格林函数法详解
- 格式:ppt
- 大小:812.50 KB
- 文档页数:15
格林函数方法
1、格林函数
格林函数(Green's function)是指由著名数学家.格林(Green)提出的数学方法,它是一种可以求解各种微分方程的技术。
格林函数的定义是对于任意给定的初值问题,在区间上的解的和等于给定的数值13。
其用法主要有两种:一种是用于求解某些有定型的初值问题;另一种是求解某些微分方程的积分解。
格林函数的结果可以用来解决复杂的初值问题和理解复杂的微分方程以及系统的时间变化。
2、格林函数的原理
格林函数可以用来解决一类有特定初值条件的常微分方程组。
它的原理是基于一种叫做拉普拉斯变换(Laplacetransform)的数学变换理论,它是一种将微分方程组变换成求积分方程组的方法,从而可以使原本困难的初值问题变得容易解决,其在解决物理学中不变解中特别有用。
3、格林函数的计算
对于特定的初值条件,可以使用格林函数计算出拉普拉斯变换得到的积分方程的结果,从而计算得到解析解。
计算过程比较复杂,需要用到积分变换和methods。
总之,格林函数是一种可以求解复杂常微分方程的有效数学方法,它基于拉普拉斯变换的原理,对于特定的初值问题,运用格林函数,可以计算出相应的解析解。
第五章 格林函数法在第二章中利用分离变量法求出了矩形区域和圆域上位势方程Dirichlet 问题的解.本章利用Green 函数法求解一些平面或空间区域上位势方程Dirichlet 问题. 另外,也简单介绍利用Green 函数法求解一维热传导方程和波动方程半无界问题. 应指出的是:Green 函数法不仅可用于求解一些偏微分方程边值问题或初边值问题,特别重要的是,它在偏微分方程理论研究中起着非常重要的作用.§5⋅1 格林公式在研究Laplace 方程或Poisson 方程边值问题时,要经常利用格林(Green )公式,它是高等数学中高斯(Gauss )公式的直接推广.设Ω为3R 中的区域,∂Ω充分光滑. 设k 为非负整数,以下用()k C Ω表示在Ω上具有k 阶连续偏导的实函数全体,()k C Ω表示在Ω上具有k 阶连续偏导的实函数全体. 如()10()()()()u C C C C ∈Ω⋂ΩΩ=Ω,表示(,,)u x y z 在Ω具有一阶连续偏导数而在Ω上连续. 另外,为书写简单起见,下面有时将函数的变量略去.如将(,,)P x y z 简记为P ,(,,)P x y z x ∂∂简记为Px∂∂或x P 等等.设(,,)P x y z ,(,,)Q x y z 和(,,)R x y z 1()C ∈Ω,则成立如下的Gauss 公式()P Q RdV Pdydz Qdydx Rdxdy x y z Ω∂Ω∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ (1.1)或者()(cos cos cos )P Q R dV P Q R ds x y z αβγΩ∂Ω∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ (1.2)如果引入哈米尔顿(Hamilton )算子: (,,)x y z∂∂∂∇=∂∂∂,并记(,,)F P Q R = ,则Gauss 公式具有如下简洁形式⎰⎰⎰⎰⎰∂⋅=⋅∇ΩΩds n F dv F(1.3)其中(cos ,cos ,cos )n αβγ=为∂Ω的单位外法向量.注1 Hamilton 算子是一个向量性算子,它作用于向量函数(,,)F P Q R =时,其运算定义为(,,)(,,),F P Q R x y zP Q Rx y z∂∂∂∇⋅=⋅∂∂∂∂∂∂=++∂∂∂形式上相当于两个向量作点乘运算,此即向量F 的散度div F. 而作用于数量函数(,,)f x y z 时,其运算定义为(,,)(,,)f f ff f x y z x y z∂∂∂∂∂∂∇==∂∂∂∂∂∂,形式上相当于向量的数乘运算,此即数量函数f 的梯度grad f .设(,,)u x y z ,2(,,)()v x y z C ∈Ω,在(1.3)中取F u v =∇得()u v dV u v nds Ω∂Ω∇⋅∇=∇⋅⎰⎰⎰⎰⎰(1.4)直接计算可得v u v u v u ∇∇+=∇⋅∇∆)( (1.5)其中xx yy zz v v v v ∆=++. 将(1.5)代入到(1.4)中并整理得vu vdV uds u vdV n Ω∂ΩΩ∂∆=-∇⋅∇∂⎰⎰⎰⎰⎰⎰⎰⎰ (1.6)(1.6)称为Green 第一公式.在(1.6)中将函数u ,v 的位置互换得uv udV vds v udV n Ω∂ΩΩ∂∆=-∇⋅∇∂⎰⎰⎰⎰⎰⎰⎰⎰ (1.7)自(1.6)减去(1.7)得()()v uu v v u dV uv ds n nΩ∂Ω∂∂∆-∆=-∂∂⎰⎰⎰⎰⎰ (1.8)(1.8)称为Green 第二公式.设点0(,,)P ξηζ∈Ω,点3(,,)P x y z R ∈,||00P P r P P -==引入函数 001(,)4P PP P r πΓ=,注意0(,)P P Γ是关于六个变元(,,)x y z 和(,,)ξης的函数且00(,)(,)P P P P Γ=Γ. 如无特别说明, 对b 求导均指关于变量(,,)x y z 的偏导数. 直接计算可得00(,)0, P P P P ∆Γ=≠即0(,)P P Γ在3R 中除点0P 外处处满足Laplace 方程.设0ε>充分小使得00(,){(,,) ||}B B P P x y z P P εε==-≤⊂Ω. 记\G B =Ω,则G B ∂=∂Ω⋃∂. 在Green 第二公式中取0(,)v P P =Γ,G Ω=. 由于在区域G 内有0∆Γ=,故有()GGuudV uds n n∂∂Γ∂-Γ∆=-Γ∂∂⎰⎰⎰⎰⎰ 或者()()GBu u udV uds u ds n n n n ∂Ω∂∂Γ∂∂Γ∂-Γ∆=-Γ+-Γ∂∂∂∂⎰⎰⎰⎰⎰⎰⎰ (1.9)在球面B ∂上,021()414P P r n rrrππ∂∂Γ∂Γ=-=-=∂∂∂,因此21(,,)4BBuuds ds u x y z n πε∂∂∂Γ==∂⎰⎰⎰⎰ (1.10)其中(,,)P x y z B ∈∂.同理可得14BBu u ds ds n n πε∂∂∂∂Γ=∂∂⎰⎰⎰⎰(,,)ux y z n ε∂'''=∂ (1.11)其中(,,)P x y z B '''∈∂.将(1.10)和 (1.11)代入到(1.9)中并令0ε+→,此时有(,,)(,,)P x y z P ξηζ→,(,,)0u x y z nε∂'''→∂,并且区域G 趋向于区域Ω,因此可得()(,,)uudV uds u n nξηζΩ∂Ω∂Γ∂-Γ∆=-Γ+∂∂⎰⎰⎰⎰⎰,即(,,)()u u u d s u d V n n ξηζ∂ΩΩ∂∂Γ=Γ--Γ∆∂∂⎰⎰⎰⎰⎰ (1.12)(1.12)称为Green 第三公式. 它表明函数u 在Ω内的值可用Ω内的u ∆值与边界∂Ω上u 及nu∂∂的值表示.注2 在二维情形,Green 第一公式和Green 第二公式也成立. 而对于Green第三公式, 需要取011(,)ln 2P P rπΓ=,其中0(,)P ξη∈Ω,2(,)P x y R ∈,r =0P P r=0||P P -=此时Green 第三公式也成立.§5⋅2 Laplace 方程基本解和Green 函数基本解在研究偏微分方程时起着重要的作用. 本节介绍Laplace 方程的基本解,并在一些特殊区域上由基本解生成Green 函数,由此给出相应区域上Laplace 方程或Poisson 方程边值问题解的表达式. 下面以Dirichlet 问题为例介绍Laplace 方程的基本解和Green 函数方法的基本思想.5.2.1 基本解设30(,,)P R ξηζ∈,若在点0P 放置一单位正电荷,则该电荷在空间产生的电位分布为(舍去常数0ε)001(,,)(,)4P Pu x y z P P r π=Γ=(2.1)易证: 0(,)P P Γ在30\{}R P 满足0 .u -∆= 进一步还可以证明[1],在广义函数的意义下0(,)P P Γ满足方程0(,)u P P δ-∆= (2.2)其中0(,)()()()P P x y z δδξδηδζ=---. 0(,)P P Γ称为三维Laplace 方程的基本解.当n =2时,二维Laplace 方程的基本解为0011(,)ln2P PP P r πΓ=(2.3)其中0(,)P ξη,2(,)P x y R ∈,0P Pr =同理可证,0(,)P P Γ在平面上除点0(,)P ξη外满足方程0 u -∆=,而在广义函数意义下0(,)P P Γ满足方程0(,)u P P δ-∆= (2.4)其中0(,)()()P P x y δδξδη=--.注1 根据Laplace 方程的基本解的物理意义可以由方程(2.2)和(2.4)直接求出(2.1)和(2.3),作为练习将这些内容放在本章习题中. 另外,也可以利用Fourier 变换求解方程(2.2)和(2.4)而得到Laplace 方程的基本解.5.2.2 Green 函数考虑如下定解问题(,,), (,,) (2.5)(,,)(,,), (,,) (2.6)u f x y z x y z u x y z x y z x y z ϕ-∆=∈Ω⎧⎨=∈∂Ω⎩设0(,,)P ξηζ∈Ω,21(,,)()()u x y z C C ∈Ω⋂Ω是(2.5)— (2.6)的解,则由Green 第三公式可得(,,)()u u u ds udV n n ξηζ∂ΩΩ∂∂Γ=Γ--Γ∆∂∂⎰⎰⎰⎰⎰ (2.7)在公式(2.7)的右端,其中有两项可由定解问题(2.5)—(2.6)的边值和自由项求出,即有uds ds n n ϕ∂Ω∂Ω∂Γ∂Γ=∂∂⎰⎰⎰⎰u d V f d VΩΩΓ∆=-Γ⎰⎰⎰⎰⎰⎰.而在u ds n ∂Ω∂Γ∂⎰⎰中,un ∂∂在边界∂Ω上的值是未知的. 因此须做进一步处理.注2 若要求解Neumann 问题,即将(2.6)中边界条件换为(,,)ux y z nϕ∂=∂.此时,在方程(2.7)右端第二项uds n∂Ω∂Γ∂⎰⎰中,u 在边界∂Ω上的值是未知的,而其余两项可由相应定解问题的边值和自由项求出.如何由(2.7)得到定解问题(2.5)-(2.6)的解?Green 的想法就是要消去(2.7)右端第一项uds n ∂Ω∂Γ∂⎰⎰. 为此,要用下面的Green 函数取代(2.7)中的基本解.设h 为如下定解问题的解0,(,,)(2.8),(,,)(2.9)h x y z h x y z -∆=∈Ω⎧⎨=-Γ∈∂Ω⎩ 在Green 第二公式中取v h =得()h u h udV uh ds n nΩ∂Ω∂∂-∆=-∂∂⎰⎰⎰⎰⎰ 或者0()u hhu ds h udV n n ∂ΩΩ∂∂=--∆∂∂⎰⎰⎰⎰⎰ (2.10)将(2.7)和(2.10)相加得(,,)()u Gu Gu ds G udV n n ξηζ∂ΩΩ∂∂=--∆∂∂⎰⎰⎰⎰⎰ (2.11)其中0(,)G P P h =Γ+.由(2.2)和(2.8)—(2.9)可得,0(,)G P P 是如下定解问题的解00(,), (,,)(2.12)(,)0, (,,)(2.13)G P P P x y z G P P P x y z δ-∆=∈Ω⎧⎨=∈∂Ω⎩0(,)G P P 称为Laplace 方程在区域Ω的Green 函数.由于G 在∂Ω上恒为零,由(2.11)可得(,,)Gu uds G udV n ξηζ∂ΩΩ∂=--∆∂⎰⎰⎰⎰⎰ Gds GfdV n ϕ∂ΩΩ∂=-+∂⎰⎰⎰⎰⎰. (2.14)因此,若求出了区域Ω的Green 函数0(,)G P P ,则(2.14)便是定解问题(2.5)— (2.6)的解.§5⋅3 半空间及圆域上的Dirichlet 问题由第二节讨论可知,只要求出了给定区域Ω上的Green 函数,就可以得到该区域Poisson 方程Dirichlet 问题的解. 对一般区域,求Green 函数并非易事. 但对于某些特殊区域,Green 函数可借助于基本解的物理意义利用对称法而得出. 下面以半空间和圆域为例介绍此方法.5.3.1 半空间上Dirichlet 问题设{(,,)|0},{(,,)|0}x y z z x y z z Ω=>∂Ω==. 考虑定解问题2(,,),(,,) (3.1)(,,0)(,),(,) (3.2)u f x y z x y z u x y x y x y Rϕ-∆=∈Ω⎧⎨=∈⎩设0(,,),P ξηζ∈Ω则1(,,)P ξηζ-为0P 关于∂Ω的对称点. 若在0P ,1P 两点各放置一个单位正电荷,则由三维Laplace 方程的基本解知,它们在空间产生的电位分别为00111(,)41(,)4P P r P P r ππΓ=Γ=其中0011||,||r P P r P P =-=-. 由于0P 和1P 关于∂Ω对称,且1P ∉Ω,故有01001[(,)(,)](,), (,)(,)0,.P P P P P P P P P P P P δ-∆Γ-Γ=∈Ω⎧⎨Γ-Γ=∈∂Ω⎩即001(,)(,)(,)G P P P P P P =Γ-Γ为上半空间的Green 函数,且有001(,)(,)(,)G P P P P P P =Γ-Γ011114r r π⎛⎫=- ⎪⎝⎭14π⎡⎤= (3.3)直接计算可得3/2222012()()z G Gn zx y ζπξηζ∂Ω=∂∂=-=-∂∂⎡⎤-+-+⎣⎦(3.4)将(3.3)—(3.4)代入到公式(2.14)得(,,)Gu ds Gfd n ξηζϕν∂ΩΩ∂=-+∂⎰⎰⎰⎰⎰ 3/2222001(,)2()() (,)(,,)x y dxdyx y G P P f x y z dxdydzϕζπξηζ∞∞-∞-∞∞∞∞-∞-∞=⎡⎤-+-+⎣⎦+⎰⎰⎰⎰⎰上式便是定解问题(3.1)— (3.2)的解.5.3.2 圆域上Dirichlet 问题设222{(,)|}x y x y R Ω=+<,则222{(,)|}x y x y R ∂Ω=+=. 考虑圆域Ω上的Dirichlet 问题(,), (,) (3.5)(,)(,), (,) (3.6)u f x y x y u x y g x y x y -∆=∈Ω⎧⎨=∈∂Ω⎩ 设0(,)P ξη∈Ω,1(,)P ξη为0(,)P ξη关于圆周∂Ω的对称点,即201,OP OP R =如图3-1所示 . 由于201OP OP R =,因此对任意M ∈∂Ω有01~OP M OMP ∆∆ROP r r MP M P ||010=1P01011||P MPMR r OP r =图3.1因此有0101111ln ln 022||P M PMR r OP r ππ-= (3.7)上式说明函数01001111(,)ln ln22||P P P PR G P P r OP r ππ=- (3.8)在∂Ω上恒为零. 又由于1P ∉Ω,故有000(,)(,),(,)0,.G P P P P P G P P P δ-∆=∈Ω⎧⎨=∈∂Ω⎩即0(;)G P P 是圆域上的Green 函数.引入极坐标(,)P ρθ,设0000(,)(,)P P ξηρθ=,则21100(,)(,)R P P ξηθρ=. 用α表示0OP 与OP 的夹角,则有000cos cos cos sin sin cos()αθθθθθθ=+=-利用余弦定理可得0P P r = (3.9)1P P r =(3.10)将(3.9)和(3.10)代入到(3.8)中并整理得22222000042220002cos()1(,)ln 42cos()R R R G P P R R ρρρρθθπρρρρθθ+--=-+-- (3.11)直接计算可得RG Gn ρρ∂Ω=∂∂=∂∂2222000122cos()R R R R ρπρρθθ-=-+-- . (3.12)记()(cos ,sin )g R R ϕθθθ=,则有00(,)Gu ds Gfd n ρθϕσ∂ΩΩ∂=-+∂⎰⎰⎰ 222022000()()122cos()R d R R πρϕθθπρρθθ-=+--⎰- 22222200042220002cos()1(cos ,sin )ln 42cos()R R R R f d d R R πρρρρθθρθρθρρθπρρρρθθ+--+--⎰⎰(3.13)(3.13)便是定解问题(3.5)—(3.6)的解.注1 当0f =时(3.13)称为圆域上调和函数的Poisson 公式.注2 利用复变函数的保角映射,可以将许多平面区域变换为圆域或半平面.因此,与保角映射结合使用,可以扩大对称法以及Green 函数法的应用范围. 在本章习题中有一些这类题目,Green 函数法更多的应用可查阅参考文献[13].§5⋅4* 一维热传导方程和波动方程半无界问题5.4.1 一维热传导方程半无界问题为简单起见,仅考虑以下齐次方程定解问题20 , 0 , 0 (4.1)(0,)0 , 0 (4.2)(,0)() , 0 t xx u a u x t u t t u x x x ϕ-=<<∞>=≥=<<∞ (4.3)⎧⎪⎨⎪⎩该定解问题称为半无界问题, 这是一个混合问题,边界条件为(4.2). 类似于上节Poisson 方程在半空间和圆域上Dirichlet 问题的求解思想,也要以热方程的基本解为基础,使用对称法求出问题(4.1)—(4.3)的Green 函数,并利用所得到的Green 函数给出该问题的解.一维热传导方程的基本解为224(,)() .x a tx t H t -Γ (,)x t Γ是如下问题的解20, , 0 (4.4)(,0)(), . (4.5)t xx u a u x t u x x x δ⎧-=-∞<<∞>⎨=-∞<<∞⎩相当于在初始时刻0t =,在0x =点处置放一单位点热源所产生的温度分布.若将上面定解问题中的初始条件换为(,0)()u x x δξ=-,只要利用平移变换'x x ξ=-易得此时(4.4)—(4.5)的解为(,)x t ξΓ-.为求解定解问题(4.1)—(4.3),先考虑()()x x ϕδξ=-,其中ξ为x 轴正半轴上的任意一点. 此时,相当于在x ξ=点处置放一单位点热源. 则此单位点热源在x 轴正半轴上产生的温度分布,如果满足边界条件(4.2),它便是(4.1)—(4.3)的解,即为该问题的Green 函数. 为此,设想再在x ξ=-点,此点为x ξ=关于坐标原点的对称点,处置放一单位单位负热源,这时在x ξ=点处置放的单位点热源产生的温度分布(,)x t ξΓ-和在x ξ=-处置放的单位负热源产生的温度分布(,)x t ξ-Γ+在0x =处相互抵消,从而在0x =处的温度恒为零. 因此,问题(4.1)—(4.3)的Green 函数为(,)(,)(,) G x t x t x t ξξξ-=Γ--Γ+ (4.6)利用叠加原理可得原问题的解为(,)() (,)u x t G x t d ϕξξξ∞=-⎰ . (4.7)若将(4.2)中的边界条件换为(0,)()u t g t =或(0,)0x u t =,请同学们考虑如何求解相应的定解问题.5.4.2 一维波动方程半无界问题考虑以下齐次方程定解问题20, 0, 0 (4.8)(0,)0, 0 (4.9)(,0)0, (,0)(), 0 tt xx t u a u x t u t t u x u x x x ψ-=<<∞>=≥==<<∞ (4.10)⎧⎪⎨⎪⎩一维波动方程的基本解(,)x t Γ为1, 2(;) 0, .x ata x t x at ⎧<⎪Γ=⎨⎪≥⎩完全类似于上小节的分析,可得该问题的Green 函数为(,)(,)(,G x t x t x t ξξξ-=Γ--Γ+, (4.11)其中0ξ>. 因此,该定解问题的解便可表示为(,)() (,)u x t G x t d ψξξξ∞=-⎰. (4.12)注意到(,)x t ξΓ-的具体表示式为1, 2(;) 0, x atax t x at ξξξ⎧-<⎪Γ-=⎨⎪-≥⎩类似地有1, 2(;) 0, x ata x t x at ξξξ⎧+<⎪Γ+=⎨⎪+≥⎩将上面两式代入到(4.12)中并整理可得1(), 0 2(,)1(), 0.2x atx atx atat xd x at a u x t d x at a ψξξψξξ+-+-⎧-≥⎪⎪=⎨⎪-<⎪⎩⎰⎰ 若将(4.9)中的边界条件换为(0,)0x u t =,请同学们考虑如何求解相应的定解问题.注1 对一维波动方程半无界问题,除上面使用的Green 函数法以外,也可以用延拓法或特征线法求解[1]. 相比之下,Green 函数法最简单.注2 类似于本章前两节,对一维热传导方程和波动方程初边值问题,也可以建立起解的Green 公式表达式,相当于本章第二节中的(2.14), 并以此为基础而给出上面(4.7)和(4.12)两式的严格证明[2]. 由于本章主要是通过对一些比较简单的偏微分方程定解问题的求解,重点介绍Green 函数法的基本思想和一些特殊区域Green 函数的具体求法,故略去了(4.7)和(4.12)两式的推导过程.习 题 五1.设3R Ω⊂为有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω. 证明(1)uudV ds n Ω∂Ω∂∆=∂⎰⎰⎰⎰⎰.(2)2u u udV uds u dV n Ω∂ΩΩ∂∆=-∇∂⎰⎰⎰⎰⎰⎰⎰⎰.2. 设3R Ω⊂为有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω满足下面问题0, (,,)(,,)0, (,,).xx yy zz u u u u x y z u x y z x y z ∆=++=∈Ω⎧⎨=∈∂Ω⎩证明 (,,)0u x y z ≡,并由此推出Poisson 方程Dirichlet 问题解的唯一性.若将定解问题中的边界条件换为0, (,,),ux y z n∂=∈∂Ω∂问(,,)u x y z 在Ω中等于什么?Poisson 方程Neumann 问题的解是否具有唯一性?3*设3R Ω⊂为有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω满足下面问题(,,)(,,), (,,)(,,)(,,), (,,).u c x y z u f x y z x y z u x y z x y z x y z ϕ-∆+=∈Ω⎧⎨=∈∂Ω⎩其中 (,,)c x y z 在闭域Ω非负有界且不恒为零. 证明或求解以下各题(1) 如果0,(,,), 0,(,,),f x y z x y z ϕ=∈Ω=∈∂Ω证明(,,)0u x y z ≡.(2)如果0,(,,),f x y z =∈Ω而边界条件换为0, (,,),ux y z n∂=∈∂Ω∂问(,,)u x y z 在区域Ω中等于什么?4.(1) 验证0∆Γ=,0P P ≠,其中0(,) 3P P n Γ==01(,)22P P n πΓ==(2)设()u u r =, 22y x r +=, 求0,0xx yy u u r +=≠,并且满足(1)0,u =(0,)1B u n ds δ∂∇⋅=-⎰的解, 其中(0,)B δ是以原点为圆心δ为半径的圆形域,n 为(0,)B δ∂的单位外法向量.(3) 设()u u r =, 222z y x r ++=, 求0=++zz yy xx u u u ,0≠r ,并且满足B(0,)lim ()0, 1r u r u nds δ→∞∂=∇⋅=-⎰⎰的解, 其中(0,)B δ是以原点为球心δ为半径的球形域,n为(0,)B δ∂的单位外法向量.5. 设2R Ω⊂有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω. 证明(,)()u u u ds ud n n ξησ∂ΩΩ∂∂Γ=Γ--Γ∆∂∂⎰⎰⎰ 其中0(,)P ξη∈Ω,0(,)P P Γ如第4题所示.6. 设2R Ω⊂有界区域,∂Ω充分光滑,0(,)P ξη∈Ω,2(,)P x y R ∈,0(,)P P Γ为二维Laplace 方程的基本解. 考虑定解问题(,), (,)(,)(,), (,)u f x y x y u x y x y x y ϕ-∆=∈Ω⎧⎨=∈∂Ω⎩ 若(,)h x y 是如下定解问题的解00, (,)(,)(,),(,)h x y h x y P P x y ∆=∈Ω⎧⎨=-Γ∈∂Ω⎩证明 若21(,)()()u x y C C ∈Ω⋂Ω,则有(,)Gu ds Gfd n ξηϕσ∂ΩΩ∂=-+∂⎰⎰⎰,其中G h =Γ+.7. 设3R Ω⊂有界区域,∂Ω充分光滑, 考虑定解问题(,,), (,,)(,,), (,,).u f x y z x y z ux y z x y z nϕ-∆=∈Ω⎧⎪∂⎨=∈∂Ω⎪∂⎩ 证明该问题可解的必要条件为0f dV ds ϕΩ∂Ω+=⎰⎰⎰⎰⎰.8*证明上半空间Laplace 方程Dirichlet 问题的Green 函数0(,)G P P 满足020010(,), (,),0, .4P PG P P x y R z P P r π<<∈>≠ 对平面上圆域Laplace 方程Dirichlet 问题的Green 函数0(,)G P P ,给出类似结果.9. 利用对称法求二维Laplace 方程Dirichlet 问题在上半平面的Green 函数, 并由此求解下面定解问题0, (,),0(,0)(), (,).u x y u x x x ϕ-∆=∈-∞∞>⎧⎨=∈-∞∞⎩ 10. 求二维Laplace 方程在下列区域上 Dirichlet 问题的Green 函数.(1) {(,)|}x y x y Ω=>. (2) {(,)|0,0}x y x y Ω=>>.11. 设222{(,)|,0}x y x y R y Ω=+<>. 考虑半圆域Dirichlet 问题0,(,)(,)(,), (,).u x y u x y x y x y ϕ-∆=∈Ω⎧⎨=∈∂Ω⎩ 应用对称法求区域Ω上的Green 函数.12*求解定解问题0,(,,)(,,)(,,),(,,).u x y z u x y z g x y z x y z -∆=∈Ω⎧⎨=∈∂Ω⎩其中32222,(0,){(,,)|}xx yy zz u u u u B R x y z R x y z R ∆=++Ω==∈++<.13.[解对边值的连续依赖性]设Ω为半径等于R 的圆域,考虑如下问题(,), (,)(,)(,),(,) 1,2.k k k u f x y x y u x y g x y x y k -∆=∈Ω⎧⎨=∈∂Ω=⎩ 利用Poisson 公式证明2121(,)(,)max{(,)(,)(,)}u x y u x y g x y g x y x y -≤-∈∂Ω14*证明在广义函数的意义下,11(,0)ln 2P rπΓ=满足 ()()u x y δδ-∆=,其中xx yy r u u u =∆=+.15*设Ω为半径等于R 的圆域,考虑如下问题0, (,)(,)(,),(,) .u x y u x y g x y x y -∆=∈Ω⎧⎨=∈∂Ω⎩ 如果(,)g x y 在∂Ω连续,证明由Poisson 公式给出的解是该问题的古典解(真解).16*设(,)u x y 为平面上区域Ω上的调和函数,000(,)P x y ∈Ω且0(,)B P R ⊂Ω.证明调和函数的平均值公式00002(,)(,)11(,)(,)(,)2B P R B P R u x y u x y ds u x y dxdy R R ππ∂==⎰⎰⎰ 17*[极值原理]设2R Ω⊂有界区域,边界充分光滑,2()()u C C ∈Ω⋂Ω为Ω内的调和函数,并且在某点000(,)P x y ∈Ω达到u 在闭域Ω上的最大(小)值,利用平均值公式证明u 为常数.18*[极值原理]设2R Ω⊂有界区域,边界∂Ω充分光滑, 2()()u C C ∈Ω⋂Ω. 如果u 在区域Ω内调和且不等于常数,则u 在闭域Ω上的最大值和最小值只能在区域的边界∂Ω上达到.19*利用第12题的结果,建立在3R Ω⊂内调和函数的平均值公式,并证明和第16题类似的结果.20*设2R Ω⊂有界区域,2()(), (),1,2,k k u C C g C k ∈Ω⋂Ω∈∂Ω=满足(,), (,)(,)(,),(,) k kk u f x y x y u x y g x y x y -∆=∈Ω⎧⎨=∈∂Ω⎩ 证明 2121(,)(,)max{(,)(,)(,)}u x y u x y g x y g x y x y -≤-∈∂Ω.21.设D 和Ω为平面上的两个区域,()(,)(,)f z x y i x y ϕψ=+在区域D 内解析且不等于常数,()f D =Ω,即f 将区域D 保形映射到区域Ω.证明 如果(,)u x y 在区域Ω内调和,则((,),(,))u x y x y ϕψ在区域D 内调和.22.(1)找一个在上半平面解析的函数()f z ,在边界{(,),0}x y x R y ∈=上满足00(),, (),,f x A x x f x B x x =>=<其中A 和B 为实常数.(2)求下面定解问题的一个解0, 0,0(,0)0,0, (0,)10,0.xx yy u u x y u x x u y y +=>>⎧⎨=>=>⎩ 23*求下面定解问题的一个解22220, 1(,)0,0, (,)1,0, 1.xx yy u u x y u x y y u x y y x y ⎧+=+<⎪⎨=<=>+=⎪⎩ 24. 求下面定解问题的一个解0, 0<(,0)0, (,)1, 0.xx yy u u y xu x u x x x +=<⎧⎨==>⎩ 25. 求下面定解问题的一个解0, , 0<(,)0, (,0)0, 0, (,0)1, 0.xx yy u u x R y u x x Ru x x u x x ππ+=∈<⎧⎪=∈⎨⎪=<=>⎩26. 设(0,)B R Ω=,1(0,)2RB Ω=,(,)u x y 在Ω内调和且在Ω上连续,在边界上非负,证明以下结果(1)(,),x y ∀∈Ω有(0,0)(,)(0,0),R r R ru u x y u R r R r-+≤≤+-其中r =.(2)存在常数0M > 使得 11max (,)min (,).u x y M u x y ΩΩ≤。
格林函数法
格林函数(Green's Function)是描述物理系统状态之间相互转换和
其它类型的转换的一种函数,用来解决系统的边界值问题。
它可以通过物
理系统的差分方程来解释,也可以用来表征物理系统的任意状态之间的相
互作用。
格林函数可以概括地表示为:当系统处于某一特定状态时,其他
状态的影响,及它们之间的相互作用,以及系统当前状态的演变。
格林函数法可以分为两种:一种是无限空间的,这种方法是通过求解
无限空间的格林函数的衍生值来处理边界值问题;另一种是有限空间的,
这种方法是通过求解有限空间的格林函数的衍生值来处理边界值问题。
格
林函数法可以用来研究物理系统中多种形式的边界值问题,包括边界条件、初始条件、响应函数、激励函数、反应函数等。
此外,它还可以用来估计
未知量、估计系统参数、构造信号处理过程和对边界条件进行约束等。
第5章格林函数法格林(Green)函数,又称为点源影响函数,是数学物理中的一个重要概念.格林函数代表一个点源在一定的边界条件下和初始条件下所产生的场.知道了点源的场,就可以用叠加的方法计算出任意源所产生的场.格林函数法是解数学物理方程的常用方法之一.5.1 格林公式TΣ上具有连续一阶导数,在区域及其边界中具有连续二阶导数,应用矢量分析的高斯定理d d T T div =∇∫∫∫∫∫∫i A V =A V (5.1.1)单位时间内流体流过边界闭曲面S 的流量单位时间内V 内各源头产生的流体的总量将对曲面Σ的积分化为体积分d ()d d d T T Tu u V u V u V Σ∇=∇∇=Δ+∇∇∫∫∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.2)()uv u v u v∇=∇⋅+∇以上用到公式称上式为第一格林公式.同理有d ()d d d T T T u u V u V u V Σ∇=∇∇=Δ+∇∇∫∫∫∫∫∫∫∫∫∫∫i i i S v v v v (5.1.3)上述两式相减得到()d ()d Tu u u u V Σ∇−∇=Δ−Δ∫∫∫∫∫i S v v v v的外法向偏导数.5.1.4)为第二格林公式.进一步改写为()d ()d Tu S u u V n Σ∂∂−=Δ−Δ∂∂∫∫∫∫∫ v u v v v n (5.1.4)5.2 泊松方程的格林函数法讨论具有一定边界条件的泊松方程的定解问题.泊松方程()() u f Δ=−r r (5.2.1)(5.2.2)是区域边界Σ上给定的函数.是第一、第二、第三类边界条件的统一描述典型的泊松方程(三维稳定分布)边值问题()()[]()u f u u n αβϕΣΣΔ=−⎧⎪∂⎨+=⎪∂⎩r r r (5.2.3)上沿界面外法线方向的偏导数格林函数的引入及其物理意义引入:为了求解定解问题(5.2.3),我们必须定义一个与此定解问题相应的格林函数0(,)G r r 它满足如下定解问题,边值条件可以是第一、二、三类(,)()[]0G G G n δαβΣΔ=−−⎧⎪∂⎨+=⎪∂⎩00r r r r (5.2.4)()δ−0r r 代表三维空间变量的δ函数,在直角坐标系中其形式为0()()()()x x y y z z δδδδ−=−−−r r 函数前取负号是为了以后构建格林函数方便格林函数的物理意义【2】:在物体内部(T 内)0r 处放置一个单位点电荷,而该物体的界面保持电位为零, 那么该点电荷在物体内产生的电势分布,就是定解问题(5.2.4)的解――格林函数.由此可以进一步理解通常人们为什么称格林函格林函数互易定理:因为格林函数0(,)G r r 代表0r 处的脉冲(或点源)在r 处所产生的影响(或所产生的场),所以它只能是距离0||−r r 的函数,故它应该遵守如下的互易定理:(,)()G G ,=r r r r (5.2.5))得到())d (()())d T u S u G G u V n ∂⋅=Δ−Δ∂∫∫∫r r r (5.2.6)0()]d (()())d ())()()]d T G u S G u u G Vf u V δ∂−⋅=Δ−Δ∂−+−∫∫∫r r r r r r r n (5.2.7)根据δ函数性质有:00()()]d ()T u V u δ−=∫∫∫r r r r (5.2.8)故有0(,)()]d G u S ∂−∂r r r)r n (5.2.9)泊松方程的基本积分公式.00000000((,))d [(,)()]d u G V G u S n Σ∂∂+−∂∂∫∫ r )r r r r r n 格林函数满足互易定理并利用格林函数的对称性则得到(5.2.10)解的基本思想:通过上面解的形式(5.2.9)我们容易观察出引用格林函数的目的:主要就是为了使一个非齐次方程(5.2.1)与任意边值问题(5.2.2)所构成的定解问题转化为求解一个特定的边值问题(5.2.4). 一般后者的解容易求得,通(5.2.9)即可求出(5.2.1)和(5.2.2)定解问题的解.考虑格林函数所满足的边界条件讨论如下:1.第一类边值问题:()()|()u f u ϕΣΣΔ=−⎧⎨=⎩r r r (5.2.11)相应的格林函数0(,)G r r 是下列问题的解:000(,)(-)(,)|0 G G δΣΔ=−⎧⎨=⎩r r r r r r (5.2.12)考虑到格林函数的齐次边界条件,由公式(5.2.9)可得第一类边值问题的解000(,)()(,)()d ()d T G u G f V S ϕΣ∂=−∂∫∫∫∫∫ nr r r r r r r (5.2.13)另一形式的第一类边值问题的解000(,)()d G S ∂∂0n r r r (5.2.5)2.第二类边值问题()()|()p u f unϕΣΔ=−⎧⎪∂⎨=⎪∂⎩r r r 是下列问题的解:(5.2.15)00,)|0n Σ=r (5.2.16)5.2.9)可得第二类边值问题解00(,)()d ()(,)d G f V G SϕΣ+∫∫ r r r r r r (5.2.17)3.第三类边值问题()() []()p u f u u n αβϕΣΔ=−⎧⎪∂⎨+=⎪∂⎩r r r 是下列问题的解:(5.2.18)0(,)]0G G n βΣ∂+=∂r r (5.2.19)边值条件,两边同乘以格林函数G(5.2.19)的边值条件的两边同乘以函数u得[]0Gu G nαβΣ∂+=∂G ϕ[]()p uG u G nαβϕΣ∂+=∂r )得到第三类边值问题的解001,)()d ((,)d f V G S ϕβΣ+∫∫ r r r r)r r (5.2.20)格林函数的互易性则得到000001)()d ()(,)d 0f V G S ϕβΣ+∫∫r r r r r (5.2.21)这就是第三边值问题解的积分表示式.右边第一个积分表示区域T 中分布的源0()f r 在r点产生的场的总和.第二个积分则代表边界上的状况对r点场的影响的总和.两项积分中的格林函数相同.这说明泊松方程的格林函数是点源在一定的边界条件下所产生的对于拉普拉斯方程0()0f ≡r 第一边值问题的解为0000(,)()()]d G u S ϕΣ∂=−∂∫∫ r r r r n (5.2.22)第三边值问题的解为1()()(,)d u G S ϕβΣ=∫∫ r r r r (5.2.23)5.3 无界空间的格林函数基本解无界区域这种情形公式(5.2.10)中的面积分应为零,故有000()(,)()d T u G f V =∫∫∫r r r r (5.3.1)选取()u r 和0(,)G r r 分别满足下列方程()()u f Δ=−r r (5.3.2)00(,)(-)G δΔ=−r r r r (5.3.3)5.3.1 三维球对称对于三维球对称情形,我们选取00=r 对(5.3.3)式两边在球内积分)d V(5.3.4)T∫∫∫(5.3.5)5.1.1)得到2(,0)d (,0)d sin d d S S G G V G r r θθϕ∂⋅∇=∇⋅=∂∫∫∫∫ r r S (5.3.6)故有2sin d d (,0)d 1S T G r G V r θθϕ∂=Δ=−∂∫∫∫∫∫ r 使上式恒成立,有2(,0)4π1G r r∂=−∂r 14πcr=+0G →因此0c =,,故得到1(,0)4πG r=r对于三维无界球对称情形的格林函数可以选取为001(,)4π||G =−r r r r (5.3.7)代入(5.3.1)得到三维无界区域问题的解为0(5.3.8)上式正是我们所熟知的静电场的电位表达式5.3.2 二维轴对称情形用单位长的圆柱体来代替球.积分在单位长的圆柱体内进行,即(,0)d ()d TTG V VδΔ=−∫∫∫∫∫∫r r ()d 1V δ=∫∫∫r ,0)d (,0)d SV G =∇∫∫i r SG只是垂直于轴,且向外的分量,所以上式在圆柱体上、下底的面积分为零,只剩下沿侧面的积分,即d d ()d 1T Gr z V r ϕδ=−=−∫∫∫r选取的圆柱的高度为单位长,则很容易得到下面的结果12πG r r∂=−∂11(,0)ln 2πG c r =+r 令积分常数为0,得到11(,0)ln 2πG r=r 0011(,)ln 2π||G =−r r r r (5.3.9))代入式(5.3.1)得到二维无界区域的解为000011()()ln d 2π|S u f S |=−∫∫r r r r。
常微分方程格林函数一、常微分方程格林函数的定义和性质1.定义:常微分方程格林函数是指满足下列条件的函数G(x,ξ):(1) 在区间[a, b]内满足方程L[G(x, ξ)] = δ(x - ξ),其中L是一个线性常微分方程算子,δ(x - ξ)是Dirac函数。
(2)在区间[a,b]的边界条件满足G(a,ξ)=0和G(b,ξ)=0。
2.性质:(1)格林函数满足齐次线性常微分方程,即L[G(x,ξ)]=0。
(2)格林函数对自变量x,线性非齐次项f(x)和边界条件的依赖关系是线性的,即G(x,ξ)=C1(x)G1(x,ξ)+C2(x)G2(x,ξ)+···+Ct(x)Gt(x,ξ),其中G1(x,ξ),G2(x,ξ),···,Gt(x,ξ)是齐次方程L[u]=0的基本解,并且C1(x),C2(x),···,Ct(x)是待定系数。
二、求解常微分方程格林函数的方法1. 变量分离法:对于一些特殊的线性常微分方程,可以通过变量分离法来求解其格林函数。
例如,对于一阶齐次线性常微分方程Lu = u' + p(x)u = 0,我们可以通过变量分离法得到格林函数为G(x, ξ) = Ce^{-\int p(x')dx'}。
2.分段函数法:对于一些特殊的线性常微分方程,可以使用分段函数法来求解其格林函数。
例如,对于二阶齐次线性常微分方程Lu=u''+p(x)u'+q(x)u=0,我们可以将格林函数分为三个区域(x<ξ,x>ξ以及x=ξ),然后分别求解,并利用边界条件进行匹配。
3.利用变分法:对于一般的线性常微分方程,可以利用变分法来求解其格林函数。
变分法的基本思想是利用勒贝格定理和部分积分法将变分问题转化为一系列变分方程,进而求解。
这种方法适用于一般情况下的线性常微分方程。