研究生数值分析(11)雅可比(Jacobi)迭代法
- 格式:ppt
- 大小:337.50 KB
- 文档页数:42
雅可比迭代公式雅可比迭代公式是一种在数值分析中用于求解线性方程组的迭代方法。
咱先来说说这个雅可比迭代公式到底是啥。
比如说,咱有一个线性方程组,像这样:\[\begin{cases}3x - y + z = 7 \\x + 2y - z = 1 \\x - y + 3z = 3\end{cases}\]雅可比迭代公式就是通过一次次的计算来逐渐逼近这个方程组的解。
咱们把这个方程组改写成下面这样:\[\begin{cases}x = \frac{1}{3}(7 + y - z) \\y = \frac{1}{2}(1 - x + z) \\z = \frac{1}{3}(3 - x + y)\end{cases}\]然后,咱就可以开始迭代啦。
先随便给 x、y、z 赋个初值,比如说都设成 0 。
第一次迭代,把初值代入上面的式子算新的值。
就这么一次次算下去,慢慢地,x、y、z 的值就会越来越接近真正的解。
我记得之前给学生们讲这个雅可比迭代公式的时候,有个学生特别有意思。
那是个挺机灵的小男孩,叫小明。
刚开始讲的时候,他一脸迷茫,完全没听懂。
我就给他举了个买糖果的例子。
假设小明有一笔零花钱,准备去买三种糖果,巧克力、水果糖和牛奶糖。
巧克力糖3 块钱一颗,水果糖2 块钱一颗,牛奶糖3 块钱一颗。
小明一共只有 11 块钱,而且他有个想法,就是买的巧克力糖的数量是水果糖和牛奶糖数量总和的三分之一,水果糖的数量是巧克力糖和牛奶糖数量总和的二分之一,牛奶糖的数量是巧克力糖和水果糖数量总和的三分之一。
这时候,咱们不知道每种糖到底买多少颗,那就先随便猜个数。
比如说,先猜巧克力糖买 0 颗,水果糖买 0 颗,牛奶糖也买 0 颗。
然后按照前面说的关系来调整。
第一次调整,算出来巧克力糖应该买 11/3 颗,水果糖应该买 11/4 颗,牛奶糖应该买 11/9 颗。
当然啦,糖可不能买零点几颗,这只是个计算过程。
就这么一次次调整,最后就能算出比较接近真实情况的答案啦。
jacobi迭代法原理一、引言Jacobi迭代法是一种数值方法,用于解线性方程组。
它是一种简单而又实用的方法,可以在计算机上高效地实现。
本文将详细介绍Jacobi 迭代法的原理。
二、线性方程组在介绍Jacobi迭代法之前,我们先来了解一下线性方程组。
一个线性方程组可以表示为:A*x = b其中A是一个n×n的矩阵,x和b是n维列向量。
我们的目标是求解x。
三、Jacobi迭代法的基本思想Jacobi迭代法的基本思想是将矩阵A分解为两个部分:D和R。
其中D是A的对角线部分,R是除对角线外的部分。
例如,对于下面这个3×3的矩阵:A = [4 1 0; 1 4 1; 0 1 4]我们可以将其分解为:D = [4 0 0; 0 4 0; 0 0 4]R = [0 -1 0; -1 0 -1; 0 -1 0]然后我们可以将原方程组表示为:(D+R)*x = b进一步化简得到:D*x = b - R*x这就是Jacobi迭代法的基本式子。
四、Jacobi迭代法的算法流程Jacobi迭代法的算法流程如下:1. 将矩阵A分解为D和R。
2. 初始化x为一个任意的向量。
3. 对于每个迭代步骤,计算新的x值:x(i) = (b(i) - R(i)*x(i-1)) / D(i,i)4. 重复第3步,直到收敛。
五、Jacobi迭代法的收敛性Jacobi迭代法并不总是能够收敛。
如果矩阵A不满足对角线严格占优条件,则可能会出现发散的情况。
对于一个n×n的矩阵A,如果它满足以下条件之一,则称其为对角线严格占优:1. 对于所有i=1,2,...,n,有|a(i,i)| > ∑|a(i,j)| (j≠i)2. 对于所有i=1,2,...,n,有|a(i,i)| > ∑|a(j,i)| (j≠i)如果矩阵A满足对角线严格占优条件,则Jacobi迭代法一定会收敛。
六、Jacobi迭代法的优缺点Jacobi迭代法具有以下优点:1. 简单易懂:相较于其他数值方法,Jacobi迭代法更加简单易懂。
jacobi迭代法原理Jacobi迭代法是一种解线性方程组的方法,用于求解形如Ax=b的线性方程组。
其基本原理是通过迭代逼近的方法逐步优化解的精度,直至满足所需的精度要求。
假设我们要求解的线性方程组为n个未知数,即有n个方程。
Jacobi迭代法的关键思想是将每个未知数的解按照某种次序进行更新,并且在更新过程中以当前的解作为项的更新依据,而不是使用“全局”的解。
首先,我们将线性方程组表示为一个矩阵形式:Ax=b,其中A是n×n的系数矩阵,x是n×1的未知数向量,b是n×1的常数向量。
然后,我们将A矩阵分解为两个矩阵D和R,其中D是A的对角线矩阵,R是A去掉对角线元素后的剩余矩阵。
即A=D+R。
接下来,我们将方程组改写为迭代的形式:Dx^{(k+1)} = -R*x^{(k)} + b,其中x^{(k)}表示第k次迭代的解。
根据上述迭代公式,我们可以得到每次迭代的更新公式为x_i^{(k+1)} = (-1/D_{ii}) * (Sum(R_{ij} * x_j^{(k)}) - b_i),其中Sum表示对j的求和,i表示第i个未知数。
Jacobi迭代法的迭代过程就是根据上述更新公式,依次对每个未知数进行更新,直至解满足所需精度要求或达到最大迭代次数。
需要注意的是,为了Jacobi迭代法的收敛,系数矩阵A中的对角线元素必须非零,并且非对角线元素的绝对值之和必须小于每个对角线元素的绝对值。
总的来说,Jacobi迭代法通过逐个更新未知数的解,通过迭代逼近的方式求解线性方程组。
它的优点是易于理解和实现,但缺点是收敛速度较慢,对于大型问题可能需要较多的迭代次数。
雅可比迭代法原理雅可比迭代法(Jacobi Iteration Method)是一种用于线性方程组迭代求解的方法。
它广泛应用于数值计算和科学工程领域,特别在计算机模拟和科学计算中得到了广泛应用。
雅可比迭代法通过将线性方程组表达为矩阵形式,并不断迭代更新估计解向量,最终求得线性方程组的精确解或者近似解。
设有一个n阶方程组表达为Ax=b,其中A是一个n×n的系数矩阵,x是一个n维向量,b是一个n维向量。
雅可比迭代法的思想是通过迭代过程逐步逼近方程组的解。
首先,我们将方程组转化为x的显式表达式。
假设矩阵A对角线上的元素都不为0(这是雅可比迭代法的一个限制条件),方程组的第i个方程可以表达为:xi = (bi - Σaijxj) / aii其中,a_ij表示A的第i行第j列的元素。
然后,我们假定一个初始解向量x^(0)。
迭代过程则是通过反复使用上述方程表达式,不断更新解向量x,直到收敛到一个满足精度要求的近似解。
雅可比迭代法的公式表达为:x^(k+1)_i = (bi - Σa_ijx^k_j) / a_ii其中,k表示迭代过程的次数,k+1表示迭代的下一步。
雅可比迭代法的收敛原理是基于对角元素主支配性的分析。
如果A的对角元素主支配于其它元素,即对于每个i,都有,a_ii,> Σ,a_ij,(i ≠j),那么雅可比迭代法是收敛的。
在实际应用中,我们通常会通过编写程序或者使用现有的数值计算软件来求解方程组,并进行相应的误差分析。
雅可比迭代法的优点之一是简单易实现,容易理解。
它不需要对矩阵进行变换,只需要进行一系列的矩阵乘法和向量加法操作,因此它的计算量相对较小。
此外,雅可比迭代法还能有效解决病态问题,即系数矩阵A 的条件数很大的情况。
然而,雅可比迭代法也有一些缺点。
首先,它的收敛速度相对较慢,特别是对于条件数很大的矩阵。
其次,迭代过程必须保证A的对角元素都不为0,否则无法进行迭代。
并且,迭代的停止条件需要合适地选择,不然可能陷入无限循环。
jacobi迭代计算式Jacobi迭代是一种求解线性方程组的迭代方法。
它可以用于求解大规模的线性方程组,并且具有较好的收敛性和稳定性。
在这篇文章中,我们将介绍Jacobi迭代的原理和应用。
我们来看一下Jacobi迭代的基本原理。
对于一个n阶线性方程组Ax=b,其中A为方阵,b为常向量,Jacobi迭代的基本思想是将方程组转化为x=D^{-1}(b-Rx),其中D为A的对角矩阵,R为A 的非对角矩阵。
然后,我们可以通过不断迭代的方式求解x的近似解。
Jacobi迭代的迭代公式为x^{(k+1)}=D^{-1}(b-Rx^{(k)}),其中x^{(k)}为第k次迭代的近似解,k为迭代次数。
通过不断迭代,我们可以得到x的逼近解。
接下来,我们来看一下Jacobi迭代的应用。
Jacobi迭代广泛应用于科学计算和工程领域,特别是在求解大规模线性方程组时具有一定的优势。
它可以用于求解电力系统潮流计算、结构力学计算、流体力学计算等领域的问题。
例如,在电力系统潮流计算中,Jacobi迭代可以用于求解节点电压和节点功率的关系。
通过迭代计算,可以得到电力系统各个节点的电压和功率的近似值,从而分析电力系统的稳定性和安全性。
Jacobi迭代还可以应用于结构力学计算中的应力分析。
通过迭代计算,可以得到结构体系中各个节点的应力分布情况,从而分析结构的强度和稳定性。
在流体力学计算中,Jacobi迭代可以用于求解流体流动的速度场和压力场。
通过迭代计算,可以得到流体流动过程中各个位置的流速和压力的近似值,从而分析流体流动的规律和特性。
需要注意的是,Jacobi迭代的收敛性和稳定性与矩阵A的特征值有关。
如果矩阵A的特征值分布不合理,Jacobi迭代可能会出现不收敛或收敛速度很慢的情况。
因此,在实际应用中,需要对矩阵A进行合理的预处理,以提高迭代的收敛性和稳定性。
Jacobi迭代是一种求解线性方程组的有效方法。
它具有较好的收敛性和稳定性,并且可以广泛应用于科学计算和工程领域。
------------------------------------------------ 装 ---------------------------------订 ---------------------------------线 ------------------------------------------------装 订 线 左 侧 不 要 书 写 内 容允许使用计算器一、 填空题 (本大题共10小题,每小题 2分,共 20分)1. 若2.71828x e == ,取近似值* 2.7180x =,则*x 具有 4 位有效数字。
2.为了提高数值计算精度,应将8格式进行计算。
3.已知n=3时牛顿—柯特斯系数(3)(3)(3)012133,,888C C C ===,那么(3)3C =18 。
4.设3()1f x x x =+-,则函数的四阶差商[0,1,2,3,4]f = 0 。
5. 用牛顿迭代法解方程0x x e --=在0.5x =附近的近似实根的牛顿迭代格式为)1,0(e 1e )()(1=+--='-=--+n x x x f x f x x nnx x n n n n n n6. 对给定的剖分01:n a x x x b ∆=<<<= ,当()s x 满足条件 ()s x 在[a,b]有2阶连续导数且在每个子区间上是个3次多项式 时是三次样条函数。
7.用最小二乘法拟合三点()()()0,1,1,3,2,2A B C 的直线是1322y x =+。
8.向量序列()211cos ,sin ,3Tk k x e k k k k -⎛⎫=+ ⎪⎝⎭ 的极限向量为()0,1,3T9.求积公式 10311()()(1)434f x dx f f ≈+⎰的代数精度为 2 。
10.若绝对误差限为31102-⨯,那么近似数0.03600有 2 位有效数字二、单项选择题(本大题共5小题,每小题 2 分,共 10分)1. 已知实验数据555521111(,)(1,2,3,4,5),15,31,55,105.5,k k k k kk k k k k k x y k x y x x y =========∑∑∑∑其中则用最小二乘法求近似公式01y a a x =+的法方程为( C )A 0101153155105.5a a a a +=⎧⎨+=⎩B 0101515551531105.5a a a a +=⎧⎨+=⎩C 0101515311555105.5a a a a +=⎧⎨+=⎩ D0101531153155105.5a a a a +=⎧⎨+=⎩ 2. 以下矩阵是严格对角占优矩阵的是( B )A 3210141011410012⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭ B 2100131013610113-⎛⎫⎪--⎪ ⎪-- ⎪-⎝⎭C 5210113121410012-⎛⎫⎪--⎪ ⎪⎪⎝⎭D 4211141021411315⎛⎫⎪ ⎪⎪- ⎪⎝⎭3.已知两种递推公式11(1)35(1,2,,20)31(2)(20,,1)55n n n n I nI n I I n n n--=-==-= 则在数值计算过程中( C )。
雅克比迭代法python
-Jacobi迭代法是一种数值计算技术,用于求解非线性系统的迭代方法。
它将
非线性系统拆解为若干个独立的一维或二维子系统,利用迭代过程不断迭代地改进参数,最终收敛到满足约束条件的最优解。
Jacobi迭代法有利于在非线性系统中有效求解问题,它具有以下特点:
1、计算简单:Jacobi迭代法只需要计算每次迭代的细节,不需要求解任何解析表
达式,这种迭代方法可以有效地减少计算量和计算时间;
2、易编译:Jacobi迭代法只需要将等式离散化,然后对每组等式进行迭代,在程
序上比较容易编译;
3、稳定性好:Jacobi迭代法能够很快地收敛到最优解。
因此,Jacobi迭代法在不断优化的求解参数的过程中,以及优化非线性系统
的运算效率上,都具有较高的效率和准确度。
它的优势在于计算简单性和高效的稳定性,可以有效地提升计算效率,作为从大规模非线性系统中求解问题的一种技术,它在机器学习、信号处理、图像处理、线性系统控制、建模和函数优化等诸多领域都得到了广泛应用,受到学术界和实际应用界的高度重视。
jacobi迭代法解析:原理与应用标题:Jacobi迭代法解析:原理与应用导语:在数值计算和线性代数中,Jacobi迭代法是一种常用的迭代方法,用于解决线性方程组。
本文将深入探讨Jacobi迭代法的原理、应用和相关领域的研究,以帮助读者对这一数值算法有更全面和深刻的了解。
一、Jacobi迭代法介绍1.1 基本原理Jacobi迭代法是一种迭代法,用于求解线性方程组Ax = b,其中A是一个方阵,x和b是向量。
该方法通过不断迭代计算逼近线性方程组的解,直至满足预设的精度要求。
1.2 迭代公式详细介绍Jacobi迭代法的迭代公式,包括终止条件和迭代收敛性分析。
1.3 算法流程介绍Jacobi迭代法的算法流程和步骤,以及如何选择合适的初始解向量和迭代次数。
1.4 算法复杂性分析分析Jacobi迭代法的时间和空间复杂性,以便读者可以评估它在实际问题中的应用可行性。
二、Jacobi迭代法的应用2.1 线性方程组求解探讨Jacobi迭代法在解决大规模线性方程组时的应用,包括稀疏矩阵和高度并行计算环境下的性能优化。
2.2 特征值求解介绍Jacobi迭代法在计算特征值和特征向量时的应用,以及与其他方法(如幂法和QR算法)的比较和优势。
2.3 图划分与图分割探讨Jacobi迭代法在图划分和图分割问题中的应用,以及如何利用迭代过程提高划分结果的质量。
2.4 数值模拟与优化讨论Jacobi迭代法在数值模拟和优化问题中的应用,如流体力学、结构力学和优化设计等领域。
三、Jacobi迭代法的扩展与改进3.1 并行Jacobi迭代法介绍并行Jacobi迭代法的思想和实现策略,包括数据并行和任务并行,并讨论其对迭代收敛性和算法效率的影响。
3.2 加速算法与预条件技术探讨Jacobi迭代法的加速算法和预条件技术,如超松弛迭代法(SOR)、不完全LU分解和多重网格方法等,以加快迭代收敛速度和提高求解精度。
3.3 进一步的应用领域介绍Jacobi迭代法在其他领域的应用,如图像处理、信号处理和机器学习等,并指出其优势和适用性。
雅克比迭代法马来西亚雅克比迭代法(Marey Jacobs Iterative Method)是一种功能最优化的数值分析方法,又称无约束最优化算法,其目的是找到函数最优值,这是一种全局最优解法,可以有效求解多变量非线性方程和非凸优化问题。
1. 雅克比迭代法的概念雅克比迭代法是数值分析方法的一种,他可以搜索多变量非线性函数的最优值。
该方法的核心思想是:在每次迭代中,通过计算函数的梯度(或偏导数)来找到新的最优值,以及搜索方向。
它基于雅克比矩阵求解多元非线性方程组,需要迭代计算,来自动找到变量最优值点,比如从一个初始点开始,沿着局部函数增加最快的方向,一直搜索到某一程度,就可以得到全局最优结果。
2. 雅克比迭代法的特点①雅克比迭代法可以基于非凸优化,这就使得在多元变量函数中找到最优解更加容易。
②它的收敛速度极快,一般只需一定的迭代周期就可以解出比较精确的解。
③雅克比迭代法具有很大的数值稳定性,它可以适应多元函数的各种变化而取得精确的结果。
3. 雅克比迭代法的应用(1)雅克比迭代法可以用于非线性最优化,用于非线性方程组和非凸优化问题。
(2)它可以用于解决多元、非线性优化问题,特别是在功能最优化技术中经常应用。
(3)它广泛应用于多目标最优化,在这种问题中,可以使用雅可比迭代法来求解最优值。
(4)它可以有效地解决期望、约束类优化问题,其中,约束可以通过增加惩罚函数的系数来改变。
4. 雅克比迭代法的缺点(1)雅可比迭代法的最佳初值特征和求解准确度有较大的依赖,这意味着对于不同的情况,要使用不同的参数,这就耗费了较多的时间;(2)雅可比迭代法因为受函数从原点出发的假定条件,所以只能较不理想的收敛到局部最优解,而不能较好的收敛到全局最优解;(3)雅可比迭代法实现起来较为复杂,对于复杂的非凸优化问题,往往可能导致求解的困难;(4)雅可比迭代法有一定的假定条件,一旦这些假定发生变化,那么最终计算出的结果就可能发生改变。
雅可比迭代法一、引言雅可比迭代法,也称为雅可比算法(Jacobi method),在科学计算领域中应用很广泛,本文重点讲述该算法在迭代进化计算中的应用。
20世纪40年代初,由美国数学家Jacobi和瑞士数学家可夫等人创造。
雅可比迭代法主要步骤如下: 1、初始化; 2、选择一种迭代策略; 3、按照迭代策略执行相应的操作,直至收敛; 4、调整参数使迭代过程收敛,得到最终的收敛速度。
下面将详细介绍这个方法的原理及过程。
1、初始化“雅可比”是一个美国人,因此他不会使用编程来实现自己的想法,但是他对于迭代法非常了解,曾经使用编程来解决两个公开的问题,一个是阿基米德与公元前250年的欧几里德的问题,另一个是荷兰金属铸件需要多少时间来铸成一个合金块。
他研究过可以提高计算效率的任何技术。
20世纪30年代初, Jacobi发现一些只能运行到第n次的迭代法并没有提供尽可能快的收敛速度。
因此,他决定编写一个运行到第n+1次的迭代法,通过检查某种程序的输入输出情况,就可以预测当前执行到哪一步。
2、选择一种迭代策略在给定初始条件,一共有m次迭代,该迭代法一定满足下列条件之一:直到十年后的1973年, Jacobi在美国数学学会会议上才正式提出了雅可比算法(Jacobi algorithm),而且仅仅限于这个算法本身,并没有对它加以推广,由此可见, Jacobi选择这样一种渐进的发展策略,也许是出于性格上的稳健吧。
3、按照迭代策略执行相应的操作如果你想设计一种运行到第n+1次的迭代法,那么你要选择使计算复杂度为O(n^n)。
的策略(L(n))。
注意(1)此处的复杂度是以数字的形式来表示的;(2)它是针对每一次迭代的计算复杂度。
然后再选择一个初值使函数值在第m次迭代时满足O(n^m)。
3、调整参数使迭代过程收敛,得到最终的收敛速度雅可比迭代法一般情况下,迭代算法的目标函数不收敛,就需要对参数进行调整,而使算法收敛,如果把迭代速度函数和梯度算法进行比较,就可以知道梯度算法存在算法收敛性问题,而雅可比迭代法是满足这一要求的。
jacobi迭代法
Jacobi迭代法是常见的数值计算中解线性方程组的方法之一,它是一种迭代式方法。
Jacobi迭代法主要用于近似解决线性方程组,它是以变步长的简单迭代方法,以求解高维空间的线性方程组。
Jacobi迭代法的基本思想是,使用当前近似解求解未知数,其数学模型为Ax=b,将x分解为x=x0+dx,其中dx为增量,前面先确定x0,求解dx,新近似解为x0+dx。
Jacobi迭代法的具体步骤是:给定问题的数学模型Ax=b,确定初值xi(0)(i=1,2,…,n),用Aijxj(k)=bi-Σ(i≠j)Aijxj (k)计算第i个未知数的新近似解xi (k+1),代入上一次的新近似解作为右边的初值,重复上述过程,即可以得到新的xi(k+1)。
Jacobi迭代法的主要优点是计算简单,实现容易,需要的存储空间少,因此被广泛应用于解线性方程组。
但是,Jacobi迭代法的收敛性能较差,如果迭代次数太多,会使计算效率降低。
因此,Jacobi迭代法在数值计算中由其算法本身的简单性及其低纬度和低存储量得以广泛使用,其计算过程也由此得到优化。
但是,该迭代法局限于其较差的收敛性能,必须谨慎使用以防超过预定的最大迭代数。
雅克比迭代法原理雅可比迭代法原理雅可比迭代法(Jacobi iteration)是一种用于求解线性方程组的迭代方法。
它的核心思想是将线性方程组的解逐个更新,直至满足一定的收敛条件为止。
雅可比迭代法广泛应用于科学计算、工程领域以及计算机图形学等领域。
雅可比迭代法的基本原理是将线性方程组的每个未知数的取值视为其他未知数的函数,并通过迭代的方式逐步逼近真实解。
具体步骤如下:1. 首先,将线性方程组的系数矩阵分解为对角矩阵和剩余矩阵,其中对角矩阵的对角线元素为原系数矩阵的对角线元素,其余元素为零;剩余矩阵则由原系数矩阵的非对角线元素组成。
2. 然后,将线性方程组表示为雅可比迭代格式,即将每个未知数的取值表示为其他未知数的函数。
例如,对于一个三元线性方程组: a11x1 + a12x2 + a13x3 = b1a21x1 + a22x2 + a23x3 = b2a31x1 + a32x2 + a33x3 = b3可以将其表示为:x1(k+1) = (b1 - a12x2(k) - a13x3(k)) / a11x2(k+1) = (b2 - a21x1(k) - a23x3(k)) / a22x3(k+1) = (b3 - a31x1(k) - a32x2(k)) / a33其中,k表示迭代次数,x1(k+1)表示第k+1次迭代后的x1的取值。
3. 接下来,根据上述迭代格式,选取一个初始解向量,通常选择一个近似解或全零向量。
然后,将初始解代入迭代格式,计算得到新的解向量。
4. 重复进行第3步,直到满足收敛条件为止。
在每次迭代中,通过更新每个未知数的取值,逐步逼近真实解。
常用的收敛条件有迭代次数、两次迭代解向量的差的范数、残差等指标。
雅可比迭代法的优点是简单易实现,收敛性较好。
然而,它也存在一些限制。
首先,它要求方程组的系数矩阵是对角占优的,否则可能导致收敛速度很慢甚至不收敛。
其次,雅可比迭代法的收敛速度较慢,特别是对于条件数较大的方程组,需要较多的迭代次数才能达到精度要求。
数值分析-雅克⽐迭代法雅克⽐迭代法雅克⽐迭代法就是众多迭代法中⽐较早且较简单的⼀种,其命名也是为纪念普鲁⼠著名数学家雅可⽐。
雅克⽐迭代法的计算公式简单,每迭代⼀次只需计算⼀次矩阵和向量的乘法,且计算过程中原始矩阵A始终不变,⽐较容易并⾏计算。
迭代过程⾸先将⽅程组中的系数矩阵A分解成三部分,即:A = L+D+U,如图1所⽰,其中D为对⾓阵,L为下三⾓矩阵,U为上三⾓矩阵。
之后确定迭代格式,X^(k+1) = B*X^(k) +f ,(这⾥^表⽰的是上标,括号内数字即迭代次数),如图1所⽰,其中B称为迭代矩阵,雅克⽐迭代法中⼀般记为J。
(k = 0,1,…)再选取初始迭代向量X^(0),开始逐次迭代。
收敛性设Ax= b,其中A=D+L+U为⾮奇异矩阵,且对⾓阵D也⾮奇异,则当迭代矩阵J的谱半径ρ(J)<1时,雅克⽐迭代法收敛优缺点雅克⽐迭代法的优点明显,计算公式简单,每迭代⼀次只需计算⼀次矩阵和向量的乘法,且计算过程中原始矩阵A始终不变,⽐较容易并⾏计算。
然⽽这种迭代⽅式收敛速度较慢,⽽且占据的存储空间较⼤例题程序算法#include<math.h>#include<stdio.h>#include <stdlib.h>int main(){float e =0.001, z, m, y[3]; float b[3]={-12, 20, 3};float x[3]={0);float a[3][3]={{5, 2, 1},{-1, 4, 2},{2, -3, 10}};int n =3, j, i, k =1;while(1){for(i=0;i<3;i++){for(j=0;j<3;j++)m=m+a[i][j]*x[j];m = m - x[i] * a[i][i]; y[i]=(b[i] - m) / a[i][i]; m =0;}i =0;while(i <3){z = fabs(x[i] - y[i]);if(z > e)break;i++;}if(i !=3){for(i =0; i <3; i++)x[i]= y[i];k++;}else if(i ==3)break;}printf("%f\n%f\n%f\n", y[0], y[1], y[2]);return0;}1求解⽅程:8 * x1 - 3 * x2 + 2 * x3 =204 * x1 - 11 * x2 - x3 =336 * x1 + 3 * x2 + 12 * x3 =36精确解:x1 =0.411817, x2 = -3.176429, x3 =3.588173 --->迭代公式:x1^(k+1)=(3 * x2^(k) - 2 * x3^(k) + 20) / 8;x2^(k+1)=(-4 * x1^(k) + 1 * x3^(k) + 33) / (-11); x2^(k+1)=(-6 * x1^(k) - 3 * x2^(k) + 36) / 12; */#include <stdio.h>#include <stdlib.h>struct X {float x1;float x2;float x3;};X jcobi(X&v){X r;r.x1 =(3 * v.x2 - 2 * v.x3 + 20) / 8;r.x2 =(-4 * v.x1 + v.x3 + 33) / (-11);r.x3 =(-6 * v.x1 - 3 * v.x2 + 36) / 12;return r;}void main(){X v={0,0,0};int iteration =20;while(iteration-- >0){v= jcobi(v);v= jcobi(v);}printf("%f\n%f\n%f\n", v.x1, v.x2, v.x3); }。