峰值都减小,且变化速率逐渐减慢㊂说明线缆导体半径越小,HEMP 对车辆线束的威胁越大,在实际布线时应尽量选择粗导体线缆㊂2.6 绝缘层厚度的影响图12为感应电压与感应电流峰值随线缆绝缘层厚度不同而变化的趋势图㊂图12 感应电压与感应电流峰值随绝缘层厚度变化趋势Fig.12 Variation trend of induced voltage and induced current peak value with insulation layer thickness 随着绝缘层厚度不断增大,线缆的感应电压和感应电流峰值基本不变,只是轻微上下波动㊂说明线缆绝缘层厚度与HEMP 对车辆线束的威胁无关,仅增加线缆绝缘层厚度并不能起到防护作用,因此布线时考虑线缆绝缘性即可㊂777第5期霍佳雨,等:基于CST 的电磁脉冲效应分析仿真实验研究877吉林大学学报(信息科学版)第41卷3 结 语笔者基于某民用吉普车辆模型,深入研究了车辆线束电磁辐射敏感度问题㊂分析了在典型强HEMP 作用下线束中的线缆长度㊁距车底高度㊁相对距离㊁终端电阻㊁导体半径和绝缘层厚度等参数对线缆中耦合电磁信号的影响,得到了具体的感应电压峰值和感应电流峰值㊂通过仿真实验研究可知,在满足实际工程需求下,尽量选择导体半径较大的线缆,并使线缆相对距离尽量加大,同时降低线缆的对地高度,并在布线时尽量选择最短路径以减小线缆长度㊂绝缘层厚度不会对感应电压峰值和感应电流峰值产生影响,仅仅增加线缆绝缘层厚度并不能起到防护作用,实际中为达到防护的目的,可使用防护罩进行屏蔽或采用编织丝网和金属箔组合封装线缆㊂笔者获得的仿真实验结果预测车辆线束的电磁辐射敏感度问题,为车辆的电磁兼容设计提供早期参考,从而降低研发成本,大大缩短研发周期㊂参考文献:[1]张青山,赵万章,张雪峰.电磁兼容与系统可靠性设计[J].吉林大学学报(信息科学版),2009,27(3):229⁃234. ZHANG Q S,ZHAO W Z,ZHANG X F.Electromagnetic Compatible and Systematic Dependability Design[J].Journal of Jilin University(Information Science Edition),2009,27(3):229⁃234.[2]万泽闻,张青山,王秋爽.测量误差的电磁兼容性分析[J].吉林大学学报(信息科学版),2011,29(2):102⁃109. WAN Z W,ZHANG Q S,WANG Q S.Electromagnetic Compatibility Analysis for Measurement Error[J].Journal of Jilin University(Information Science Edition),2011,29(2):102⁃109.[3]王宇飞,赵晓晖,温泉.线缆孔洞对车辆电子设备屏蔽效能分析[J].吉林大学学报(信息科学版),2013,31(3): 235⁃242.WANG Y F,ZHAO X H,WEN Q.Shielding Effectiveness Analysis of Vehicle Electronic Equipment with Cable Holes[J]. Journal of Jilin University(Information Science Edition),2013,31(3):235⁃242.[4]董宁,孙颖力,王宗扬,等.基于QMU的高空电磁脉冲下电气电子设备易损性评估方法[J].强激光与粒子束, 2021,33(12):84⁃89.DONG N,SUN Y L,WANG Z Y,et al.Threat Assessment Method Based on Quantification of Margins and Uncertainties for Electrical Electronic Equipment under High⁃Altitude Electromagnetic Pulse[J].High Power Laser and Particle Beams,2021, 33(12):84⁃89.[5]聂秀丽,赵晓凡.车辆强电磁脉冲条件下的分层防护及验证方法探讨[J].装备环境工程,2017,14(4):36⁃41. NIE X L,ZHAO X F.Discussion on the Layered Protection and Verification Method for the Vehicle under the Condition of Intensive Electromagnetic Pulse[J].Equipment Environmental Engineering,2017,14(4):36⁃41.[6]胡黄水,刘峰,王宏志,等.基于多功能车辆总线的网络系统冗余设计[J].吉林大学学报(理学版),2015,53(6): 1257⁃1262.HU H S,LIU F,WANG H Z,et al.Redundancy Design Method of Network System Based on Multifunction Vehicle Bus[J]. Journal of Jilin University(Science Edition),2015,53(6):1257⁃1262.[7]秦风,蔡金良,曹学军,等.车辆强电磁脉冲环境适应性研究[J].强激光与粒子束,2019,31(10):19⁃27. QIN F,CAI J L,CAO X J,et al.Investigation on the Adaptability of Vehicle in High⁃Intensity Electromagnetic Pulse Environment[J].High Power Laser and Particle Beams,2019,31(10):19⁃27.[8]徐麟,张军,董健年.一种单兵电磁武器发射过程仿真研究[J].弹道学报,2017,29(3):92⁃96.XU L,ZHANG J,DONG J N.Simulation on Launching Process of Individual Electromagnetic Weapon[J].Journal of Ballistics,2017,29(3):92⁃96.[9]王宇飞,赵晓晖,温泉.车辆电控设备不规则腔体的屏蔽效能分析[J].吉林大学学报(信息科学版),2014,32(2): 181⁃187.WANG Y F,ZHAO X H,WEN Q.Analysis of Irregular Cavity Shielding Effectiveness in Vehicles[J].Journal of Jilin University(Information Science Edition),2014,32(2):181⁃187.[10]林森.线束串扰和抗扰性仿真在车辆上的应用[J].汽车实用技术,2021,46(14):35⁃38,109.LIN S.Application of Crosstalk and Immunity Simulation in Vehicle[J].Automobile Applied Technology,2021,46(14):35⁃38,109.[11]张爱磊.商用车整车线束布置[J].汽车电器,2018(7):26⁃27.ZHANG A mercial Car Wire Harness Deployment [J].Auto Electric Parts,2018(7):26⁃27.[12]王震,蔡金良,秦风,等.车辆线缆瞬态电磁脉冲耦合仿真与抑制技术[J].强激光与粒子束,2021,33(12):133⁃138.WANG Z,CAI J L,QIN F,et al.Vehicle Cable Electromagnetic Pulse Coupling Simulation and Suppression [J].High Power Laser and Particle Beams,2021,33(12):133⁃138.[13]金松涛,丁良旭,刘青松.汽车电磁兼容问题研究的重要性[J].客车技术与研究,2011,33(4):1⁃5.JIN S T,DING L X,LIU Q S.Importance of Research on Electromagnetic Compatibility Problem for Vehicle [J].Bus &Coach Technology and Research,2011,33(4):1⁃5.[14]潘柏操.电磁仿真在微波技术色散特性实验中的应用[J].实验技术与管理,2021,38(5):171⁃174.PAN B C.Application of Electromagnetic Simulation in Experiment for Dispersion Properties of Microwave Technology [J].Experimental Technology and Management,2021,38(5):171⁃174.[15]刘恩博,李智深,陈旗,等.设备级线缆强电磁辐照敏感度仿真分析[J].太赫兹科学与电子信息学报,2019,17(6):1045⁃1050.LIU E B,LI Z S,CHEN Q,et al.Simulation Analysis of Cable Harsh Electromagnetic Irradiation Susceptibility about Electronics [J].Journal of Terahertz Science and Electronic Information Technology,2019,17(6):1045⁃1050.(责任编辑:张洁)977第5期霍佳雨,等:基于CST 的电磁脉冲效应分析仿真实验研究第41卷 第5期吉林大学学报(信息科学版)Vol.41 No.52023年9月Journal of Jilin University (Information Science Edition)Sept.2023文章编号:1671⁃5896(2023)05⁃0780⁃07融合邻域分布LLE 算法轴承故障信号检测收稿日期:2022⁃10⁃29作者简介:张彦生(1980 ),女,黑龙江大庆人,东北石油大学副教授,硕士生导师,主要从事流形学习研究,(Tel)86⁃133****8007(E⁃mail)zhangyansheng@㊂张彦生a ,b ,张利来a ,b ,刘远红a ,b(东北石油大学a.电气信息工程学院;b.东北石油大学国家大学科技园,黑龙江大庆163318)摘要:针对降维算法局部线性嵌入算法LLE(Local Linear Embedding)未能充分保留高维数据中邻域之间的结构的问题,提出了一种新的融合邻域分布属性的局部线性嵌入算法㊂该算法通过计算每个样本数据的邻域分布以及KL(Kullback⁃Leibler)散度度量不同邻域点与其中心样本各自的近邻分布差异,并利用其差值优化重构的权重系数,从而获得更精确的低维电机数据㊂通过可视化㊁Fisher 测量和识别精度3个评价结果验证了该算法挖掘电机轴承检测数据高维结构的有效性㊂关键词:局部线性嵌入;邻域分布;降维算法;电机轴承中图分类号:TN911.23文献标志码:ABearing Signal Detection for the Fusion Neighborhood Distribution of LLE AlgorithmZHANG Yansheng a,b ,ZHANG Lilai a,b ,LIU Yuanhong a,b(a.School of Electrical and Information Engineering;b.Northeast Petroleum University National Science Park,Northeast Petroleum University,Daqing 163318,China)Abstract :For the problem that LLE(Local Linear Embedding)fails to adequately preserve the structure between neighborhoods in high⁃dimensional data,a new local linear embedding algorithm is proposed for fused neighborhood distribution properties.The algorithm calculates the neighborhood distribution of each sample data,then calculates the respective nearest neighborhood distribution difference of the KL (Kullback⁃Leibler )divergence measure between the different neighborhood point and its central sample,and finally optimizes the reconstructed weight coefficient to obtain more accurate low⁃dimensional motor data.The effectiveness of the algorithm is verified by three evaluations of visualization,Fisher measurement and identification accuracy.Key words :local linear embedding;neighborhood distribution;dimension reduction algorithm;motor bearing 0 引 言电机是现代重要的生产设备动力装置,维持电机正常运行对社会的经济发展具有重要意义㊂而电机轴承是电机较易损坏的零件之一[1],因此高效地检测电机轴承运行状态是非常必要的[2⁃3]㊂随着信息技术的快速发展,电机轴承故障诊断过程中涉及到大量高维数据,分析与处理这些数据对及时发现并反馈问题,避免出现规模性的经济损失,提高生产效率具有重要意义㊂然而,高维数据中包含大量的冗余信息,同时维数的增加会引起 维数灾难”[4],这都将对数据的处理和分析造成不利的影响㊂由于电机轴承数据在高维空间为流形结构,线性降维算法不能对其进行有效处理,因此利用非线性降维算法成为处理电机轴承数据的关键㊂LLE(Local Linear Embedding)是非线性降维的关键技术之一,因其良好的性能和简单性而引起了人们的广泛关注㊂但LLE 仍存在没有充分挖掘局部结构的缺陷,针对。
微波大作业同轴线的CST仿真
边慧琦 07124051
2015.1
一、同轴线的特性
1.可以传输TEM 导波。
2.当同轴线的横向尺寸可以和工作波长比拟时,同轴线中也会出现TE模和TM 模,它们是同轴线的高次模。
3.为了保证同轴线只传输TEM波,要使工作波长满足
min () a b
λπ
>+,以消除TE模和TM模。
二、 CST仿真同轴线步骤
1.设置单位
将单位设为mm和GHz。
2.建模
利用空心圆柱模板,建立一个同轴线,材料为真空,外半径为30mm,内半径为15mm,长为150mm。
建好的模型如图所示。
3.设置背景材料
背景材料设置为PEC。
4.设置频率
5.设置端口
将同轴线的两个端面设置为端口1和端口2 。
设置好的端口如图所示。
6.设置边界条件
设置切向电场均为零。
7.设置场监视器
设置电场以及磁场监视器。
8.进行时域求解
三、仿真结果
1.端口1 的电场分布
2.端口1 的磁场分布
3.同轴线内部电场分布
4. .同轴线内部磁场分布。