全自动生化分析仪基本知识与应用分解
- 格式:ppt
- 大小:1.86 MB
- 文档页数:88
全自动生化分析仪的原理
全自动生化分析仪是一种用于测定生物样品中各种生物化学指标的仪器。
其原理基于光学、电学、化学和计算机技术的综合应用。
在全自动生化分析仪中,首先需要将待测生物样品加载到仪器中。
该仪器使用自动进样系统,能够精确地控制进样体积和速度,确保样品的准确性和重复性。
接下来,仪器通过光学技术测量光学仪器进入和退出的光线的强度变化来确定生化指标的浓度。
例如,利用光谱分析,仪器可以通过测量样品对特定波长的光的吸收或透射,来确定测定物质的浓度。
此外,仪器还使用电学技术来测量电子或离子的电流,从而确定样品中电子或离子的浓度。
这种电学测量可以用于测定一些离子浓度,如钠离子、钾离子和氯离子的浓度等。
在化学方面,仪器可以通过反应试剂与样品中的目标物质反应,产生可测量的变化。
例如,仪器可以利用酶促反应,通过测量与之相关的酶活性来确定某种生化指标的浓度。
最后,通过计算机技术,仪器能够将测得的数据进行处理和分析,然后输出最终的检测结果。
计算机可以根据预先设定的算法和标准曲线,将测定的光学或电学信号转化为浓度值或其他相关指标。
总之,全自动生化分析仪通过应用光学、电学、化学和计算机技术综合作用,能够快速、准确地测定生物样品中的各种生化指标,并为临床医学、生物学研究等领域提供了强有力的工具。
全自动生化分析仪的原理、构成及使用全自动生化分析仪的原理、构成及使用全自动生化分析仪的原理、构成及使用一、全自动生化分析仪的功能及特点全自动生化分析仪是将生化分析中的取样、加试剂、混合、保温、比色、结果计算、书写报告等步骤的部分或全部由模仿手工操作的仪器来完成。
它可进行定时法、连续监测法等各种反应类型的分析测定。
除了一般的生化项目测定外,有的还可进行激素、免疫球蛋白、血药浓度等特殊化合物的测定以及酶免疫、荧光免疫等分析方法的应用。
它具有快速、简便、灵敏、准确、标准化、微量等特点。
二、全自动生化分析仪的分类全自动生化分析仪有多种分类方法,最常用的是按其反应装置的结构进行分类。
按此法可将全自动生化分析仪分为流动式和分立式两大类。
所谓流动式全自动生化分析仪是指测定项目相同的各待测样品与试剂混合后的化学反应在同一管道流动的过程中完成。
这是第一代全自动生化分析仪。
过去说得多少通道的生化分析仪指的就是这一类。
存在较严重的交叉污染,结果不太准确,现已淘汰。
分立式全自动生化分析仪与流动式的主要差别是每个待测样品与试剂混合间的化学反应都是分别在各自的反应皿中完成的,不易出现较差污染,结果可靠。
三、全自动生化分析仪的构成因为全自动生化分析仪是模仿手工操作的过程,所以无论哪一类的全自动生化分析仪,其结构组成均与手工操作的一些器械设备相似,一般可有以下几个部分组成:1、样品器:放置待测样本、标准品、质控液、空白液和对照液等。
2、取样装置:包括稀释器、取样探针和输送样品和试剂的管道等。
3、反应池或反应管道:一般起比色皿(管)的作用。
4、保温器:为化学反应提供恒定的温度。
5、检测器:如比色计、分光光度计、荧光分光光度计、火焰光度计、电化学测定仪等。
不同仪器配置不同。
6、微处理器:是分析仪的电脑部分,又叫程序控制器。
控制仪器所有的动作和功能,使用者可通过键盘与仪器“对话”,同时电脑还能接受从各部件反馈来的信号,并作出相应的反应,对异常情况发出一定的指示信号。
全自动生化分析仪全自动生化分析仪是依据光电比色原理来测量体液中某种特定化学成分的仪器。
由于其测量速度快、精准性高、消耗试剂量小,现已在各级医院、防疫站、计划生育服务站得到广泛使用。
搭配使用可大大提高常规生化检验的效率及收益。
目录定义生化仪测定的方法生化仪测定相关内容重要特点生化仪检验的原理测试项目滤光片与光栅的比较重要部件生化仪生产厂家定义生化分析仪:用于检测、分析生命化学物质的仪器,给临床上对疾病的诊断、治疗和预后及健康状态供给信息依据。
光学系统:是ACA的关键部分。
老式的ACA系统采纳卤钨灯、透镜、滤色片、光电池组件。
新式ACA系统光学部分有很大的改进,ACA 的分光系统因其光位置不同有前分光和后分光之分,目前,先进的光学组件在光源与比色杯之间使用了一组透镜,将原始光源灯投射出的光通过比色杯将光束变成光速(这与传统的契型光束不同),这样,即使比色杯再小,点光束也能通过。
与传统方法相比,能节省试剂消耗40—60%。
点光束通过比色杯后,在经这一组还原透镜(广差矫正系统),将点光束还原成原始光束,在经光栅分成固定的若干种波长(约10种以上波长)。
采纳光/数码信号直接转换技术即将光路中的光信号直接变成数码信号。
将电磁波对信号的干扰及信号传递过程中的衰减完全除去。
同时,在信号传输过程中采纳光导纤维,使信号达到无衰减,测试精度提高近100倍。
光路系统的封闭组合,又使得光路无需任何保养,且分光精准、寿命长。
恒温系统:由于生物化学反应时温度对反应结果影响很大,故恒温系统的灵敏度、精准度直接影响测量结果。
早期的生化仪器采纳空气浴的方法,后来进展到集干式空气浴与水浴优点于一身的恒温液循环间接加温干式浴。
其原理是在比色杯四周设计一恒温槽,在槽内加入一种无味、无污染、不蒸发、不变质的稳定恒温液,恒温液的容量大,热稳定性好、均匀。
在比色杯不直接接触恒温液,克服了水浴式恒温易受污染和空气浴不均匀、不稳定的特点。
全自动生化分析仪样品反应搅拌技术和探针技术:传统的反应搅拌技术采纳磁珠式和涡旋搅拌式两种。
全自动生化仪使用说明书ECHOPLUS全自动生化分析仪(中文)使用说明书目录1.概述 (1)1.1 组成 (1)1.2 原理 (2)1.3 技术参数 (2)1.4 电源及工作环境要求 (3)1.5 注意事项 (3)2.安装 (3)2.1 仪器安装要求 (3)2.2 仪器安装 (3)2.3 软件安装 (4)2.4 仪器调试 (4)3.操作 (5)3.1 开机 (5)3.2 准备 (6)3.3 检测编程 (8)3.4 检测 (10)3.5 结果修正 (12)3.6 病人信息输入 (14)3.7 工作结束 (16)3.8 关机 (16)4.软件其它功能说明 (16)4.1 生化检验项目设置 (16)4.2 急诊功能 (17)4.3 病人信息查询功能 (18)4.4 检测数据动态分析 (19)4.5 质控管理 (20)4.6 其它检测项目设置 (22)4.7 系统登记管理 (23)4.8 检测管理 (25)5.保养与维护 (28)5.1 保养 (28)5.2 常见问题及故障排除 (28)5.3 更换配件 (29)6.禁忌症 (30)7.试剂 (31)8.储存与运输 (31)9.附录 (31)1. 概述1.1 组成全自动生化分析仪由主机和全自动生化分析仪操作软件组成。
主机的结构组成:a )加样部分:主要包括试剂盘、试剂瓶、样品盘、样品杯、加样臂、加样针及加样器;b )吸样部分:包括反应盘、反应槽、吸样臂和1根吸样针;c )检测部分:光学系统、1个比色池,1个光电转换器。
计算机及外设:a)CPU≥2.4GHz,WINDOWS XP操作系统;b)内存512M以上;64M独立显卡;c)硬盘40G以上;d)显示器分辨率为1024×768;e)喷墨/激光打印机。
1.2 原理仪器由光源灯发出的光经平行处理后,通过滤光片分光,透过比色池吸收,部分光经被测物质吸收,剩余的光由检测器接收,经放大及摸拟/数字转换后由微机进行处理、计算,并由显示器和打印机显示打印出最终测定结果。
方法及参数有关的知识1、导向知识:生化分析仪的基本原理是分光光度计,或者俗称比色计.分光光度计的依据是“朗伯—比尔定律”。
朗伯—比尔定律阐述了液体吸光度与液体浓度的关系,并且引申出相应的公式及推导公式。
吸光度越高,溶液的色度也就越深,反之越浅。
当然前提是同波长下.一般来说,生化反应把吸光度增加的叫做正反应,或者叫做上升反应,色度越来越深;吸光度下降的反应叫做负反应或者下降反应,色度越来越浅.应用和维修的界限其实很难划分,一般来说操作问题属于应用,故障属于维修。
但结果问题有可能是应用问题,也有可能是故障,所以生化仪区分应用和维修我认为纯属找麻烦。
2、生化的测试方法:从分光光度计的方法来说,有透射和散射两种方法,生化仪只用到透射法,因为它只有一套光路。
贝克曼的自有机型和特定蛋白仪及免疫类血凝类设备,还增加有散射法等等.生化的测试方法只有两种,那就是终点法和速率法,其余方法都是衍生法。
而单试剂或者双试剂与否与方法关系不大,只跟衍生法有关。
2。
1 终点法顾名思义,在反应终点进行吸光度测定的方法,其衍生方法有一点终点法,对应单试剂;两点终点法对应双试剂.还有一些相关的概念:试剂空白、血清空白。
先声明一下,下面出现的所有例图都是选自日立、奥林巴斯、东芝、拜耳这些生化仪的手册,选择的目的一是有代表性,而是清晰度好,并非我个人有所倾向。
2。
2 一点终点法:也就是单试剂采用的方法.这是奥林巴斯的曲线示意图,它是R1+S方式,所有生化仪都是以样本S的加入为正式读点的开始,之前加入的试剂读点都为0或负数。
所有试剂和样本加入后,都进行搅拌。
上图中R1加入搅拌后进行第一个读点吸光度测试,读点编号为0,然后加入样本再次搅拌开始正式读点1-27。
而测试读点是27,也就是反应终点。
当然,不一定非要到最后一个读点,很多蛋白反应速度很快,几分钟就到达终点,所以根据情况设置。
奥林巴斯的机型算是一类机型,与贝克曼自有机型类似,R和S间隔读点,也正是这个特性引发了试剂空白和血清空白的应用。