第4章罚函数法
- 格式:pdf
- 大小:370.45 KB
- 文档页数:28
惩罚函数法
惩罚函数法(penalty function method)是一种优化方法。
它的基本思想是,将原始问题转换为一个新的目标函数,在此基础上,通过对不等式、二次限制条件等加入惩罚项,使得原问题转化为无约束优化问题,从而可以采用常见的求解方法,如牛顿法、拉格朗日乘子法或者梯度下降法等。
该方法的具体步骤如下:
(1) 将原有的约束条件作为等式或不等式表示;
(2) 将约束条件中的不等式转换为等式,并将其和原有的等式组合在一起,形成新的约束条件;
(3) 将原有的目标函数和约束条件组合在一起,形成新的目标函数;
(4) 将新的目标函数中的不等式约束条件添加惩罚项,并且形成一个新的无约束优化问题;
(5) 用一种方法求解这个新的无约束优化问题,获得最优解。
第二节 SUMT 方法(罚函数法)一、SUMT 方法的原理SUMT (sequential unconstrained minimization technique )法,序列无约束极小化方法,亦称为罚函数法。
它是一种不等式约束最优化问题的间接解法它的基本思想是将原来的目标函数和约束函数按一定的方式构成一个新的函数,在这个新函数中,既包括目标函数,又包括全部约束函数和一个可以变化的乘子。
当这个乘子按一定的方式改变时,就得到一个新函数序列,求每一个新函数的最优解都是一个无约束最优化问题,这样就把一个约束最优化问题转化为一系列无约束最优化问题进行求解。
所得到的最优解序列将逐步逼近原问题的最优解。
引例一:min ()f X ax = s.t ()0g X b x =-≤ 显然f (X )的最优点为x*=b ,对应的最小值为f (X*)=ab用SUMT 求解函数的最优解 构造函数11(,)()()k k kX r f X r ax r g X b xΦ=-=--0k r >—可变化乘子,它是一个很小的正数。
其最优解为:*()kX r b =+此时对应的(,)k X r Φ的最小值为***1(,)k k X r ax r b x ab Φ=--=+最优点*()k X r 和最小值*(,)k X r Φ均是kr 的函数。
当kr 取不同值时,它们有不同的值,而当0kr →时,**()k X r X b →=,*(,)*k X r f X ab Φ→=(),即最后收敛于约束最优点。
minlim[min (,)]() {|()0}kki r X r f X R X g X X R→Φ==≤∈ 以上分析从理论上说明了无约束最优化问题min (,)kX r Φ与约束优化问题min() {|()0}i f X R X g X X R=≤∈之间的联系:约束非线性规划问题可以通过构造新目标函数序列,用无约束优化方法求其极小点,并逐次逼近原问题的最优点。