变电所进出和与邻近单位联络线的选择
- 格式:doc
- 大小:66.00 KB
- 文档页数:5
某机械厂变电所电气一次部分设计课程设计《供配电技术》课程设计报告题目:某机械厂变电所电气一次部分设计姓名:某某某某某学号:某某某某某班级:某某某某某专业:某某某某某某某某某某某某某某指导教师:某某某某某起止日期:电气与自动化工程学院《供配电技术》课程设计评分表设计题目:某机械厂变电所电气一次部分设计班级:某某某某某某学号:某某某某某某某某某姓名:某某某某某某某某项目评分比例得分平时表现30%答辩20%设计报告50%总成绩指导老师:年月日《供配电技术》课程设计任务书专业电气工程及其自动化班级(电气技术方向)一、目的和要求供配电技术课程设计是该课程理论教学之后的一个集中性实践教学环节,要求学生在学习供配电技术基本知识的基础上,通过综合应用所学知识设计一个具体任务的供配电一次系统。
通过设计进一步巩固所学过的理论知识,熟悉供配电系统的基本构成和任务,了解常用电气设备的结构、原理、性能、用途,掌握中小型变电所电气一次部分设计的步骤和要求。
了解变电所电气设计相关的国家标准、规程、规范以及电气主接线的绘制方法,学会查阅供配电设计手册、设备手册的方法,树立工程观念,培养分析和解决一般工程实际问题的能力。
二、设计内容根据给定的设计任务完成供配电系统电气一次部分的设计(设计任务附后)。
三、基本要求:(1)掌握供配电系统设计的方法、内容和步骤。
(2)根据所给定设计任务,按照安全可靠、技术先进、经济合理的要求,完成变配电系统电气一次部分的设计任务,写出设计说明书。
(3)具备计算机绘图能力,绘出供配电系统一次系统设计图样。
(4)提交的设计报告内容充实、方案合理、图纸齐全。
撰写格式符合相关要求。
供电部门对本厂的功率因数要求为co=0.9。
(2)短路电流计算:根据电气设备选择和继电保护的需要,确定短路计算点,计算三相短路电流,计算结果列出汇总表。
(3)主要电气设备选择:主要电气设备的选择包括断路器、隔离开关、互感器、导线截面和型号等等设备的选择及校验;选用设备型号、数量,汇成设备一览表。
变电所主变压器和主接线方案的选择综述目录变电所主变压器和主接线方案的选择综述 (1)1.1 变电所主变压器的选择 (1)1.1.1 主变压器台数选择 (1)1.1.2 变电所主变压器容量的选择 (1)1.2 变电所主接线方案的选择 (2)1.2.1 主接线方案的设计要求 (2)1.2.2 变电所主接线方案 (2)方案一:单母线分段带旁路接线 (2)方案二:高、低压侧均采用单母线分段 (3)方案三:高压侧采用单母线、低压侧采用单母线分段 (3)1.1 变电所主变压器的选择1.1.1 主变压器台数选择主变压器台数的选择应该满足负荷的特点和运行经济性等条件,当满足以下任意一项条件时,应该装设两台及以上主变压器。
(1)有大量的一级或二级负荷。
(2)负荷季节性变化非常明显时,适合于经济运行的方式。
(3)集中负荷比较大,超过1250KVA时。
结合该冶金机械厂的情况,工厂负荷类型属于一级,供电系统中的一级负荷要一直保持供电,否则一断电就会引起重大事故,比如人身安全事故、大量产品报废造成重大损失等,要求当线路发生故障时,有大量一级负荷的变电所应满足电力负荷对供电可靠性的要求,保证一级负荷的连续供电,利用双电源对负荷进行供电,应采用两台变压器,故选择两台主变压器。
1.1.2 变电所主变压器容量的选择根据工厂的负荷性质和电源情况,工厂负荷都是一级负荷,装有两台主变压器,要求每台主变压器容量S N·T都大于60%~70%的总计算负荷S30,主变压器容量S N·T还应该大于一、二级负荷的计算负荷之和S30(I+II)。
在确定选择装两台主变压器后,查阅有关变压器型号的资料,选择S9型变压器,变压器的容量公式如下:S N·T≥(0.6~0.7)S30(16)S N·T≥S30(I+II)(17) 代入数据计算得:S N·T≥(0.6~0.7)S30=(0.6~0.7)×17027.4KVA=(10216.4~11919.2)KVAS N·T≥S30(I+II)=18903.6KVA需要为未来几年负荷的增加留出裕度,所以初步选择变压器容量S N·T= 20000KVA。
课程设计(论文)题目某机械厂供配电系统设计学院机电与车辆工程学院专业电气工程与自动化学生学号 0205指导教师2016 年前言 (4)第一章选题背景 (6)设计的意义 (6)第二章系统总体方案设计 (7)设计内容及步骤 (7)第三章负荷计算 (8)计算负荷及无功功率补偿 (8)全厂负荷计算: (11)第四章变电所位置和型式的选择 (13)第五章变电所变压器和主接线方案设计 (15)主变压器的选择 (15)变电所主接线方案的选择 (15)装设一台主变压器的主接线方案 (15)主接线方案的选择 (16)第六章短路电流的计算 (17)确定短路计算基准值 (17)计算短路电路中各元件的电抗标幺值 (17)(1).电力系统的电抗标幺值 (17)(2).架空线路的电抗标幺值 (18)(3).电力变压器的电抗标幺值 (18)K-1点(侧)的相关计算 (18)(1).总电抗标幺值 (18)(2).三相短路电流周期分量有效值 (18)(3).其他三相短路电流 (19)(4).三相短路容量 (19)K-2点(侧)的相关计算 (19)(1).总电抗标幺值 (19)(2).三相短路电流周期分量有效值 (19)(3).其他三相短路电流 (19)(4).三相短路容量 (19)第七章变电所一次设备的选择校验 (20)10kv侧一次设备的选择校验 (20)按工作电压选择 (20)按照工作电流选择 (20)按断流能力选择 (20)隔离开关,负荷开关和断路器的短路稳定度校验 (21)380V侧一次设备的选择校验 (25)高低压母线的选择 (27)第八章变压所进出与邻近单位联络线的选择 (27)10KV高压进线和引入电缆的选择 (27)10KV高压进线的选择校验 (27)由高压配电室至主变的一段引入电缆的选择校验 (28)作为备用电源的高压联络线的选择校验 (28)按发热条件选择 (29)校验电压损耗 (29)第九章降压变电所防雷与接地装置的设计 (31)变电所的防雷保护 (31)直击雷防护 (31)雷电波入侵的防护 (31)变电所公共接地装置的设置 (32)第十章设计总结 (33)总结 (33)参考文献 (34)前言电能是现代工业生产的主要能源和动力,电能不仅易于转换为其他形式的能量加以运用,而且容易从其他形式的能量转换而来:电能的输送有利于实现生产过程自动化,因为它的分配十分简单经济,便于控制,调节和测量。
工厂供电课程设计报告题目XX机械厂降压变电所的电气设计姓名学号班级指导老师完成日期2014.5.24一、设计任务书(一)设计题目xx机械厂降压变电所的电气设计(二)设计要求要求根据本厂所能取得的电源及本厂用电负荷的实际情况,并适当考虑到工厂生产的发展,按照安全可靠、技术先进、经济合理的要求,确定变电所的位置与型式,确定变电所主变压器的台数与容量、类型,选择变电所主结线方案及高低压设备和进出线,确定二次回路方案,选择整定继电保护装置,确定防雷和接地装置,最后按要求写出设计说明书,绘出设计图样。
(三)设计依据1.工厂总平面图图11—2××机械厂总平面图2.工厂负荷情况本厂多数车间为两班制,年最大负荷利用小时为4200h,日最大负荷持续时间为6 h。
该厂除铸造车间、电镀车间和锅炉房属二级负荷外,其余均属三级负荷。
低压动力设备均为三相,额定电压为380V。
电气照明及家用电器均为单相,额定电压为220V。
本厂的负荷统计资料如表1—74所示。
表1-74 工厂负荷统计资料3.供电电源情况按照工厂与当地供电部门签订的供用电协议规定,本厂可由附近一条10 kV 的公用电源干线取得工作电源。
该干线的走向参看工厂总平面图。
该干线的导线牌号为LGJ-150,导线为等边三角形排列,线距为1.5 m;干线首端(即电力系统的馈电变电站)距离本厂约6 km。
干线首端所装设的高压断路器断流容量为500 MV A。
此断路器配备有定时限过电流保护种电流速断保护,定时限过电流保护整定的动作时间为1.6s。
为满足工厂二级负荷的要求,可采用高压联络线由邻近的单位取得备用电源。
已知与本厂高压侧有电气联系的架空线路总长度为70 km,电缆线路总长度为15 km。
4.气象资料本厂所在地区的年最高气温为35 ℃,年平均气温为26℃,年最低气温为-100 C,年最热月平均最高气温为35℃,年最热月平均气温为27℃,年最热月地下o.8m处平均温度为24 ℃。
冶金车间低压配电系统及车间变电所设计研究智素红(山东省冶金设计院 电气室 山东 济南 250101)摘 要: 车间低压配电系统设计主要包括配电变电所、高压配电线路、配电变压器、低压配电线路以及相应的控制保护设备。
结合实际介绍绍某冶金车间低压配电系统及车间变电所设计总则、负荷计算和无功功率补偿以及变电所位置与型式的选择,然后对变电所主变压器及主接线方案的选择,变电所二次回路方案的选择、继电保护的整定以及降压变电所防雷与接地装置的设计进行分析。
关键词: 低压配电;变压器;继电保护;二次回路中图分类号:TQ27 文献标识码:A 文章编号:1671-7597(2012)1120061-02电路的计算电流 ,即 。
1 冶金车间低压配电系统及车间变电所设计总则3)按断流能力选择。
设备的额定开断电流 或断流容量 冶金车间低压配电系统及车间变电所设计要依据本厂所能取得的电源及本厂用电负荷的实际情况以及工厂生产的发展前短路有效值 或短路容量 ,即 或 。
景,以安全经济为根本设计变电所的位置与型式,设计变电所对于分断负荷设备电流的设备来说,则为 ,主变压器的台数、容量以及类型,设计变电所主接线方案以及为最大负荷电流。
高低压设备和进出线,确定二次回路方案,选择整定继电保护,确定防雷和接地装置。
动稳定校验条件 或 ,其中 、 分别为2 负荷计算和无功功率补偿计算开关的极限通过电流峰值和有效值, 、 分别为开关所处首先分别进行单组用电设备于多组用电设备计算负荷的计算公式,包括有功计算负荷,无功计算负荷、视在计算负荷以及电流计算。
经过计算,得到车间的负荷计算表。
然后无功功 6.2 高低压母线的选择率补偿设计,要有同步补偿机和并联电抗器两种。
由于并联电高压母线要根据可能出现的最大工作电流选取导体的截面抗器具有安装简单、运行维护方便、有功损耗小以及组装灵积、母线的布置形式决定母线材料(软质或硬质)、要求的截活、扩容方便等优点,因此并联电抗器在供电系统中应用最为面积决定每相母线的导体条数。
供配电系统设计规范(code for design of electric power supply system)GB 50052-1995第一章总则第 1.01条为使供配电系统设计贯彻执行国家的技术经济政策,做到保障人身安全,供电可靠,技术先进和经济合理,制定本规范。
第 1.02条本规范适用于110KV及以下的供配电系统的新建和扩建工程的设计.第 1.03条供配电系统设计必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,合理确定设计方案。
第 1.04条供配电系统设计应根据工程特点、规模和发展规划,做到远近期结合,以近期为主。
第 1.05条供配电系统设计应采用符合国家现行有关标准的效率高、能耗底、性能先进的电气产品。
第 1.06条供配电系统设计除应遵守本规范外,尚应符合国家现行的有关标准和规范的规定。
第二章负荷分级及供电要求第 2.01条电力负荷应根据对供电可靠性的要求及中断供电在政治、经济上所造成损失或影响的程度进行分级,并应符合下列规定:一、符合下列情况之一时,应为一级负荷:1.中断供电将造成人身伤亡时。
2.中断供电将在政治、经济上造成重大损失时。
例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等。
3.中断供电将影响有重大政治、经济意义的用电单位的正常工作。
例如:重要交通枢纽、重要通信枢纽、重要宾馆的、大型体育场馆、经常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷。
在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷。
二、符合下列情况之一时,应视为二级负荷:1.中断供电将在政治、经济上造成较大损失时。
例如:主要设备损坏、大量产品报废、连续生产过程被打乱需要较长时间才能恢复、重点企业大量减产等。
2.中断供电将影响重要用电单位的正常工作。
5.3 母线与各电压等级出线选择5.3.1 6kV 母线的选择在35kV 及以下、持续工作电流在4000及以下的屋内配电装置中,一般采用矩形母线。
已知:6kV 母线最大负荷电流可达608A ,所以选择LMY-50⨯5的铝母线,相间距离0.35m α=, 3.65f N =,10710E Pa =⨯,50h mm =,5b mm= 热稳定校验:母线最小截面积[4]:min S =(5.18) k Q —短路电流通过电器时所产生的热效应。
S K —校正系数。
C —热稳定系数。
2()()MAX al alII ωθθθθ=+-⨯(5.19)ωθ—母线通过持续工作电流I max 时的温度。
θ —实际环境温度。
al θ—母线正常最高允许温度,一般为70度。
al I —母线对应于θ允许电流。
235(7035)72.8ωθ=+-⨯=取75C θ=︒,查表得85C = ,1S K =。
"2222(10)12k kk t k tQ I I I t =++(5.20) 1.5k t s = , 12.49k I kA = , 6.94tk I kA = 22221.5(12.91012.49 6.94)221.82()12k Q kA S =+⨯+=⋅22k t I 与"2I 的数值较接近所以用"2I 代替。
2min 175250S mm ==≤ 满足要求。
共振校验:312bh J = (5.21) 2M hb ρ= (5.22)MAX L (5.23)33640.050.0051101212bh J m -==⨯=⨯ 220.0050.052700 1.35M hb ka m ρ==⨯⨯⨯=2.28MAX L == 选取 1.5MAX L L =< 则1β=。
动稳定校验:20.167bh ω= (5.24) 2721.7310MAX sh L F i βαω-=⨯⨯⨯ (5.25)273221.51.7310(12.910)10.350.1670.0050.05MAX F -=⨯⨯⨯⨯⨯⨯⨯⨯ 6614.871069pa pa =⨯< 满足要求。
某冶金机械厂降压变电所的电气设计(1)某冶金机械厂降压变电所的电气设计1.设计资料1.1工厂总平面图工厂总平面图如图1所示图1 工厂总平面图1.2工厂负荷情况该厂多数车间为两班制,年最大负荷小时数为4600h,日最大负荷持续时间为6h。
该厂除铸造车间、电镀车间和锅炉房属二级负荷处,其余为三级负荷。
该厂的负荷统计资料如下表1。
表1 工厂各车间负荷情况厂房编厂房名负荷类设备容量需要系数功率因数tan1 铸造车间动力520 0.4 0.7 1.02照明10 0.9 1.0 02 锻压车间动力240 0.3 0.65 1.17照明10 0.9 1.0 03 金工动力390 0.32 0.65 1.12车间照明10 0.9 1.0 04 工具车间动力290 0.35 0.65 1.33照明10 0.9 1.0 0续表1厂房编厂房名负荷类设备容量需要系数功率因数tan5 电镀车间动力450 0.6 0.80 0.75照明10 0.9 1.0 06 热处理车间动力260 0.62 0.82 0.82照明10 0.9 1.0 07 装配车间动力170 0.4 0.75 1.02照明10 0.9 1.0 08 机修车间动力100 0.3 0.7 1.17照明 5 0.9 1.0 09锅炉车间动力115 0.8 0.8 1.05 照明 3 0.9 1.0 010仓库动力50 0.4 0.9 0.75照明 2 0.9 1.0 0 11生活区照明400 0.8 1.0 0.481.3供电电源情况按照工厂与当地供电部门登定的供用电协议规定,本厂可由附近一条10kV的公用电源干线取得工作电源。
该干线的走向参看工厂总平面图。
该干线的导线牌号为LGT-150(0.36 Ω/km),干线首端距离本厂约8km。
干线首端所装设的高压断路器断流容量为500MVA。
为满足工厂二级负荷的要求,可采用高压联络线由邻近的单位取得备用电源。
1.4气象资料本地区的年最高气温为38℃,年平均气温为23℃,年最低气温为-8℃,年最热月平均气温为33℃,年最热月平均气温为26℃,年最热月地下0.8m处平均温度为25℃。
主编部门:中华人民共和国机械工业部批准部门:中华人民共和国建设部施行日期:1996年5月1日关于发布国家标准《供配电系统设计规范》的通知建标〔1995〕324号根据国家计委计综〔1986〕250号文的要求,由原机械电子工业部会同有关部门共同修订的《供配电系统设计规范》,已经有关部门会审.现批准《供配电系统设计规范》GB50052-95为强制性国家标准,自一九九六年五月一日起施行.原国家标准《工业与民用供电系统设计规范》GB52-83同时废止.该规范由机械工业部负责管理,其具体解释等工作由机械工业部第二设计研究院负责,出版发行由建渗部标准定额研究所负责组织.中华人民共和国建设部一九九五年七月十二日修订说明本规范是根据国家计委计综〔1986〕250号文的通知要求,由机械工业部负责主编,具体由机械工业部第二设计研究院会同有关单位共同对《工业与民用供电系统设计规范》GBJ52-83修订而成.在修订过程中,规范组进行了广泛的调查研究,认真总结了规范执行以来的经验,吸取了部分科研成果,广泛征求了全国各有关单位的意见,最后由我部会同有关部门审查定稿.这次修订的主要内容有:在负荷分级中增加了特别重要的负荷及其供电要求;在保证电能质量内容中,新制订了限制电压波动和闪变,控制谐波引起的电网电压正弦波形畸变率和降低三相低压配电系统的不对称度应采取的措施;还提出了35kV以上电网的有载调压宜实行逆调压,某些无功负荷宜单独就地补偿以及宜选用D,yn11结线组别的三相配电变压器等条文.本规范在执行过程中,如发现需要修改和补充之处,请将意见和有关资料寄送机械工业部第二设计研究院《供配电系统设计规范》管理组(地址:杭州市石桥路338号,邮政编码:310022),并抄送机械工业部行业发展司,以便今后修订时参考.机械工业部1995年7月第一章总则第1.0.1条为使供配电系统设计贯彻执行国家的技术经济政策,做到保障人身安全,供电可靠,技术先进和经济合理,制订本规范.第1.0.2条本规范适用于110kV及以下的供配电系统新建和扩建工程的设计.第1.0.3条供配电系统设计必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,合理确定设计方案.第1.0.4条供配电系统设计应根据工程特点、规模和发展规划,做到远近期结合,以近期为主.第1.0.5条供配电系统设计应采用符合国家现行有关标准的效率高、能耗低、性能先进的电气产品.第1.0.6条供配电系统设计除应遵守本规范外,尚应符合国家现行的有关标准和规范的规定.第二章负荷分级及供电要求第2.0.1条电力负荷应根据对供电可靠性的要求及中断供电在政治、经济上所造成损失或影响的程度进行分级,并应符合下列规定:一、符合下列情况之一时,应为一级负荷:1.中断供电将造成人身伤亡时.2.中断供电将在政治、经济上造成重大损失时.例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等.3.中断供电将影响有重大政治、经济意义的用电单位的正常工作.例如:重要交通枢纽、重要通信枢纽、重要宾馆、大型体育场馆、经常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷.在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷.二、符合下列情况之一时,应为二级负荷:1.中断供电将在政治、经济上造成较大损失时.例如:主要设备损坏、大量产品报废、连续生产过程被打乱需较长时间才能恢复、重点企业大量减产等.2.中断供电将影响重要用电单位的正常工作.例如:交通枢纽、通信枢纽等用电单位中的重要电力负荷,以及中断供电将造成大型影剧院、大型商场等较多人员集中的重要的公共场所秩序混乱.三、不属于一级和二级负荷者应为三级负荷.第2.0.2条一级负荷的供电电源应符合下列规定:一、一级负荷应由两个电源供电;当一个电源发生故障时,另一个电源不应同时受到损坏.二、一级负荷中特别重要的负荷,除由两个电源供电外,尚应增设应急电源,并严禁将其它负荷接入应急供电系统.第2.0.3条下列电源可作为应急电源:一、独立于正常电源的发电机组.二、供电网络中独立于正常电源的专用的馈电线路.三、蓄电池.四、干电池.第2.0.4条根据允许中断供电的时间可分别选择下列应急电源:一、允许中断供电时间为15s以上的供电,可选用快速自启动的发电机组.二、自投装置的动作时间能满足允许中断供电时间的,可选用带有自动投入装置的独立于正常电源的专用馈电线路.三、允许中断供电时间为毫秒级的供电,可选用蓄电池静止型不间断供电装置、蓄电池机械贮能电机型不间断供电装置或柴油机不间断供电装置.第2.0.5条应急电源的工作时间,应按生产技术上要求的停车时间考虑.当与自动启动的发电机组配合使用时,不宜少于10min.第2.0.6条二级负荷的供电系统,宜由两回线路供电.在负荷较小或地区供电条件困难时,二级负荷可由一回6kV及以上专用的架空线路或电缆供电.当采用架空线时,可为一回架空线供电;当采用电缆线路时,应采用两根电缆组成的线路供电,其每根电缆应能承受100%的二级负荷.第三章电源及供电系统第3.0.1条符合下列情况之一时,用电单位宜设置自备电源:一、需要设置自备电源作为一级负荷中特别重要负荷的应急电源时或第二电源不能满足一级负荷的条件时.二、设置自备电源较从电力系统取得第二电源经济合理时.三、有常年稳定余热、压差、废气可供发电,技术可靠、经济合理时.四、所在地区偏僻,远离电力系统,设置自备电源经济合理时.第3.0.2条应急电源与正常电源之间必须采取防止并列运行的措施.第3.0.3条供配电系统的设计,除一级负荷中特别重要负荷外,不应按一个电源系统检修或故障的同时另一电源又发生故障进行设计.第3.0.4条需要两回电源线路的用电单位,宜采用同级电压供电.但根据各级负荷的不同需要及地区供电条件,亦可采用不同电压供电.第3.0.5条有一级负荷的用电单位难以从地区电力网取得两个电源而有可能从邻近单位取得第二电源时,宜从该单位取得第二电源.第3.0.6条同时供电的两回及以上供配电线路中一回路中断供电时,其余线路应能满足全部一级负荷及二级负荷.第3.0.7条供电系统应简单可靠,同一电压供电系统的变配电级数不宜多于两级.第3.0.8条高压配电系统宜采用放射式.根据变压器的容量、分布及地理环境等情况,亦可采用树干式或环式.第3.0.9条根据负荷的容量和分布,配变电所宜靠近负荷中心.当配电电压为35kV时亦可采用直降至220/380V配电电压.第3.0.10条在用电单位内部邻近的变电所之间宜设置低压联络线.第3.0.11条小负荷的用电单位宜接入地区低压电网.第四章电压选择和电能质量第4.0.1条用电单位的供电电压应根据用电容量、用电设备特性、供电距离、供电线路的回路数、当地公共电网现状及其发展规划等因素,经技术经济比较确定.第4.0.2条当供电电压为只35kV及以上时,用电单位的一级配电电压应采用10kV;当6kV用电设备的总容量较大,选用6kV经济合理时,宜采用6kV.低压配电电压应采用220/380V.第4.0.3条当供电电压为35kV,能减少配变电级数、简化结线,及技术经济合理时,配电电压宜采用35kV.第4.0.4条正常运行情况下,用电设备端子处电压偏差允许值(以额定电压的百分数表示)宜符合下列要求:一、电动机为±5%.二、照明:在一般工作场所为±5%;对于远离变电所的小面积一般工作场所,难以满足上述要求时,可为±5%、-10%;应急照明、道路照明和警卫照明等为±5%、-10%.三、其它用电设备当无特殊规定时为±5%.第4.0.5条供配电系统的设计为减小电压偏差,应符合下列要求:一、正确选择变压器的变压比和电压分接头.二、降低系统阻抗.三、采取补偿无功功率措施.四、宜使三相负荷平衡.第4.0.6条计算电压偏差时,应计入采取下列措施后的调压效果:一、自动或手动调整并联补偿电容器、并联电抗器的接入容量.二、自动或手动调整同步电动机的励磁电流.三、改变供配电系统运行方式.第4.0.7条变电所中的变压器在下列情况之一时,应采用有载调压变压器:一、35kV以上电压的变电所中的降压变压器,直接向35kV、10(6)kV 电网送电时.二、35kV降压变电所的主变压器,在电压偏差不能满足要求时.第4.0.8条10(6)kV配电变压器不宜采用有载调压变压器;但在当地10(6)kV电源电压偏差不能满足要求,且用电单位有对电压要求严格的设备,单独设置调压装置技术经济不合理时,亦可采用10(6)kV 有载调压变压器.第4.0.9条电压偏差应符合用电设备端电压的要求,35kV以上电网的有载调压宜实行逆调压方式.逆调压的范围宜为额定电压的0~+5%.第4.0.10条对冲击性负荷的供电需要降低冲击性负荷引起的电网电压波动和电压闪变(不包括电动机启动时允许的电压下降)时,宜采取下列措施:一、采用专线供电.二、与其它负荷共用配电线路时,降低配电线路阻抗.三、较大功率的冲击性负荷或冲击性负荷群与对电压波动、闪变敏感的负荷分别由不同的变压器供电.四、对于大功率电弧炉的炉用变压器由短路容量较大的电网供电.第4.0.11条控制各类非线性用电设备所产生的谐波引起的电网电压正弦波形畸变率,宜采取下列措施:一、各类大功率非线性用电设备变压器由短路容量较大的电网供电.二、对大功率静止整流器,采取下列措施:1 提高整流变压器二次侧的相数和增加整流器的整流脉冲数.2 多台相数相同的整流装置,使整流变压器的二次侧有适当的相角差.3 按谐波次数装设分流滤波器.三、选用D,yn11结线组别的三相配电变压器.注:D,yn11结线组别的三相配电变压器是指表示其高压绕组为三角形、低压绕组为星形且有中性点有“11”结线织别的二相配电变压器.第4.0.12条设计低压配电系统时宜采取下列措施,降低三相低压配电系统的不对称度.一、220V或380V单相用电设备接入220/380V三相系统时,宜使三相平衡.二、由地区公共低压电网供电的220V照明负荷,线路电流小于或等于30A时,可采用220V单相供电;大于30A时,宜以220/380V三相四线制供电.第五章无功补偿第5.0.1条供配电设计中应正确选择电动机、变压器的容量,降低线路感抗.当工艺条件适当时,宜采取采用同步电动机或选用带空载切除的间歇工作制设备等,提高用电单位自然功率因数的措施.第5.0.2条当采用提高自然功率因数措施后,仍达不到电网合理运行要求时,应采用并联电力电容器作为无功补偿装置.当经过技术经济比较,确认采用同步电动机作为无功补偿装置合理时,可采用同步电动机.第5.0.3条采用电力电容器作为无功补偿装置时,宜就地平衡补偿.低压部分的无功功率宜由低压电容器补偿;高压部分的无功功率宜由高压电容器补偿.容量较大,负荷平稳且经常使用的用电设备的无功功率宜单独就地补偿.补偿基本无功功率的电容器组,宜在配变电所内集中补偿.在环境正常的车间内,低压电容器宜分散补偿.第5.0.4条无功补偿容量宜按无功功率曲线或无功补偿计算方法确定.第5.0.5条无功补偿装置的投切方式,具有下列情况之一时,宜采用手动投切的无功补偿装置.一、补偿低压基本无功功率的电容器组.二、常年稳定的无功功率.三、经常投入运行的变压器或配、变电所内投切次数较少的高压电动机及高压电容器组.第5.0.6条无功补偿装置的投切方式,具有下列情况之一时,宜装设无功自动补偿装置.一、避免过补偿,装设无功自动补偿装置在经济上合理时.二、避免在轻载时电压过高,造成某些用电设备损坏,而装设无功自动补偿装置在经济上合理时.三、只有装设无功自动补偿装置才能满足在各种运行负荷的情况下的电压偏差允许值时.第5.0.7条当采用高、低压自动补偿装置效果相同时,宜采用低压自动补偿装置.第5.0.8条无功自动补偿的调节方式,宜根据下列原则确定:一、以节能为主进行补偿时,采用无功功率参数调节;当三相负荷平衡时,亦可采用功率因数参数调节.二、提供维持电网电压水平所必要的无功功率及以减少电压偏差为主进行补偿者,应按电压参数调节,但已采用变压器自动调压者除外.三、无功功率随时间稳定变化时,按时间参数调节.第5.0.9条电容器分组时,应满足下列要求:一、分组电容器投切时,不应产生谐振.二、适当减少分组组数和加大分组容量.三、应与配套设备的技术参数相适应.四、应满足电压偏差的允许范围.第5.0.10条接在电动机控制设备侧电容器的额定电流,不应超过电动机励磁电流的0.9倍;其馈电线和过电流保护装置的整定值,应按电动机-电容器组的电流确定.第5.0.11条高压电容器组宜串联适当参数的电抗器.低压电容器组宜加大投切容量或采用专用投切接触器.当受谐波量较大的用电设备影响的线路上装设电容器组时,宜串联电抗器.新网首页- 建筑设计规范共2页、第02页供配电系统设计规范GB50052-95第六章低压配电第6.0.1条低压配电电压应采用220/380V.带电导体系统的型式宜采用单相二线制、两相三线制、三相三线制和三相四线制.第6.0.2条在正常环境的车间或建筑物内,当大部分用电设备为中小容量,且无特殊要求时,宜采用树干式配电.第6.0.3条当用电设备为大容量,或负荷性质重要,或在有特殊要求的车间、建筑物内,宜采用放射式配电.第6.0.4条当部分用电设备距供电点较远,而彼此相距很近、容量很小的次要用电设备,可采用链式配电,但每一回路环链设备不宜超过5台,其总容量不宜超过10kW.容量较小用电设备的插座,采用链式配电时,每一条环链回路的设备数量可适当增加.第6.0.5条在高层建筑物内,当向楼层各配电点供电时,宜采用分日树干式配电;但部分较大容量的集中负荷或重要负荷,应从低压配电室以放射式配电.第6.0.6条平行的生产流水线或互为备用的生产机组,根据生产要求,宜由不同的回路配电;同一生产流水线的各用电设备,宜由同一回路配电.第6.0.7条TN及TT系统接地型式的低压电网中,宜选用D、yn11结线组别的三相变压器作为配电变压器.注:TN系统--在此系统内,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过保护线(PE线)与该点连接.其定义应符合现行国家标准《电力装置的接地设计规范》的规定.TT系统--在此系统内,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分连接的接地极和电源的接地极无电气联系.其定义应符合现行国家标准《电力装置的接地设计规范》的规定.第6.0.8条在TN及TT系统接地型式的低压电网中,当选用Y,yn0结线组别的三相变压器时,其由单相不平衡负荷引起的中性线电流不得超过低压绕组额定电流的25%%,且其一相的电流在满载时不得超过额定电流值.注:Y,yn0结线组别的三相变压器是指表示其高压绕组为星形、低压绕组亦为星形且有中性点和“0”结线组别的三相变压器.第6.0.9条当采用220/380V的TN及TT系统接地型式的低压电网时,照明和其它电力设备宜由同一台变压器供电.必要时亦可单独设置照明变压器供电.第6.0.10条由建筑物外引入的配电线路,应在室内靠近进线点便于操作维护的地方装设隔离电器.附录一名词解释新网首页- 建筑设计规范共2页、第02页供配电系统设计规范GB50052-95第六章低压配电第6.0.1条低压配电电压应采用220/380V.带电导体系统的型式宜采用单相二线制、两相三线制、三相三线制和三相四线制.第6.0.2条在正常环境的车间或建筑物内,当大部分用电设备为中小容量,且无特殊要求时,宜采用树干式配电.第6.0.3条当用电设备为大容量,或负荷性质重要,或在有特殊要求的车间、建筑物内,宜采用放射式配电.第6.0.4条当部分用电设备距供电点较远,而彼此相距很近、容量很小的次要用电设备,可采用链式配电,但每一回路环链设备不宜超过5台,其总容量不宜超过10kW.容量较小用电设备的插座,采用链式配电时,每一条环链回路的设备数量可适当增加.第6.0.5条在高层建筑物内,当向楼层各配电点供电时,宜采用分日树干式配电;但部分较大容量的集中负荷或重要负荷,应从低压配电室以放射式配电.第6.0.6条平行的生产流水线或互为备用的生产机组,根据生产要求,宜由不同的回路配电;同一生产流水线的各用电设备,宜由同一回路配电.第6.0.7条TN及TT系统接地型式的低压电网中,宜选用D、yn11结线组别的三相变压器作为配电变压器.注:TN系统--在此系统内,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过保护线(PE线)与该点连接.其定义应符合现行国家标准《电力装置的接地设计规范》的规定.TT系统--在此系统内,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分连接的接地极和电源的接地极无电气联系.其定义应符合现行国家标准《电力装置的接地设计规范》的规定.第6.0.8条在TN及TT系统接地型式的低压电网中,当选用Y,yn0结线组别的三相变压器时,其由单相不平衡负荷引起的中性线电流不得超过低压绕组额定电流的25%%,且其一相的电流在满载时不得超过额定电流值.注:Y,yn0结线组别的三相变压器是指表示其高压绕组为星形、低压绕组亦为星形且有中性点和“0”结线组别的三相变压器.第6.0.9条当采用220/380V的TN及TT系统接地型式的低压电网时,照明和其它电力设备宜由同一台变压器供电.必要时亦可单独设置照明变压器供电.第6.0.10条由建筑物外引入的配电线路,应在室内靠近进线点便于操作维护的地方装设隔离电器.附录一名词解释续表附录二本规范用词说明一、为便于在执行本规范条文时区别对待,对要求严格程度不同的用词说明如下:1.表示很严格,非这样做不可的:正面词采用“必须”;反面词采用“严禁”.2.表示严格,在正常情况下均应这样做的:正面词采用“应”;反面词采用“不应”或“不得”.3.表示允许稍有选择,在条件许可时首先应这样做的:正面词采用“宜”或“可”;反面词采用“不宜”.二、条文中规定应按其它有关标准、规范执行时,写法为“应符合……的规定”或“应按……执行”.附加说明本规范主编单位、参加单位和主要起草人名单主编单位:机械工业部第二设计研究院参加单位:上海市电力工业局化工部中国环球化学工程公司中国航空工业规划设计研究院主要起草人:瞿元龙、章长东、郑祖煌、陈乐珊、徐永根、王厚余、陈文良、黄幼珍、刘汉云、包伟民。
7 .变电所进出线和与邻近单位联络线的选择
7.1 高压进线的选择校验
采用LJ型铝绞线架空敷设,接住10KV公用干线
(1)按发热条件选择
由I30=I1N·T=57.7A及室外环境温度25℃,查手册,初选LJ-16,其25℃时的
Ial≈90A>I30,满足发热条件。
(2)校验机械强度
由手册,最小允许截面AMIN=25mm2,因此LJ-16不满足机械强度要求,故改选
LJ-35。
因为此线路很短,不需校验电压损耗。
7.2 由高压配电室至主变的一段引入电缆的选择校验
采用YJL22-10000型绞联聚乙烯绝缘的铝芯电缆直接埋地敷设。
(1)按发热条件选择
由I30=I1NT=57.7A及土壤温度25℃查手册初选缆芯为25mm2的交联电缆,其
Ial=90A>I30,满足发热条件。
(2)校验短路热稳定
Amin=I(3)∞Ctima=19707775.00㎜2=22mm2>A=25mm2
C查表可得;tima按终端变电所保护动作时间0.5s,加断路器断路时间0.2s,
再加0.05s计,故tima=0.75s。
因此YJL22-1000-3×25电缆满足短路热稳定条件。
7.3 380V低压出线的选择
(1)馈电给1号厂房(铸造车间)的线路采用VLV22-1000型聚氯乙烯绝缘
铝心电缆直接埋地敷设。
1)按发热条件选择由I30=232.9A及地下0.8m土壤温度为25℃,查表得初
选LJ—150,其25℃时的Ial≈375A>I30,满足发热条件。
2)检验电压损耗 由图11-3所示平面图量得变电所至1号厂房距离约为
70m,由表查得LJ—150的R0=0.28/km,X0=0.34/km(按接线几何均距0.8 m
来计),又1号厂房的P30=93.6kW,Q30=98.28Kvar,因此:
U=38.0)07.034.0(28.98)07.028.0(6.93=6.27V
U﹪=(6.27V/380V)×100﹪=1.67﹪<
Ual=5﹪满足允许电压损耗5%的要
求
(2)馈电给2号厂房(锻压车间)的线路 亦采用VLV22-1000型聚氯乙烯
绝缘铝心电缆直接埋地敷设。缆芯截面选240mm,即VLV22-1000-3×240+1×120
的四芯电缆。
(3)馈电给3号厂房(金工车间)的线路 亦采用VLV22-1000型聚氯乙烯
绝缘铝心电缆直接埋地敷设。缆芯截面选240mm,即VLV22-1000-3×240+1×120
的四芯电缆。
(4)馈电给4号厂房(工具车间)的线路 亦采用VLV22-1000型聚氯乙烯
绝缘铝心电缆直接埋地敷设。缆芯截面选240mm,即VLV22-1000-3×240+1×120
的四芯电缆。
(5)馈电给5号厂房(电镀车间)的线路 亦采用VLV22-1000型聚氯乙烯
绝缘铝心电缆直接埋地敷设。缆芯截面选240mm,即VLV22-1000-3×240+1×120
的四芯电缆。
(6)馈电给6号厂房(热处理车间)的线路 亦采用VLV22-1000型聚氯乙
烯绝缘铝心电缆直接埋地敷设。缆芯截面选240mm,即VLV22-1000-3×240+1×
120的四芯电缆。
(7)馈电给7号厂房(装配车间)的线路 亦采用VLV22-1000型聚氯乙烯
绝缘铝心电缆直接埋地敷设。缆芯截面选240mm,即VLV22-1000-3×240+1×120
的四芯电缆。
(8)馈电给8号厂房(机修车间)的线路 亦采用VLV22-1000型聚氯乙烯
绝缘铝心电缆直接埋地敷设。缆芯截面选240mm,即VLV22-1000-3×240+1×120
的四芯电缆。
(9)馈电给9厂房(锅炉房)的线路 亦采用VLV22-1000型聚氯乙烯绝缘
铝心电缆直接埋地敷设。缆芯截面选240mm,即VLV22-1000-3×240+1×120的
四芯电缆。
(10)馈电给10(仓库)的线路 亦采用VLV22-1000型聚氯乙烯绝缘铝心
电缆直接埋地敷设。缆芯截面选240mm,即VLV22-1000-3×240+1×120的四芯
电缆。
(11)馈电给生活区的线路 采用LJ型铝绞线架空敷设
为了确保生活用电(照明、家电)的电压质量,决定采用四回LJ—120型铝
绞线架空敷设,查表得LJ—120的R0=0.31Ω/km,X0=0.07Ω/km(按线间几何均居
0.6m计),因此:
ΔU=38.0)07.031.0(55.56)07.031.0(195=14.23v
ΔU﹪=38023.14%=3.7%<ΔUal=5%满足要求。
中性线采用LJ—70铝铰线
7.4作为备用电源的高压联络线的选择校验
采用YJL22-1000型交联聚乙烯绝缘的铝芯电缆,直接埋地敷设,与相距约
2KM的邻近单位变配电所的10KV母线相联。
(1)按发热条件选择
工厂二级负荷容量共424.75kvar,I30=31075.424=24.45A,最热月土壤平均温度
为25℃,查表得初选缆心截面为25mm2的交联聚乙烯绝缘铝心电缆,其Ial=90A
>I30,满足发热条件。
(2)检验电压损耗 由表可查得缆心为25 mm2的铝心电缆的
R0=1.54/km,X0=0.12/km(缆心温度按80℃计),而二级负荷的P30=456.72kW,
Q30=424.75Kvar,线路长度按2km计,因此:
ΔU=10212.072.564254.1424.75)()(=41.75V
ΔU﹪=10010000/41.75﹪=0..423﹪<ΔUal=5﹪
由此可见满足允许电压损耗5﹪的要求。
(3)短路热稳定校验 按本变电所高压侧短路电流校检,由前述引入电缆
的短路热稳定校检,可知缆芯25 mm2的交联电缆是满足热稳定要求的。而邻近
单位10kV的短路数据不知,因此该联络线的短路热稳定校检计算无法进行,只
有暂缺。
综合以上所选的变电所进出线和联络线的导线和电缆型号规格如表8.1所示
表8.1 变电所进出线和联络线的型号规格
线路名称 导线或电缆的型号规格
10KV电源引线 LJ-35铝绞线(三相三线架空)
主变引入电缆 YJL22-10000-3×35交联电缆(直埋)
380V
低压
出线
至1厂房 VLV22-1000-3×300+1×120四芯塑料电缆(直埋)
至2号厂房 VLV22-1000-3×240+1×120四芯塑料电缆(直埋)
至3号厂房 VLV22-1000-3×240+1×120四芯塑料电缆(直埋)
至4号厂房 VLV22-1000-3×240+1×120四芯塑料电缆(直埋)
至5号厂房 VLV22-1000-3×300+1×120四芯塑料电缆(直埋)
至6号厂房 VLV22-1000-3×240+1×120四芯塑料电缆(直埋)
至7号厂房 VLV22-1000-3×240+1×120四芯塑料电缆(直埋)
至8号厂房 VLV22-1000-1×120铝芯线5根穿内径25 mm2硬塑管
至9号厂房 VLV22-1000-3×240+1×120四芯塑料电缆(直埋)
至10号厂房 VLV22-1000-3×240+1×120四芯塑料电缆(直埋)
至生活区 VLV22-1000-3×240+1×120四芯塑料电缆(直埋)
与邻近单位10KV联
络线
YJL22-10000-3×25交联电缆(直埋)