人教版八年级数学上册多边形
- 格式:ppt
- 大小:4.85 MB
- 文档页数:21
多边形(基础)知识讲解【学习目标】1.理解多边形的概念;2.掌握多边形内角和与外角和公式;3.灵活运用多边形内角和与外角和公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力.【要点梳理】知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形.2.相关概念:边:组成多边形的各条线段叫做多边形的边.顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:要点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;(2)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线的条数为(3)2n n;(3)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形.知识点二、多边形内角和n边形的内角和为(n-2)·180°(n≥3).要点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;凸多边形凹多边形(2)正多边形的每个内角都相等,都等于(2)180nng°;知识点三、多边形的外角和多边形的外角和为360°.要点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于360n°;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.【典型例题】类型一、多边形的概念1.如图,在六边形ABCDEF中,从顶点A出发,可以画几条对角线?它们将六边形ABCDEF 分成哪几个三角形?【答案与解析】解:如图,P从顶点A出发,可以画三条对角线,它们将六边形ABCDEF分成的三角形分别是:△ABC、△ACD、△ADE、△AEF.【总结升华】从一个多边形一个顶点出发,可以连的对角线的条数(n-3)条,分成的三角形数是个数(n-2)个.举一反三:【变式】过正十二边形的一个顶点有条对角线,一个正十二边形共有条对角线【答案】9,54。
精讲精练【考点精讲】1. 多边形的定义在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
注意:(1)理解多边形的定义要从以下两方面考虑:一是“在同一平面内”;二是“一些线段首尾顺次相接”;两者缺一不可。
(2)多边形通常以边数来命名,具有n条边的多边形叫n边形。
三角形、四边形都属于多边形。
2. 多边形的内角、外角、对角线的概念多边形相邻两边组成的角叫做多边形的内角。
多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
注意:从n边形的一个顶点可以引出(n-3)条对角线,过n个顶点有)3(-⨯nn条对角线,但每条对角线都计算了两遍,所以n边形共有2)3(-nn条对角线。
3. 正多边形的概念各边相等各角也相等的多边形称为正多边形。
注意:正多边形必须同时满足两个条件:一是“各边相等”、二是“各角也相等”,两者缺一不可。
例如,各角都相等的四边形是矩形;各边相等的四边形是菱形。
只有各角相等,各边也相等的四边形是正方形(正四边形)。
【典例精析】例题1 在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条? 简单扼要地写出你的思考过程。
思路导航:对角线是由不相邻的两个顶点相连接而构成的,因此应从顶点入手。
可先探求从一个顶点出发可以画出多少条对角线,当归纳出对角线的条数与多边形顶点的个数之间的关系后,就可以解决本题了。
凸n边形每个顶点不能和它自己以及与它相邻的两个顶点作对角线,所以可作对角线的条数是(n-3)条,凸n边形有n个顶点,所以可作n(n-3)条。
由于每条对角线有两个端点,也就是每条对角线被计算了两次,所以凸n边形共有1(3)2n n-条对角线。
当n=8时,有18(83)45202⨯⨯-=⨯=条对角线。
答案:凸八边形的对角线应该是20条。
点评:本题主要对同学们探究问题的过程进行考查,可以通过类比多边形的内角和的探究方法来进行,所以我们在平时的学习中,不仅要牢记某些结论,还要多体验探究这些结论的方法,并能灵活运用。
人教版数学八年级上册11.3.1《多边形》教学设计一. 教材分析《多边形》是人教版数学八年级上册第11.3.1节的内容,本节主要介绍多边形的定义、性质以及多边形的计算。
本节课的内容是学生学习了平面几何基础知识后的进一步拓展,对于学生来说,掌握多边形的定义和性质,了解多边形的计算方法,对于提高他们的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析八年级的学生已经掌握了平面几何的基本知识,具备了一定的逻辑思维能力和空间想象能力。
但是,对于多边形的定义和性质,以及多边形的计算方法,他们可能还比较陌生。
因此,在教学过程中,我需要注重引导学生从已有的知识出发,逐步理解和掌握多边形的相关概念。
三. 教学目标1.了解多边形的定义和性质,能正确识别各种多边形。
2.掌握多边形的计算方法,能熟练计算多边形的周长和面积。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.多边形的定义和性质。
2.多边形的计算方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出多边形的相关概念。
2.使用多媒体教学,通过动画和图片展示多边形的性质和计算方法。
3.学生进行小组讨论和合作交流,提高他们的逻辑思维能力和空间想象能力。
六. 教学准备1.多媒体教学设备。
2.教学PPT。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入多边形的概念,例如:“一个正六边形的边长是6cm,求这个正六边形的周长和面积。
”让学生思考并讨论,引出多边形的定义和性质。
2.呈现(15分钟)使用PPT展示多边形的定义和性质,通过动画和图片展示多边形的各种形态,让学生直观地感受多边形的特征。
同时,引导学生回顾平面几何的基本知识,为新知识的学习做好铺垫。
3.操练(15分钟)让学生通过练习题来巩固所学知识。
练习题包括识别多边形、计算多边形的周长和面积等。
在学生练习过程中,教师应及时给予指导和解答疑问。
4.巩固(5分钟)通过小组讨论和合作交流,让学生进一步巩固多边形的定义和性质,以及多边形的计算方法。