计量经济学完整实验报告
- 格式:doc
- 大小:1.58 MB
- 文档页数:14
计量经济学实验报告1. 引言计量经济学是应用数学和统计学方法来研究经济现象的一门学科。
实验是计量经济学研究中常用的方法之一,通过设计和实施实验,可以帮助我们理解经济现象背后的因果关系。
本文将对一项计量经济学实验进行详细描述和分析,以展示实验的设计、数据分析和结论。
2. 实验设计2.1 实验目的本次实验的目的是研究市场供需关系对商品价格的影响。
具体而言,我们希望通过改变商品的市场供给量,观察商品价格如何变化,并分析供给弹性的大小。
2.2 实验假设在实验设计阶段,我们需要制定实验假设来指导实验的进行。
在本次实验中,我们假设市场供给量的变动会对商品价格产生影响,而且供给弹性的大小会决定价格的变动幅度。
2.3 实验步骤本次实验包括以下几个步骤:1.设定实验组和对照组:我们将随机选择一些参与者,并将其分为两组,一组作为实验组,一组作为对照组。
实验组将面临市场供给量变动的情况,而对照组则不受干扰。
2.确定商品和市场:我们选择一个特定的商品,并确定一个特定的市场来进行实验。
这样可以使实验更加具体和可控。
3.设定实验条件:在实验组中,我们逐步调整市场供给量,并记录下不同供给量下的商品价格。
对照组则保持市场供给量不变。
4.数据收集:在每次实验条件设定完毕后,我们将记录实验组和对照组的商品价格,并对数据进行整理和存储。
2.4 实验风险和伦理考虑在设计实验时,我们需要考虑实验可能存在的风险,并确保实验过程符合伦理要求。
具体而言,我们需要确保参与者的权益得到保护,并在可能对参与者造成负面影响的情况下停止实验。
3. 数据分析在实验进行完毕后,我们对数据进行分析,以验证实验假设并得出结论。
3.1 数据整理首先,我们将实验组和对照组的数据整理成表格形式,方便后续分析。
由于文档要求不能包含表格,这里无法展示具体的数据。
3.2 数据分析方法我们采用的数据分析方法主要包括描述统计分析和回归分析。
描述统计分析用于描述数据的基本特征,包括平均值、标准差、最小值和最大值等。
计量经济学作业一、研究内容研究影响GDP增长的因素二、理论模型的设计模型选择国内生产总值GDP作为被解释变量,财政支出FE、城镇就业人口TEP作为被解释变量,由于在中国政府对于经济调控的影响比较大,财政政策对于中国经济具有较强的干预性,特别是在2008年金融风暴席卷下,中国政府采用财政政策来拉动中国经济增长,起到了较明显的作用,因此考虑选取财政支出作为解释变量。
另外,中国城乡二元差异,中国经济的发展是伴随着城镇化的发展,城镇化进程对于中国经济的发展也起着重要作用,因此选取了城镇就业人口作为解释变量。
模型设计:GDP=C+a FE +b TEP ( a>0 ,b>0 )三、统计数据数据选取了中国1990年至2010年中国国内生产总值(GDP)、财政支出(FE)、城镇就业总数(TEP)年份国内生产总值GDP(亿元)财政总支出FE(亿元)城镇就业总人口TEP(万人)199018667.8 3083.59 64749 199121781.5 3386.62 65491 199226923.5 3742.2 66152 199335333.9 4642.3 66808 199448197.9 5792.62 67455 199560793.7 6823.72 68065 199671176.6 7937.55 68950 199778973 9233.56 69820 199884402.3 10798.18 70637 199989677.1 13187.67 71394 200099214.6 15886.5 72085 2001109655.2 18902.58 72797 2002120332.7 22053.15 73280 2003135822.8 24649.95 73736 2004159878.3 28486.89 74264 2005184937.4 33930.28 74647 2006216314.4 40422.73 74978 2007265810.3 49781.35 75321 2008314045.4 62592.66 75564 2009340902.8 76299.93 75828 2010401202 89874.16 76105四、参数估计利用Eviews对模型进行普通二乘法估计,输出结果如下:^GDP= —281320.3 + 3.826244FE + 4.511029TEP(—4.292062) (26.83580) (4.701810)R^2=0.993864 R^2=0.993182 F=1457.638 D.W.=0.796234从回归估计的结果来看,可决系数R^2=0.993864,表明模型总体拟合较好,GDP变化的99.3864%可由财政支出和城镇就业人口来解释。
计量经济学回归模型实验报告(大全)第一篇:计量经济学回归模型实验报告(大全)回归模型分析报告背景意义:教育是立国之本,强国之基。
随着改革开放的进行、经济的快速发展和人们生活水平的逐步提高,“教育”越来越受到人们的重视。
一方面,人均国内生产总值的增加与教育经费收入的增加有着某种联系,而人口的增长也必定会对教育经费收入产生影响。
本报告将从这两个方面进行分析。
我国1991 年~2013 年的教育经费收入、人均国内生产总值指数、年末城镇人口数的统计资料如下表所示。
试建立教育经费收入Y 关于人均国内生产总值指数 X 1 和年末城镇人口数 X 2的回归模型,并进行回归分析。
年份教育经费收入Y(亿元)人均国内生产总值指数X 1(1978 年=100)年末城镇人口数X 2(万人)1991 731.50282 256.67 31203 1992 867.04905 289.72 32175 1993 1059.93744 326.32 33173 1994 1488.78126 364.91 34169 1995 1877.95011 400.6 35174 1996 2262.33935 435.76 37304 1997 2531.73257 471.13 39449 1998 2949.05918 503.25 41608 1999 3349.04164 536.94 437482000 3849.08058 577.64 45906 2001 4637.66262 621.09 48064 2002 5480.02776 672.99 50212 2003 6208.2653 735.84 52376 2004 7242.59892 805.2 54283 2005 8418.83905 891.31 56212 2006 9815.30865 998.79 58288 2007 12148.0663 1134.67 60633 2008 14500.73742 1237.48 62403 2009 16502.7065 1345.07 64512 2010 19561.84707 1480.87 66978 201123869.29356 1613.61 69079 2012 28655.30519 1730.18 71182 2013 30364.71815 1853.97 73111 资料来源:中经网统计数据库。
第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。
二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。
在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。
本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。
三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。
四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。
2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。
3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。
4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。
5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。
五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。
计量经济学实验报告(一)
一、实验背景
计量经济学实验是一种采用经济理论和方法来设计实验的经济研究方法。
经济实验的主要目的是检验经济理论,比如检验假设和改进预测。
它还可以用于定性评价和定量评价政策方案和市场动态,以及验证行为经济学理论。
二、实验内容
本次实验通过一组独立的在线调查来研究人们对收入分配政策的态度。
调查中,受访者被要求就14种不同的收入分配政策支持、反对和中立做出反应。
这14种收入分配政策包括财政公平政策、税收和补贴政策、劳动力市场政策和参与机会政策等。
以及根据态度的强度来改变互动形式,不同类型的回答有不同的加分,比如更强烈的支持会比中立的有更多分数。
三、实验结果
实验结果显示,在14种收入分配政策中,受访者大部分表示支持或者反对。
最受支持的是劳动力市场政策,而最受反对的是税收和补贴政策。
同时,实验还发现,这14种收入分配政策受实验者支持或反对的原因大部分是经济实惠:如果一个政策能够为普通大众带来经济实惠,这个政策很可能受到受访者的支持。
此外,一些政策因其有助于实现平等收入而受到支持。
四、实验结论
本次实验结论清楚地表明,受访者支持或反对收入分配政策跟经济实惠有关。
当人们普遍受益于收入分配政策时,他们很可能支持这种政策。
另外,实验还发现,有些政策受支持的原因还在于它们有助于实现平等收入的目的。
本次实验不仅对计量经济学的理论和方法提供了有价值的信息,而且还为构建经济实证提供了重要的参考意见。
可以认为,经过本次实验的进一步检验和优化,可以发现更详细、更准确的数据,以便进一步检验和发展计量经济学的理论与方法。
篇一:计量经济学实验报告 (1)计量经济学实验基于eviews的中国能源消费影响因素分析学院:班级:学号:姓名:基于e views的中国能源消费影响因素分析一、背景资料能源消费是指生产和生活所消耗的能源。
能源消费按人平均的占有量是衡量一个国家经济发展和人民生活水平的重要标志。
能源是支持经济增长的重要物质基础和生产要素。
能源消费量的不断增长,是现代化建设的重要条件。
我国能源工业的迅速发展和改革开放政策的实施,促使能源产品特别是石油作为一种国际性的特殊商品进入世界能源市场。
随着国民经济的发展和人口的增长,我国能源的供需矛盾日益紧张。
同时,煤炭、石油等常规能源的大量使用和核能的发展,又会造成环境的污染和生态平衡的破坏。
可以看出,它不仅是一个重大的技术、经济问题,而且以成为一个严重的政治问题。
在20世纪的最后二十年里,中国国内生产总值(gdp)翻了两番,但是能源消费仅翻了一番,平均的能源消费弹性仅为0.5左右。
然而自2002年进入新一轮的高速增长周期后,中国能源强度却不断上升,经济发展开始频频受到能源瓶颈问题的困扰。
鉴于此,研究能源问题不仅具有必要性和紧迫性,更具有很大的现实意义。
由于我国目前面临的所谓“能源危机”,主要是由于需求过大引起的,而我国作为世界上最大的发展中国家,人口众多,所需能源不可能完全依赖进口,所以,研究能源的需求显得更加重要。
二、影响因素设定根据西方经济学消费需求理论可知,影响消费需求的因素有:商品的价格、消费者收入水平、相关商品的价格、商品供给、消费者偏好以及消费者对商品价格的预期等。
对于相关商品价格的替代效应,我们认为其只存在能源品种内部之间,而消费者偏好及消费者对商品价格的预期数据差别较大,不容易进行搜集整理在此暂不涉及。
另外,发展经济学认为,来自知识、人力资本的积累水平所体现的技术进步不仅可以带动劳动产出的增长,而且会通过外部效应可以提高劳动力、自然资源、物质资本与生产要素的生产效率,消除其中收益递减的内在联系,带来递增的规模收益。
计量经济学》实验报告一、经济学理论概述1、需求是指消费者(家庭)在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量。
需求是购买欲望与购买能力的统一。
2、需求定理是说明商品本身价格与其需求量之间关系的理论。
其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加。
3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动。
需求量的变动表现为同一条需求曲线上的移动。
二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析。
1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高。
2、方程总体线性的显着性检验——F检验(1)方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断。
(2)给定显着性水平α,查表得到临界值Fα(k,n-k-1),根据样本求出F统计量的数值后,可通过F>Fα(k,n-k-1) (或F ≤Fα(k,n-k-1))来拒绝(或接受)原假设H0,以判定原方程总体上的线性关系是否显着成立。
3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用。
5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。
三、验证步骤1、确定变量(1)被解释变量“货币流通量”在模型中用“Y”表示。
(2)解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“2X ”表示;③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“μ”。
计量经济学试验报告实验报告实验1:单方程线性计量经济学模型的最小二乘估计和统计检验1实验目的掌握计量经济学专用软件(Eviews)使用方法,理解和正确解释输出结果。
在学习计量经济学的基本理论和方法的基础上,掌握建立计量经济模型对实际经济问题进行实证分析的方法。
运用Eviews软件完成对线形回归模型的最小二乘估计、统计检验、计量经济学检验以及进一步进行经济结构分析、经济预测和政策评价,培养发现问题、分析问题、解决问题的能力。
2实验软件Eviews5.03实验数据甲商品从1988―2021年的销售量Y/千个,价格X1 /(元/个),售后服务支出X2 /万元年份 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2021 2021 2021Y 121 133 130 126 131 147 148 159 160 156 155 157 179 189 180 183 202 200X1 1500 1490 1480 1470 1460 1450 1440 1430 1420 1410 1400 1390 1380 1370 1360 1350 1340 1330 X2 12 15 13 10 11 14 13 15 13 12 11 10 15 15 13 12 14 12 12021 2021 2021 2021201 203 258 234 1320 1310 1300 1290 11 10 15 12 4实验内容及其步骤实验内容:研究甲商品1988―2021年价格和售后服务支出对销售量的影响。
其中,销售量Y、价格X1、售后服务支出X2的数据如上所示。
建立多元线性计量经济学回归模型为:Yi = β0 + β1X1i + β2X2i + μi实验步骤:1、建立工作文件:双击Eviews,进入Eviews主界面在主菜单上依次点击File → New → Workfile,出现Workfile对话框,在workfile frequency中选择Annual,在Start里输入起始日期1988,在End里输入结束日期2021。
目录
(一) 研究背景 (2)
(二) 理论来源 (2)
(三) 模型设定 (2)
(四) 数据处理 (2)
1. 数据来源 (2)
2. 解释变量的设置 (3)
(五) 先验预期 (3)
1.经验预期 (3)
2.散点图分析 (3)
(六) 参数估计 (4)
(七) 显著性检验 (5)
(八) 正态性检验 (5)
(九) MWD检验 (5)
(十) 相关系数 (7)
(十一) 虚拟变量 (7)
(十二) 异方差检验、修正 (8)
1. 图形检验 (8)
2.格莱泽检验 (9)
3.帕克检验 (10)
4.异方差的修正加权最小二乘法 (10)
5.异方差修正后的检验 (11)
(十三) 自相关检验 (11)
1. 图形法 (11)
2.德宾-沃森d检验 (12)
(十四) 最终结果 (12)
(一) 研究背景
中国是一个大国,幅员辽阔,历史上自然地形成了一个极端不平衡发展的格局。
而1978年开始的改革,政府采取了由东向西梯度推进的非均衡发展战略,使已经存在的地区间的差距进一步扩大,不利于整个社会的稳定和发展。
地区发展不平衡问题包括社会发展不平衡,尤其是教育发展的不平衡。
因此关注中国教育发展的地区不平衡性非常迫切。
不仅是因为教育的重要性,还因为当前我国需要进一步推进教育改革的进程,使其朝着更健康的方向发展。
(二) 理论来源
刘红梅.中国各地区教育发展水平差异的实证分析[J]数理统计与管理.2013.7
(三) 模型设定
⏹ Yi=B1+B2X2i+B3X3i+B4X4i+B5X2i+B6X4i+ui
Y——地区教育水平,用平均受教育年限表示,(年)
X2——学生平均预算内教育经费,(万元/人)
X3——人均GDP,(万元/人)
X4——平均生师比 22⏹ ⏹ ⏹ ⏹
(四) 数据处理
1. 数据来源:国家统计局官网,选取2014年的数据:
1) 各省GDP
2) 各地区总人口
3) 各地区每十万人拥有的各种受教育程度人口比较数据
4) 地区在校总学生数
5) 各地区教育财政投入
6) 地区每十万总专任教师数
2. 解释变量的设置:
⏹ X2=地区预算内教育经费/地区在校总学生数
=学生平均预算内教育经费(万元/人)
X3=地区总GDP/地区总人口=人均GDP(万元/人)
X4=地区每十万人口各级学校平均在校生数的和/地区每十万人口总专任教师数=平均生师比⏹ ⏹
其中:
P为各地区每十万人拥有的各种受教育程度人口比较数
T为教育年限1,6,9,12,16
(五) 先验预期
1. 经验预期:
平均受教育年限分别跟学生平均预算内教育经费、人均GDP呈正相关关系,跟平均生师比呈负相关关系。
2. 散点图分析:
学生平均预算内教育经费和平均受教育水平成正比,人均GDP和受教育水平成正比,平均生师比和平均受教育水平成反比。
(六) 参数估计
设定经济计量模型:Yi=B1+B2X2i+B3X3i+B4X4i+B5X2i+B6X4i+ui
参数估计:进行OLS回归
图6-1
图5-1
根据参考文献,广东和西藏是强影响点,所以我们把两地的数据去除,剩下29个地区的数据。
于是,我们对剩下的29个数据进行了回归,得出这个回归结果:
图6-2
回归结果: 22
Yi=23.2406-24.6626X2i+0.2296X3i-1.6477X4i+59.1341X2i2+0.0516X4i2
(七) 显著性检验
H0:B2=B3=B4=B5=B6=0
H1:B2,B3,B4 ,B5, B6不全为0
P=0.000000<0.01
故拒绝原假设,即认为学生平均教育经费、人均GDP、平均生师比对平均受教育年限有显著影响。
(八) 正态性检验
图8-1
根据JB检验,得到其值为0.431311,接近于零,残差接近正态分布。
(九) MWD检验
对数-线性模型:Yi=B1+B2X2i+B3X3i+B4X4i+B5X2i+B6X4i
线性模型:LnYi=B1+B2X2i+B3X3i+B4X4i+B5X2i+B6X4i
H0:线性模型:Y是X的线性函数
H1:对数-线性模型:lnY是X的线性函数
2222
图9-1
图9-2
由图9-2可得,Z1的系数是统计不显著的,则不拒绝H0, 则说明线性模型是可行的。
图
9-3
由图9-3可得,Z2的系数也是统计不显著的,则不拒绝H1, 则说明对数线性模型也是可行的。
MWD检验的结论是:最后的结果是两个模型都是合理的。
(十) 相关系数
图10-1
由图10-1可得,X2和X3,X4的相关程度低。
另外X22 ,X42分别是X2、X4的非线性函数,所以将它们同时包含在一个模型中没有违反经典线性模型中“解释变量之间不能存在精确的线性关系”的假定。
由此可得,多重共线性的程度较低(其中X22用X5来表示,,X42用X6来表示。
)
(十一) 虚拟变量
设立含虚拟变量的模型:
Yi=B1+B2X2i+B3X3i+B4X4i+B5X2i2 +B6X4i2+B7D1+B8D2+ui
其中 D1:(1-中部,0-其他)D2:(1-西部,0-其他)
图11-1
回归结果表明:虚拟变量D1、D2
回归系数统计不显著,即中国东、中、西部
的平均受教育年限没有显著不同,可能因为中国教育机制日趋完善,教育资源趋于均衡,所以地区差异缩小
(十二) 异方差检验、修正
1. 图形检验:
图12-1残差平方对教育经费
图12-2残差平方对人均GDP
图12-3残差平方对平均生师比
由图形检验结果可知:数据存在相当大的变异性,表明回归模型和可能存在
异方差。
2. 格莱泽检验:
类型1:H0:B2=0|ei|=B1+B2X2+vi
图12-4
回归结果表明:X2的系数是统计显著的,所以拒绝原假设,回归模型中部存在异方差
类型2:H0:B3=0|ei|=B1+B3X3+vi
图12-5
回归结果表明:X3的系数是统计显著的,所以拒绝原假设,回归模型中部存在异方差。
综上所述,回归模型中存在异方差。
3. 帕克检验:
图12-6
由于Y的估计值的系数是统计显著的,因此帕克检验表明,回归模型存在异方差。
通过以上三种异方差的检验,我们得出该回归模型存在异方差的理论。
4. 异方差的修正:加权最小二乘法
图
12-7
经过多次的试验,我们最终选择1/X23作为权重,其能有效地消除异方差。
5. 异方差修正后的检验
图12-8
由图12-8可知,帕克检验中,得出Y的系数是统计不显著的,因此,回归方程不存在异方差。
(十三) 自相关检验
1. 图形法
图13-1
由图13-1可知,对et及et-1作回归,残差的递差之间没有关系。
2. 德宾-沃森d检验
图13-2
由图13-2可知,d=2.206761,根据D-W表,对于n=29,k=6,在5%的显著水平下,dL=1.050,dU=1.841,由于d位于2.159和2.95之间,所以,我们无法
判断是否存在自相关。
综合以上两种自相关的检验,我们得出该模型不存在自相关的结论。
(十四) 最终结果
Yi/X2i3=67.3323+2.4598/X2i2+0.3444X3i/X2i3-7.9644X4i/X2i3-3.239358X22
i/X2i3+0.25936X4i2/X2i3
对回归得结果解释如下:B2= 2.4598表明,如果学生平均预算内教育经费提
高1个单位,则实际的地区平均受教育年限平均提高2.4598年,但其不是特别显著。
B3= 0.3444表明,如果人均提高1个单位,则实际的地区平均受教育年限
平均提高0.3444年,其效果小于教育经费的提高带来的影响。
B4= -7.9644表明,
如果平均生师比提高1个单位,则实际的地区平均受教育年限平均下降7.9644年。
R2约为0.8739,表明这几个解释变量解释了地区平均受教育年限87.39%的
变异,R2值相当高。
这个模型的现实意义就是,要想提高地区的教育水平,加大对教育的投入是关键。
同时,也应该提高对教师资源的重视程度,合理分配地区的教师,减低生师比,让教育资源得到最有效地配置。