《高等代数》下05级期末试卷A参考答案
- 格式:doc
- 大小:251.50 KB
- 文档页数:4
南昌大学 2005~2006学年第二学期期末考试试卷及答案一、 填空题(每空 3 分,共 15 分)1. 曲线⎧=-+⎨=⎩21z y x ,绕z 轴旋转一周所得到的旋转曲面的方程是.2.曲线()⎧=⎪⎪⎨⎪=⎪-⎩2111x y z y 在点,,⎛⎫ ⎪⎝⎭1212处的法平面方程是.3. 设()=+22z f x y ,其中()f u 具有二阶连续导数,且()'=13f ,()''=12f ,则==∂∂2210x y z x=.4.级数∞=-∑1n nα,当α满足不等式 时收敛. 5.级数()∞=-⋅∑112nnn x n的收敛域是.二、 单项选择题 (每小题3分,共15分)1.设 a 与 b 为非零向量,则⨯=0 a b 是A. // a b 的充要条件;B. ⊥a b 的充要条件;C. = a b 的充要条件;D. //a b 的必要但非充分条件.2.平面--=3360x y 的位置是 A.垂直于z 轴; B.平行于z 轴;C.平行于xoy 面;D. 通过z 轴.3.设函数(),=⎧=⎨≠⎩0010当时当时xy f x y xy ,则下列说法正确的是A.()lim ,→→00x y f x y 存在且(),f x y 在点(),00处的两个偏导数也存在; B. ()lim ,→→00x y f x y 存在但(),f x y 在点(),00处的两个偏导数不存在;C. ()lim ,→→00x y f x y 不存在但(),f x y 在点(),00处的两个偏导数存在;D. ()lim ,→→00x y f x y 不存在且(),f x y 在点(),00处的两个偏导数也不存在; 4.曲线L 为圆周cos sin =⎧⎨=⎩33x ty t≤≤02t π,则()+⎰22 nLx yds 等于A. +⋅2123n π;B. +⋅19n π;C. ⋅63nπ; D.+⋅+211321n n . 5. 设正项级数∞=∑1n n u 收敛,则必有A. lim+→∞=<11n n nu u ρ;B. lim =>1n ρ;C. lim →∞=≠0n n u c ; D. lim →∞=0n n u . 三.(8分)在平面++=1x y z 上求一直线,使得它与直线=⎧⎨=-⎩11y z 垂直相交。
高等代数 --复习资料一、单项选择题1、设为任意两个级方阵,则如下等式成立的是A.B.C.D.参考答案: C2、设向量组线性无关,则向量组线性无关的充分必要条件为A.B.C.D.参考答案: A3、若,则( ).A. 30mB. -15mC. 6mD. -6m参考答案: D4、实对称矩阵的特征值都是( )A. 非负整数B. 实数C. 正数参考答案: B5、实对称矩阵A的秩等于r,且它有m个正特征根,则它的符号差为 ( )A. rB. mC. 2m-rD. r-m参考答案: C6、设矩阵和分别是和的矩阵,秩,秩,则秩是A. 1B. 2C. 3D. 4参考答案: B7、是线性空间V上的线性变换,,那么关于V的基的矩阵是 ( )A.B.C.D.参考答案: B8、对于元方程组,下列命题正确的是( ).A. 如果只有零解,则也只有零解B. 如果有非零解,则有无穷多解C. 如果有两个不同的解,则有无穷多解D. 有唯一解的充分条件是参考答案: C9、若矩阵A的不变因子为,则A的全部初等因子为 ( )A.B.C.参考答案: A10、设为3次实系数多项式,则A. 至少有一个有理根B. 至少有一个实根C. 存在一对非实共轭复根D. 有三个实根.参考答案: B11、对于数域P上线性空间V的数乘变换来说 ( )不变子空间A. 只有一个B. 每个子空间都是C. 不存在参考答案: B12、下列运算中正确的是( )A. ;B. ;C. ;D. 。
参考答案: D13、为欧氏空间V上的对称变换,下面正确的是 ( )A.B.C.参考答案: C14、如果把代入实二次型都有,那么是 ( )A. 正定B. 负定C. 未必正定参考答案: C15、设向量组线性无关,线性相关,则( ).A. 一定能由线性表示B. 一定能由线性表示C. 一定不能由线性表示D. 一定不能由线性表示参考答案: B16、下列说法不正确的是( ).A. 任何一个多项式都是零次多项式的因式B. 如果f(x)∣g(x),g(x)∣h(x),则f(x)∣h(x)C. 如是阶矩阵,则D. 如是阶矩阵,则参考答案: A17、设是矩阵,是非齐次线性方程组所对应的齐次线性方程组,则下列结论正确的是( )A. 若仅有零解,则有唯一解;B. 若有非零解,则有无穷多个解;C. 若有无穷多个解,则仅有零解;D. 若有无穷多个解,则有非零解;参考答案: D18、是n维复空间V的两个子空间,且,则的维数为 ( )A.B.C.参考答案: C19、阶矩阵A可逆的充分必要条件是( ).A. ∣A∣=0B. r(A)<C. A是满秩矩阵D. A是退化矩阵参考答案: C20、设矩阵的秩为,为阶单位方阵,下述结论中正确的是( )A. 的任意个列向量必线性无关;B. 的任意一个阶子式不等于零;C. 若矩阵满足,则,或非齐次线性方程组,一定有无穷多组解D. 通过初等行变换,必可化为的形式。
2005级《高等数学A-2》期末试卷一、 单项选择题(将答案写在括号内,每题4分,共 48分)1.微分方程20y y y '''-+=的一个解是( ).(A) 2y x = (B) x y e = (C) sin y x = (D) x y e -=2.微分方程 x e x y y y 228644+=+'-'' 的一个特解应具形式 ( ).(a,b,c,d 为常数)(A) x ce bx ax 22++ (B) x e dx c bx ax 222+++(C) x x c x e be ax 222++ (D) x e cx bx ax 222)(++3. 若0),(00=y x f x ,0),(00=y x f y ,则在点),(00y x 处,函数),(y x f ( ).)A (连续. )B (取得极值. )C (可能取得极值. )D (全微分0d =z .4.设()f u 可微,⎰⎰≤++=222x 22d )()(t y y x f t F σ,则()F t '=( ).(A) ()tf t π (B) 22()tf t π (C) 22()tf t (D) 2()tf t π5.设曲面06333=-+++xyz z y x ,则在点)1,2,1(-处的切平面方程为( ).)A ( 018511=-++z y x )B ( 018511=-+-z y x)C ( 018511=--+z y x )D ( 018511=+++z y x6.)(d d 12222==⎰⎰≤++y x e I y x y x . (A))1(-e π (B)e π (C)1-e π (D)e π27. 函数),(y x f 在点),(00y x 处连续,且两个偏导数),(),,(0000y x f y x f y x存在是),(y x f 在该点可微的( ).)A ( 充分条件,但不是必要条件. )B (必要条件,但不是充分条件.)C ( 充分必要条件. )D (既不是充分条件,又不是必要条件.8. 已知)0,0(,)1,1(为函数22442),(y xy x y x y x f ---+=的两个驻点,则(). )A ()0,0(f 是极大值. )B ()0,0(f 是极小值.)C ()1,1(f 是极小值. )D ()1,1(f 是极大值.9. 周期为2的函数)(x f ,它在一个周期上的表达式为x x f =)(11 <≤-x ,设它的傅里叶级数的和函数为)(x S ,则=)23(S ( ). (A) 0 (B) 1 (C) 21 (D) 21- 10.设∑是平面4=++z y x 被圆柱面122=+y x 截出的有限部分,则曲面积分=⎰⎰∑S y d ( ). (A)34 (B)π34 (C)0 (D) π11.下列级数收敛的是( ).∑∞=1!)(n n n n n e A ∑∞=1!2)(n n n n n B ∑∞=1!2)(n n n n n C ∑∞=1!)(n nn n D . 12. 设幂级数∑∞=-1)2(n n n x a 在2-=x 时收敛,则该级数在5=x 处( ).)(A 发散 )(B 条件收敛 )(C 绝对收敛 )(D 不能判定其敛散性.二、 填空题(将答案填在横线上,每题4分,共24分)1.=-+=)1,(,arcsin )1(),(x f yx y x y x f x 则设 2. ⎰⎰=∑S x I d 2= .(其中∑是2222R z y x =++) 3.分表达式为化为球坐标下的三次积z z y x y x y x x d d d 22222221010⎰⎰⎰--+-4.=+⎰⎰≤+y x x y y x y x d d )sin sin (1225.设z yx z y x f 1)(),,(=,则=)1,1,1(df 6.=++⎰⎰⎰≤++1222222d d d )(z y x z y x z y x三、(6分)求幂级数∑∞=--111)1(n n n x n的收敛半径、收敛域及和函数. 四、(5分)计算I=y x z x x z z y z y y x ⎰⎰∑-+-+-d d )33(d d )3(d d )2(,其中:0,0,0x y z ∑===及1=++z y x 所围立体表面的外侧.五、(5分) 设,)(22ba z y e u ax ++=而b a x b z x a y ,,cos ,sin ==为常数,求.d d x u 六、(6分)设L 为x y x =+22从点)0,1(A 到点)0,0(O 的上半圆弧,求曲线积分⎰-++-L x x y y e x y y e d )1cos (d )1sin ( .七、(6分)设)(x f 有连续的二阶导数且满足[]0d )(d )(ln ='+'-⎰y x f x xy x f x c 其中c 为xoy 面上第一象限内任一简单闭曲线,且,0)1()1(='=f f 求)(x f。
2005高等代数试卷A答案一、单项选择题(63=18分)1.设A是n阶实矩阵,且秩R(A)=n,则二次型X’ (A’A)X是( C )A.不定二次型 B.半负定二次型C.正定二次型 D.负定二次型2.设A、B为n阶方阵, 则下列各式成立的是( C )A.|A+B|=|A|+|B|; B.(AB)k=A k B k ;C.|AB|=|BA|; D.A T B=B T A.3.设A为n阶方阵, A的秩R(A)=r<n, 那么在A的n个行向量中( A )A.必有r个行向量线性无关;B.任意r个行向量线性无关;C.任意r个行向量都构成最大线性无关组;D.任何一个行向量都可以由其它r个行向量线性表出.4.若A是方阵且方程组AX=0只有零解, 则AX=β(≠0)( B )A.必有无穷多组解;B.必有唯一解;C.必定没有解;D.A、B、C都不对.5.n阶方阵A与B相似的充分必要条件是( C )A.矩阵A与B的行列式的值相等;B.矩阵A与B有相同的特征值;C.存在n阶满秩矩阵P, 使P -1AP=B;D.存在n阶满秩矩阵P, 使P T AP=B.6.设A =,B =,则A与B( A )A.合同且相似;B.合同但不相似;C.不合同但相似;D.不合同且不相似.二、填空题(83=24分)1. 若n阶方阵A 中每行元素之和为定值S, 则A 的一个特征向量可写成x =( 1, 1, · · · 1 )’2. 设x, y R n (标准内积), 则x y与 |x|2 +| y|2 = | x+y|2 是 _等价__ 关系..3 设4.从 的基,到基,的过渡矩阵为 .5.. 设n阶矩阵A的最小多项式为g(λ) = λ 2 - 3λ + 2, 则A-1 = ( 3I – A ) , 且A必相似于 ( _对角阵 ) .6. 设V是实数域上次数小于3 的多项式构成的线性空间, D: VV是求导变换, 则D的核Ker(D)= { c | c是实数} = R_D在基{1, X 1,X 2 }下的表示阵A =三、(10分)设3阶方阵A,B满足A* BA = 2BA - 8I, 为A的伴随阵且A=,求B .四、(8分)设7阶方阵A的特征阵(λI - A)相抵(等价)于下面对角阵D = diag { λ2 – 3, λ2 – 1, λ- 2, (λ – 2)2, 1, 1, 1}(1) 写出A 的初等因子与不变因子;(2) 求A 的若当标准形.五、(8分)设A写出特征阵λI - A的法式与A的最小多项式;六、(10分)讨论 λ 取何值时,下面方程组有解; 当方程组有无穷多解时求其通解.七、(12分)设列向量(1)求A的特征多项式|λI – A|;(2)求正交阵Q 使Q’AQ为对角阵.八、(10分)设A, B均为n阶正定矩阵,且A B = BA, 证明:(1) AB为正定矩阵 ;(2) 存在可逆阵P, 使 P-1AP 与 P-1BP 都是对角阵;(3) |A+B | | A | + | B |答案三. (10分)由A*BA=2BA–8I, 两边同时左乘A,右乘A-1,整理得即左乘得四.(8分)答案:(1)矩阵A的初等因子组为。
高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。
2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。
3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。
4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。
2020-2021《高等代数》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一、填空(共40分,每小题4分)1.向量空间n P 的子空间12112{(,,,,0)0,}n k W x x x x x x P -=+=∈的维数为____________,它的一组基为__________________.2.已知111α⎛⎫ ⎪= ⎪ ⎪-⎝⎭是矩阵2125312A a b -⎛⎫⎪= ⎪ ⎪--⎝⎭的一个特征向量,则_______,_______a b ==特征向量α对应的特征值0___________λ=.3.k 满足___________时,二次型22212312132(1)22f x x k x kx x x x =--+---是负定的。
4.设矩阵20022311A x -⎛⎫ ⎪= ⎪ ⎪⎝⎭与10002000B y -⎛⎫⎪= ⎪ ⎪⎝⎭相似,则_________,________x y ==.5.在空间[]n P x 中,设变换σ为()(1)()f x f x f x →+-,则σ在基0(1)(1)1,(1,2,1)!i x x x i i n i εε--+===-下的矩阵为____________________.6.相似矩阵的特征值__________.7.向量)1,3,2,4(),4,3,2,1(==βα,则内积=),(βα___________. 8.若A 是实对称矩阵,则 A 的特征值为____________.9.n 元实二次型),,,(21n x x x f 是正定的充分必要条件是它的正惯性指数等于___________________.10.对于线性空间V 中向量)1(,,,21≥r r ααα ,若在数域P 中有r 个不全为零的数r k k k ,,,21 ,使02211=+++r r k k k ααα ,则向量r ααα,,,21 称为_________.二、(15分)设V 是实数域上由矩阵A 的全体实系数多项式组成的空间,其中2100100,200A ωωω⎛⎫- ⎪== ⎪ ⎪⎝⎭,求V 的维数和一组基.三、(15分)用非退化线性替换化二次型22212312132322448x x x x x x x x x ---++为标准形.四、(15分)在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在基1234,,,ηηηη下的坐标,设(1,0,1,0)ξ=1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩; 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩.五、(15分)设1234,,,εεεε是四维线性空间V 的一组基,已知线性变换σ在这组基下的矩阵为1021121312552212⎛⎫⎪- ⎪⎪⎪--⎝⎭ 1)求σ在基11242234334442,3,,2ηεεεηεεεηεεηε=-+=--=+=下的矩阵; 2)求σ的核与值域.2020-2021《高等代数》期末课程考试试卷A 答案一、填空(共40分,每小题4分)1、向量空间n P 的子空间12112{(,,,,0)0,}n k W x x x x x x P -=+=∈的维数为__2n -__________,它的一组基为122(1,1,0,,0,0),(0,0,1,,0,0),,(0,0,0,,1,0)n εεε-=-==_。
华中科技大学2005年硕士研究生入学考试《高等代数》试题以下各题每题15分,共150分博士家园解答顾问:fenggaol 欢迎提供更多试题,我们会竭力帮助您!1.解线性方程组 231232312323123,,,x ax a x a x bx b x b x cx c x c ⎧++=⎪++=⎨⎪++=⎩ 其中,,a b c 为互不相等的数.2.证明: 任一n 阶方阵可以表成一个数量矩阵(具有kE 形式的矩阵)与一个迹为0的矩阵之和.3.设A 为m n ⨯实矩阵,E 为n 阶单位阵,TB E A A λ=+, 证明: 当0λ>时,B 为正定矩阵.4. 设A 为n 阶不可逆方阵,证明:A 的伴随矩阵*A 的特征值至少有1n -个为0,另一个非零特征值(如果存在)等于1122nn A A A +++ .5. 证明: 相似的矩阵有相同的最小多项式.6. 设A 为m n ⨯矩阵,b 为m 维列向量,证明AX b =有解的充分必要条件是对满足0T A z =的m 维列向量z 也一定满足0T b z =.7. 证明: 任一n 阶实可逆矩阵A 可以分解成一个正交阵Q 与一个正定阵S 之积, 即A QS =.8. 设n nM P⨯∈,(),()[]f x g x P x ∈, 且((),())1f x g x =. 令()A f M =,()B g M =,12,,W W W 分别为线性方程组0ABX =,0AX =,0BX =的解空间.证明12W W W =⊕.9. 设Ω是一些n 阶方阵组成的集合, 其中元素满足,A B ∀∈Ω, 都有AB ∈Ω,且3()AB BA =, 证明:(1) 交换律在Ω中成立.(2) 当E ∈Ω时,Ω中矩阵的行列式的值只可能为0,1±. 10. 证明: 不存在n 阶正交阵,A B , 使得22A AB B =+.华中科技大学2005年硕士研究生入学考试《高等代数》试题解答博士家园解答顾问:fenggaol 欢迎提供更多试题,我们会竭力帮助您! 1. 所给线性方程组的系数行列式为范德蒙行列式222111a a D b b cc =()()()b a c a c b =---因为,,a b c 互不相等,故0D ≠.由克莱姆法则知,方程组有唯一解.取3232132a a a Db b bc c c ==()()()abc b a c a c b --- 3232232111a a D bb c c =()()()(a b a c b c b a c a c b =++---3333111a a D b b cc =()()()()a b c b a c a c b =++---那么方程组的唯一解为11D x abc D ==, 12D x ab ac bc D ==++, 13Dx a b c D==++. ■2. 设A 是任一个n 阶方阵,()ij n n A a ⨯=.假设A 可以写成A kEB =+的形式,其中k 为数域P 中的一个数,()ij n n B b ⨯=是一个迹为0的矩阵.那么11220,1,2,,,,,1,2,,.nn ii ii ij ij b b b a k b i n a b i j i j n +++==+==≠=于是111(),nnniiiiiii i i a k b nk bnk ====+=+=∑∑∑即11.nii i k a n ==∑从ii ii a k b =+得11.nii ii ii jj j b a k a a n ==-=-∑取11,nii i k a n ==∑1,1,,,n ii jj j ij ij a a i j n b a i j =⎧-=⎪=⎨⎪≠⎩∑若若那么()ij n n B b ⨯=是一个迹为0的矩阵,且A kE B =+. ■3. 对于任一个非零实n 维列向量1n c C c ⎛⎫ ⎪= ⎪ ⎪⎝⎭,有12211(,,)0T n n n c C C c c c c c ⎛⎫ ⎪==++> ⎪ ⎪⎝⎭.令1n d AC d ⎛⎫ ⎪= ⎪ ⎪⎝⎭,那么12211()()()(,,)0T T T n n n d C A A C AC AC d d d d d ⎛⎫ ⎪===++≥ ⎪ ⎪⎝⎭.由于0λ>,故222211221()()()()()0T T T T T T n n n C BCC E A A C C C C A A C c c d d c c λλλλ=+=+=+++++≥++>由正定矩阵的定义知,B 是正定矩阵. ■4. 设A 是数域P 上的n 阶不可逆方阵, 则rank A n <, ||0A =.若rank 1A n <-,则A 的所有1n -阶子式都为0,从而A *的元素0ij A =.这时0A *=. 显然,A *的n 个特征值都是0,结论成立.若rank 1A n =-,则A 至少有一个1n -阶子式不为0,故0A *≠,rank 1A *≥. (1)由||00AA A E E *===知,A *的每个列向量都是齐次线性方程组0AX =的解向量.设{|0}n V X P AX =∈=,12(,,,)n A ααα*= .由线性空间的理论和线性方程组的理论知rank A *=dim 12(,,,)n L ααα≤ dim V n =-rank (1)1A n n =--=. (2)由(1),(2)知rank 1A *=.因为rank 1A *=,故存在可逆矩阵n nT P⨯∈,使得12000,000n c c c TA *⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭其中12,,n c c c P ∈ ,且不全为零.这时121000,000n d d d TA T *-⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭其中11212(,,)(,,)n n d d d c c c T-= ,而12,,n d d d 不全为零.注意A *的特征多项式为1211100||||()0nn d d d E A E TA T d λλλλλλλ**------=-==-.因此,当10d =时,A *的n 个特征值都为0;当10d ≠时,A *的特征值为0(1n -重),1d (一重).注意,对于一般的n 阶矩阵()ij n n A a ⨯=来说,若A 的特征值为12,,,n λλλ ,则121122n nn a a a λλλ+++=+++ .因此,对于本题来说,当A *有1n -个特征值为0,而另一个特征值10d ≠时,有11122nn d A A A =+++ . ■5.设,A B 都是数域P 上的n n ⨯矩阵,且A 与B 相似.那么存在P 上n n ⨯可逆矩阵T 使得1T AT B -=.设A 的最小多项式为()f x ,B 的最小多项式为()g x ,则()0f A =,()0g B =.由多项式带余除法知,存在(),()[]q x r x P x ∈使得()()()()g x f x q x r x =+, (1)其中()0r x =,或(())(())r x f x ∂<∂.将x A =代入上式,得()()()()0()()()g A f A q A r A q A r A r A =+=+=,即()()g A r A =.于是1111()()()()()()g B g T AT T g A T T r A T r T AT r B ----=====,但()0g B =,故()0r B =,即有 11()()()0T r A T r T AT r B --===.于是有()0r A =.由于()f x 是满足()0f A =的次数最低的多项式,故()0r x =.由(1)知()()()g x f x q x =,即()|()f x g x .同理可证()|()g x f x .注意(),()f x g x 都是最高次项系数为1的非零多项式,故()()f x g x =. ■6. 必要性.设AX b =有解,即存在0n X P ∈使得0AX b =.记10n a X a ⎛⎫ ⎪= ⎪ ⎪⎝⎭.设10n c z c ⎛⎫ ⎪= ⎪ ⎪⎝⎭为0TA z =的任一解,即00T A z =,则12(,,,)0n c c c A = .于是112(,,,)0n n a c c c A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,即12(,,,)0n c c c b = .因此10T n c b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 即00T b Z =,这说明0Z 是0Tb Z =的解. ■7. 因为A 是n 阶实可逆矩阵,则TA A 是正定矩阵.于是存在n n ⨯正交矩阵U 使得1(),0,1,2,,T T i n U A A U R i n λλλ⎛⎫ ⎪=<∈= ⎪ ⎪⎝⎭.于是T T U A AU E ⎫⎫⎪⎪⎪⎪⎪⎪= ⎪ ⎪⎝⎝. (1)令1Q AU ⎫⎪⎪⎪= ⎪ ⎝,从(1)式知,1Q 是正交矩阵.令1,TT Q QU AU U ⎫⎪⎪⎪== ⎪⎝,T S U U ⎫⎪= ⎪ ⎝那么Q 是正交矩阵,S 是正定矩阵,且1Q AS -=,即A QS =. ■8. 因为((),())1f x g x =,由多项式互素的充要条件知,存在(),()[]u x v x P x ∈使得()()()()1u x f x v x g x +=.将x M =代入上式,得()()()()u M f M v M g M E +=,即()()u M A v M B E +=.任取W α∈,则0AB α=,()()u M A v M B ααα+=.取1()v M B αα=,2()u M A αα=.由于,A B 都是M 的多项式,故AB BA =,进而有()(),()().Av M v M A Bu M u M B ==于是12()()()()00,()()()()()()00A Av MB v M AB v M B Bu M A u M BA u M AB u M ααααααα=========即11W α∈,22W α∈.因此12ααα=+,11W α∈,22W α∈,从而有12W W W ⊆+.注意到AB BA =,容易看出,1W W ⊆,2W W ⊆,从而12W W W +⊆.因此12W W W =+. (1)任取12W W β∈⋂,则0A β=,0B β=.于是(()())()()000E u M A v M B u M A v M B βββββ==+=+=+=,故12{0}W W ⋂=. (2)由(1),(2)式可得12W W W =⊕. ■9. (1) 任取,A B ∈Ω,由所给条件知AB ∈Ω,BA ∈Ω.令X AB =,2()Y AB =,则,X Y ∈Ω.于是32323333()()()()(()())(())()BAAB AB AB XY YX AB AB AB BA AB========即交换律在Ω中成立.(2) 任取A ∈Ω, 若E ∈Ω, 则33()A EA AE A ===.对上式两边取行列式, 得3||||A A =, 即2||(||1)0A A -=. 于是||0A =或2||10A -=,即||0A =或||1A =±. ■10. 反证法.假设存在正交矩阵,A B ,使22A AB B =+,则22TTTA A A AB A B =+. 由于正交矩阵A 满足1TA A -=,故2T A B A B =+注意2TA B 是正交矩阵,且2TA B A B =-,故A B -是正交矩阵.于是()()()()2T T T T T T T T T E A B A B A B A B AA BB AB BA E AB BA =--=--=+--=--即T T E AB BA =+. (1)从22A AB B =+得22TTTA B ABB B B A B =+=+.由于2TA B 也是正交矩阵,故A B +是正交矩阵,且()()()()2T T T T T T T T TE A B A B A B A B AA BB AB BA E AB BA =++=++=+++=++即T T E AB BA =--. (2)将(1),(2)左右两端分别相加,得20E =, 这显然是不可能的. ■。
《高等代数》下05级期末试卷A 参考答案: 一、1. 12(,)1,αα=11(,)2,αα=22(,)13,αα=
121212(,),arccos
αααααα<>==⋅
2. 211010043001010200(2)(1)E A λλλλλλ+-⎛⎫⎛⎫ ⎪ ⎪-=-→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭
(1)A 的最小多项式:2
(2)(1)λλ--; (2)A 的初等因子:(2),λ-2(1);λ-
(3)A 的若当标准形200010;011⎛⎫
⎪
⎪ ⎪⎝⎭
(4) A 的有理标准形200001.012⎛⎫ ⎪
- ⎪ ⎪⎝⎭
3.123123123010(,,)(,,)213(,,)101A ηηηεεεεεε∆
⎛⎫
⎪== ⎪ ⎪⎝⎭
,
01021310,101
A ==≠
所以123,,ηηη是V 的一组基,
设123,,g g g 是123,,ηηη的对偶基,123123(,,)(,,)A ηηηεεε=,
所以1
123123123111(,,)(,,)()(,,)101302g g g f f f A f f f --⎛⎫ ⎪'==- ⎪ ⎪-⎝⎭
,
即11232131233;;2.g f f f g f g f f f =-+==-+- 二、(1)
2(1)(2)E A λλλ-=+-,故特征值1231,2;λλλ=-==
可对角化.
(2)11,λ=-01110110
1011110000E A --⎛⎫⎛⎫ ⎪ ⎪--=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,1111α-⎛⎫
⎪
= ⎪ ⎪⎝⎭
,
22,λ=1111112111000111000E A ----⎛⎫⎛⎫ ⎪ ⎪-=-→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭12111,0,01αα⎛⎫⎛⎫
⎪ ⎪
== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
正交化得21112211111/2(,)1,1/2,(,)01αββαβαβββ⎛⎫⎛⎫
⎪ ⎪
===-=- ⎪ ⎪ ⎪ ⎪
⎝⎭⎝⎭
再单位化1231111,1,1,102ηηη-⎛⎫⎛⎫⎛⎫⎪⎪⎪
===-⎪⎪⎪⎪⎪⎪⎭⎭⎭
令,0
T ⎛⎫ ⎪ ⎪
=
⎪ ⎪⎝⎭
则12.2T AT -⎛⎫
⎪'= ⎪ ⎪⎝⎭ 三、(1)设λ是σ的特征值,α是对应的特征向量,0,α≠即,σαλα=因为2
,σσ=故有2
2
(),λασασασσαλα====但0,α≠
故2
,λλ=10.λ=或
(2)略;
(3),,V αασαασα∀∈=+-则1
()(0),V V σσ-⊆+ 又11
()(0),()(0),V V V V σσσσ--∴+⊆,是的子空间
从而1
()(0),V V σσ-+=由(2)知10(0),V σ-=,可以证明1(),V V σ=所
以1()(0){0},V σσ-=即可得1()(0).V V σσ-⊕=
四、证明一:设W 是σ的不变子空间,因,V W W ⊥
=⊕分别取W 及W
⊥
的标准正交基12,,,m εεε及1,,,m n εε+则11,,,,,m m n εεεε+是V 的一组标准正交基。
又σ是正交变换,故11,
,,,
,m m n σεσεσεσε+也是V
的一组标准正交基.但W 是σ的不变子空间,所以1,,m σεσε在W 中,且
是W 的一组基,从而1,
,m n σεσε+在W ⊥中,即,.W W ασα⊥⊥∀∈∈
W ⊥也是σ的不变子空间.
证明二: ,,W W γασαγ∀∈∃∈使得=;对于,W β⊥
∀∈(,)0,αβ=
则0γσβσασβαβ(,)=(,)=(,)=,所以.W σβ⊥
∈
从而σ对W ⊥
不变.
五、(1)A 是反对称矩阵,A 的特征值只能是0或纯虚数,故
(1)0,n E A E A --=-+≠E A +可逆;
(2)()()
11
1
1
1111()()()()()
()()()()()()()()()()()V V E A E A E A E A E A E A E A E A E A E A E A E A E A E A E A E A E
--------''=-+-+'
'=+--+=-+-+=--++=,
V 是正交阵. 六、设()()1,
21,2,
,,,
,,s t A B αααβββ==
则()()1,
2
1,2,,,
,s t L
L αααβββ⊥
(,)0,1,2,
,;1,2,,.i j i s j t αβ⇔===在标准正交基下,
则有0,i j αβ⊥
=()12
1
2
0.t s A B ααβββα⊥⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭。