平面向量的减法教案
- 格式:doc
- 大小:272.00 KB
- 文档页数:4
6.2.2向量的减法运算一、内容和内容解析内容:向量的减法运算.内容解析:本节课先引出相反向量,再类比实数的减法运算,通过相反向量将减法运算转化为加法运算,体现了减法运算和加法运算之间的内部联系.借助相反向量理解向量减法运算的几何意义,掌握平面向量减法运算及运算规则,培养学生逻辑推理、直观想象的核心素养.二、目标和目标解析目标:(1)借助实例和平面向量的几何表示,掌握平面向量减法运算及运算规则,并理解其几何意义.(2)理解和体验实际问题抽象为数学概念的过程和思想,增强数学的应用意识.培养类比、迁移、分类、归纳等能力.目标解析:(1)学生能类比数的减法定义向量的减法,能画图表示两个向量减法的结果.能依据向量减法的定义,并借助其几何意义探讨向量减法的运算规则.(2)研究平面向量的减法运算时,借助与数的运算的类比,如借助与数的运算的类比,定义向量的减法.本节的内容蕴含了数形结合、类比、归纳、抽象等数学思想方法,是培养学生数学抽象、逻辑推理、数学运算、直观想象等数学学科核心素养的极好载体.基于上述分析,本节课的教学重点定为:向量减法的运算法则及其几何意义.三、教学问题诊断分析1.教学问题一:向量与学生在物理中学习的矢量非常类似,物理中许多有关矢量的合成、分解、力做的功等实例可以作为向量有关运算的模型,但这个从物理背景引出向量运算的过程对学生来说仍然存在困难.特别是向量既有大小,也有方向,在向量的线性运算中,对于方向如何参与运算,学生没有直接的经验.解决方案:在类比中抽象出共性,通过图形体现其相同点.2.教学问题二:向量的运算性质的探究过程是类比实数的运算性质.类比数的运算,学生能够想到向量的线性运算可能会有一些类似的运算性质,虽然名称相同,但运算的原理、方法、运算规律都有较大的区别,学生很容易带着实数运算的思维定势来理解平面向量运算,导致学生对向量的运算偏于形式化记忆,对于平面向量的线性运算概念、算理的理解不深刻.解决方案:紧扣向量概念中的两个要素,大小和方向来研究向量的加法.3.教学问题三:向量的减法的定义是用通过相反向量来引入的,学生在做减法运算时,会有一定的困难.解决方案:将减法转化为加法,通过图形刻画其几何意义辅助理解.基于上述情况,本节课的教学难点定为:对向量减法运算法则的理解.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.为了让学生通过观察、类比从物理、几何、代数三个角度理解平面向量的运算,应该为学生创造积极探究的平台→具体→抽象→再具体的反复过程,正向思考与逆向思考相结合,使学生逐步理解概念,克服思维的负迁移.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,让学生体会用联系的观点、类比的方法研究向量,通过类比“数及其运算”而获得研究的内容与方法的启发,再一次体会研究一类新的数学问题的基本思路,因此,本节课的教学是实施数学具体内容的教学与核心素养教学有机结合的尝试.五、教学过程与设计类比实数x的相反数对于向量a,你能定义-吗?它有哪些a()-=+-,即减去一a b a b个向量相当于加上这个向量的相反向量.已知向量a和b,教师动手实践理解几何意义a b-的几何意义是什么?[问题4] 能否概括向量减法的作图步骤?[问题5]若a,b是不共线的向量,则|a+b|与|a-b|的几何意义是什么?学生3:动手实践,小组交流,代表展示:如图1,设OA=a,OB=b, OD=b,连接AB,由向量减法的定义知,()a b a b OA OD OC-=+-=+=.在四边形OCAB中,,OB CA OB CA=,所以OCAB是平行四边形.所以BA OC a b==-.教师4:提出问题4:学生4:如图2,已知向量a,b,在平面内任取一点O,作OA=a,OB=b,则BA=ab,即ab可以表示为从向量b的终点指向向量a的终点的向量.教师5:我们也可以通过:“作平移,共起点,两尾连,指被减.”的记忆口诀来辅助记忆.教师6:提出问题5学生5:如图所示,设OA=a,OB=b,则OC=a+b,BA=ab.因为四边形OACB是平行四边形,所以让学生明确向量减法的几何意义.在理解向量减法几何意义的基础上,通过口诀辅助记忆.通过探究让[问题6] 若a,b是不共线的向量,则|a+b|与|a-b|的几何意义是什么?|a+b|=OC,|ab|=BA,分别是以OA,OB为邻边的平行四边形的两条对角线的长.教师7:提出问题6学生6:(1)当向量a,b不共线时,||a|-|b||<|a-b|<|a|+|b|;(2)当向量a,b共线且同向时,前一个等号成立;当向量a,b共线且反向时,后一个等号成立.学生理解向量的减法法则,培养数学抽象的核心素养.巩固法则综合应用例1.(1)在△ABC中,BC→=a,CA→=b,则AB→等于()A.a+bB.-a+(-b)C.a-bD.b-a(2)如图所示,O为△ABC内一点,OA→=a,OB→=b,OC→=c,求作向量b+c-a.教师8:展示例题1.学生7:(1)选B,AB→=CB→-CA→=-a-b=-a+(-b).学生8:(2)以OB→,OC→为邻边作▱OBDC,连接OD,AD,则OD→=OB→+OC→=b+c,AD→=OD→-OA→=b+c-a.理解向量减法的几何意义,掌握作两个向量的差的基本方法.例2.(1)向量MN →可以写成:①MO →+ON →;②MO →-ON →;③OM →-ON →;④ON →-OM →. 其中正确的是________(填序号).(2)化简:①BA →+OD →-OA →-BC →;②(AC →+BO →+OA →)-(DC →-DO →-OB →).3.向量加减法的应用 例3.如图所示,四边形ACDE 是平行四边形,B 是该平行四边形外一点,且AB →=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.[课堂练习] 1. 化简下列式子: (1)NQ →-PQ →-NM →-MP →; (2)(AB →-CD →)-(AC →-BD →).教师9:展示例题2.学生9:①MO →+ON →=MN →;②MO →-ON →=-OM →-ON →=-(OM →+ON →)≠MN →;③OM →-ON →=NM →;④ON →-OM →=MN →, 故填①④.学生10:①BA →+OD →-OA →-BC →=(BA →-BC →)+(OD →-OA →)=CA →+AD →=CD →.②(AC →+BO →+OA →)-(DC →-DO →-OB →)=AC →+BA →-OC →+OB →=AC →+CO →+OB →+BA →=AB →+BA →=0.教师10:展示例题3.学生11:因为四边形ACDE 是平行四边形,所以CD →=AE →=c ,BC →=AC →-AB →=b -a ,故BD →=BC →+CD →=b -a +c .教师11:布置课堂练习1、2.学生12:完成课堂练习,并订正答案.1. (1)原式=NP →+MN →-MP →=NP →+PN →=NP →-NP →=0. (2)原式=AB →-CD →-AC →+BD →=(AB →-AC →)+(DC →-明晰概念: 让学生借助向量的加、减运算用已知向量表示其他向量.课堂练习1: 掌握作两个向量的差的基本方法.2.如图所示,解答下列各题:(1)用a ,d ,e 表示DB →; (2)用b ,c 表示DB →; (3)用a ,b ,e 表示EC →; (4)用c ,d 表示EC →.DB →)=CB →+BC →=0.2. (1)DB →=DE →+EA →+AB →=d +e +a =a +d +e .(2)DB →=CB →-CD →=-BC →-CD →=-b -c . (3)EC →=EA →+AB →+BC →=a +b +e . (4)EC →=-CE →=-(CD →+DE →)=-c -d .课堂练习2: 让学生借助向量的加、减运算用已知向量表示其他向量.课堂小结[问题7] 通过这节课,你学到了什么知识?在解决问题时,用到了哪些数学思想?[课后练习]1.化简PM →-PN →+MN →所得的结果是( )A.MP →B.NP →C.0D.MN →2.在四边形ABCD 中,AB →=DC →,若|AD →-AB →|=|BC →-BA →|,教师12:提出问题7. 学生13:思考.学生14:学生课后进行思考,并完成课后练习. 答案:1.C 2.B 3.AB →4.2师生共同回顾总结:引领学生感悟数学认知的过程,体会数学核心素养.课后练习:。
6.2.1 向量的加法运算本节课选自《普通高中课程标准数学教科书-必修第二册》(人教A版)第六章《平面向量及其应用》,本节课是本章第2课时,《向量的加法》是第六章平面向量的线性运算的第一节课。
本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。
向量的加法是向量的线性运算中最基本的一种运算,向量的加法为后面学习减法运算、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。
所以本课在平面向量及空间向量中有很重要的地位。
A.理解向量加法的意义;B.掌握向量加法的几何表示法,理解向量加法的另两个运算法则;C.理解向量的运算律;D.理解和体验实际问题抽象为数学概念的过程和思想,增强学生的应用意识。
1.教学重点:两个向量的和的概念及其几何意义;2.教学难点:向量加法的运算律。
多媒体一、复习回顾,温故知新1. 向量、平行向量、相等向量的含义分别是什么? 【答案】向量:既有方向又有大小的量。
平行向量:方向相同或相反的向量。
相等向量:方向相同并且长度相等的向量。
2. 用有向线段表示向量,向量的大小和方向 是如何反映的?什么叫零向量和单位向量?【答案】向量的大小:有向线段的长度。
向量的方向:有向线段的方向。
零向量:长度为零的向量叫零向量;单位向量:长度等于1个单位长度的向量叫单位向量。
二、探索新知思考1:如图,某质点从点A 经过点B 到点C ,则这个质点的位移怎么表示?【答案】 从运算的角度看, AC 可以认为是AB 与BC 的和,即位移、可以看作向量的加法。
1.已知向量a 和b ,如图在平面内任取一点O ,作b AB a OA ==,,则向量OB 叫做a 和b 的和,记作b a +.即OB AB OA b a =+=+。
求两个向量和的运算叫做向量的加法.根据向量加法的定义得出的求向量和的方法,称为向量加法的三角形法则.【口诀】首尾相连首尾连。
注意:(1)两相向量的和仍是一个向量;(2)当向量a r 与b r 不共线时,a r +b r 的方向不同向,且|a r +b r |<|a r |+|b r |;(3)当a r 与b r 同向时,则a r +b r 、a r 、b r 同向,且|a r +b r |=|a r |+|b r |;当a r 与b r 反向时,若|a r |>|b r |,则a r +b r 的方向与a r 相同,且|a r +b r |=|a r |-|b r |,若|a r |<|b r |,则a r +b r 的方向与b r 相同,且|a r +b r |=|b r |-|a r |.2、向量加法的交换律:a r +b r =b r +a r3.向量加法的结合律:(a r +b r ) +c r =a r + (b r +c r )证:知识点二 向量的减法1.用“相反向量”定义向量的减法:“相反向量”的定义: 记作 规定:零向量的相反向量仍是零向量-(-a r ) = a r任一向量与它的相反向量的和是零向量a r + (-a r ) =0r如果a r 、b r 互为相反向量,则a r = -b r , b r = -a r , a r + b r = 0r向量减法的定义:向量a r 加上的b r 相反向量,叫做a r 与b r 的差,即:a r - b r = a r + (-b r )2.用加法的逆运算定义向量的减法:3.求作差向量:已知向量a r 、b r ,求作向量∵(a r -b r ) + b r = a r + (-b r ) + b r = a r +0r = a r减法的三角形法则作法:在平面内取一点O , 作OA u u u r = a r , OB uuu r = b r , 则BA u u u r = a r - b r即a r - b r 可以表示为从向量b r 的终点指向向量a r 的终点向量知识点三 向量的数乘运算 1、定义:实数λ与向量a ρ的积是一个 ,这种运算叫做向量的数乘,记作: ,其长度与方向规定如下:(1)|λa ρ|=|λ||a ρ| (2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=02、运算定律 结合律:λ(μa ρ)=第一分配律:(λ+μ)a ρ= 第二分配律:λ(a ρ+b ρ)=3、向量共线定理。
数学高中向量的减法教案
教学重点与难点:向量的减法运算规则,向量的减法计算。
教学准备:教材、教具、黑板、粉笔。
教学过程:
一、导入新课(5分钟)
教师向学生简单介绍向量的减法概念,并通过例题引出向量的减法规则。
二、示范与讲解(10分钟)
1. 向量的减法规则:将被减向量取相反向量,再进行加法运算。
2. 用具体的例子进行详细讲解,让学生理解向量的减法运算规则。
三、练习与巩固(15分钟)
1. 让学生做一些简单的向量减法计算练习题,巩固所学的知识。
2. 教师及时纠正学生的错误,指导学生正确解题。
四、课堂小结(5分钟)
通过本节课的学习,让学生总结向量的减法规则,再次强调向量减法的步骤。
五、作业布置(5分钟)
布置相关的作业,巩固学生的学习成果。
教学反思:
本节课主要围绕向量的减法运算展开,通过示范、讲解、练习等多种方式,让学生掌握向量的减法规则。
在教学过程中,要注意引导学生理解向量减法的意义,避免简单地机械运算,鼓励学生多思考多实践,提高数学思维能力。
(新)人教高中数学A版必修二第六章第2节《平面向量的运算》优质说课稿今天我说课的内容是新人教高中数学A版必修二的第六章第1节《平面向量的概念》。
向量理论具有深刻的数学内涵、丰富的物理背景。
向量既是代数研究对象,也是几何研究对象,是沟通几何与代数的桥梁.向量是描述直线、曲线,平面、曲面以及高维空间数学同题的基本工具,是进一步学习和研究其他数学领域问题的基础,在解决实际问题中发挥着重要作用。
本章的学习可以帮助学生理解平面向量的几何意义和代数意义;掌握平面向量的概念、运算、平面向量基本定理;用向量语言、方法表述和解决现实生活、数学和物理中的问题:提升数学运算、直观想象和逻辑推理素养.第2节主要讲平面向量的运算。
本节教学承载着实现上述目标的任务,为了更好地教学,下面我从课程标准、教材分析、核心素养、教学重难点、教学方法、教学过程等方面进行说课。
一、说课程标准普通高中数学课程标准(2017年版2020年修订)【内容要求】1.平面向量及其应用。
内容包括:向量运算①借助实例和平面向量的几何表示,掌握平面向量加、减运算及运算规则,理解其几何意义。
②通过实例分析,掌握平面向量数乘运算及运算规则,理解其几何意义。
理解两个平面向量共线的含义。
③了解平面向量的线性运算性质及其几何意义。
④通过物理中功等实例,理解平面向量数量积的概念及其物理意义,会计算平面向量的数量积。
⑤通过几何直观,了解平面向量投影的概念以及投影向量的意义。
⑥会用数量积判断两个平面向量的垂直关系。
二、教材分析。
对于“运算"学生并不陌生,他们已经学习了数的运算、代数式的运算、集合的运算等,针对每一种代数运算无外乎要研究运算的背景、意义、法则、性质、应用等,从而建立相应的运算体系,平面向量运算内容关注了以下两个方面: 一是引导学生从物理、几何、代数三个角度理解向量运算;二是引导学生类比数的运算研究向量的运算.本节在学生已经学习了平面向量概念的基础上,对平面向量这个新获得的数学研究对象,从运算的角度进一步展开研究。
平面向量的加减法运算教学设计以平面向量的加减法运算为主题的教学设计第一节:引入引导学生回顾平面向量的定义和性质,强调向量的表示方法和运算规则。
简要介绍平面向量的加法和减法运算,以及它们的几何意义。
第二节:平面向量的加法运算1.1 向量的加法定义向量的加法是指将两个向量的对应分量相加得到一个新的向量。
引导学生根据定义进行向量的加法运算。
1.2 加法运算的性质向量的加法满足交换律、结合律和零向量的存在性。
通过示例和练习题让学生理解和应用这些性质。
1.3 加法运算的几何意义向量的加法可以用平行四边形法则来解释,即将两个向量的起点相连,得到一个新的向量,它的起点和终点分别为原向量的起点和终点。
第三节:平面向量的减法运算2.1 向量的减法定义向量的减法是指将第二个向量取负后与第一个向量进行加法运算。
引导学生根据定义进行向量的减法运算。
2.2 减法运算的性质向量的减法满足减去一个向量等于加上其相反向量,即a-b=a+(-b)。
通过示例和练习题让学生理解和应用这个性质。
2.3 减法运算的几何意义向量的减法可以用平行四边形法则来解释,即将第二个向量的起点与第一个向量的终点相连,得到一个新的向量,它的起点和终点分别为原向量的起点和第二个向量的终点。
第四节:应用练习通过一些实际问题和练习题,让学生应用所学的平面向量的加减法运算解决几何和物理问题。
可以设计一些场景,如力的合成、位移的计算等。
第五节:总结与拓展对平面向量的加减法运算进行总结,强调运算的规则和性质,以及几何意义。
鼓励学生进一步拓展应用平面向量的知识,如向量的数量积和向量的夹角等。
通过以上教学设计,可以帮助学生系统掌握平面向量的加减法运算,理解其几何意义,并能够应用于实际问题的求解。
同时,通过练习和拓展,培养学生的问题解决能力和数学思维。
平面向量教案3篇平面向量教案1一、教学目标:1. 理解平面向量的定义及相关术语;2. 掌握平面向量的基础运算和性质,如向量的加、减、数乘、模长等;3. 能够利用向量解决几何、三角学以及力学等问题。
二、教学重难点:教学重点:向量的基础运算和性质;教学难点:向量问题的解答。
三、教学方法:讲述法、举例法、实验法。
四、教学过程:1. 前置知识概括为了有利于学生对本次课程的学习,首先需要对平面向量有一定的了解。
向量是运用在三角学以及计算机科学中的一个概念,它表示一个方向和一个大小。
在二维空间中,向量通常用一个有序数对(x, y)表示,其中x和y分别表示向量在x轴和y轴上的分量。
然而,在本课程中,我们将会介绍另一种同样重要的表现向量的方式:平面向量。
2. 讲解平面向量的定义及相关术语平面向量即为有向线段,表示为 $\vec{a}$,具有大小和方向。
平面向量有以下几个重要的术语:(1)起点:向量 $\vec{a}$ 的起点是线段的始点,表示为 $A$。
(2)终点:向量 $\vec{a}$ 的终点是线段的末点,表示为 $B$。
(3)长度:向量 $\vec{a}$ 的长度等于线段 $AB$ 的长度,可以用$|\vec{a}|$表示。
(4)方向角:向量 $\vec{a}$ 的方向角是向量与$x$轴正方向的夹角,通常用 $\theta$表示。
(5)方向余弦:向量 $\vec{a}$ 的方向余弦分别是向量在$x$和$y$轴上的投影与向量长度的比值,分别用 $\cos\alpha$ 和$\cos\beta$表示。
(6)坐标表示:用有序数对 $(a_x, a_y)$ 表示向量 $\vec{a}$,其中 $a_x$ 和 $a_y$ 分别表示向量在$x$轴和$y$轴上的分量。
3. 讲解向量的基本运算及性质(1)向量的加法:设 $\vec{a}$ 和 $\vec{b}$ 为两个向量,它们的和记为 $\vec{a}+\vec{b}$,可通过作一平行四边形得到。
第四单元4.2.2《平面向量的减法》教案一、创设情境激发兴趣问题:我们知道,两个实数可以进行加减法运算.向量的加法已经学过了,那么两个向量的减法是怎么进行的呢?分析:我们把与向量a长度相等且方向相反的向量,叫作向量a的相反向量,记作-a. 其中a和-a互为相反向量.则有:(1)-(-a )= a .(2)任一向量与其相反向量的和是零向量 , 即 a+(−a)=(−a)+a=0.(3)若a,b互为相反向量 , 那么a = -b,b = - a,a + b= 0.规定:零向量的相反向量还是零向量.a加上b的相反向量叫作a与b的差 ,即a+(-b)= a -b= 0.求两个向量差的运算,叫向量的减法.二、自主探究讲授新知如图 4-18,CB=b,根据相反向量的定义有:CB BC-== - b,则()AB CB AB BC AB CB-=+=+-.可见,在向量减法运算中类似结论依然成立.图 4-18由上述分析,可得结论:在向量运算中,减一个向量等于加上这个向量的相反向量.把求两个向量差的运算,叫作向量的减法,即a -b= a+(-b).问题1:如何求两个非零向量的差向量呢?了解观看课件思考自我分析思考理解记忆类比实数的加减法运算,使学生自然理解知识点,激发学生学习兴趣带领学生分析引导式启发学生得出结果带领学生总结加深理解1.不共线的两个非零向量a 与b 的减法:作法:如图4-19,在平面上任取一点A ,依次作AB = a ,BC =-b ,因为 a -b= a +(-b ),对向量 a 与(-b )使用向量加法的三角形法则,得 a -b= a +(-b )=AB +BC =AC .2. 共线的两个非零向量的减法: 当非零向量a 与b 共线时 , 在平面上任取一点A ,首尾相接作AB = a ,BC =-b ,同样可得 a -b= a +(-b ) =AB +BC =AC .情形一:a 与 b 方向相同,如图 4-20:作法:(1)以A 为起点,作AB ⃗⃗⃗⃗⃗ = a ,(2)以B 为起点,作BC ⃗⃗⃗⃗⃗ =−b ,那么 AC⃗⃗⃗⃗⃗ = a -b 情形二:a 与 b 方向相反,如图 4-21:作法:(1)以A 为起点,作AB ⃗⃗⃗⃗⃗ = a ,(2)以B 为起点,作BC ⃗⃗⃗⃗⃗ =−b ,那么 AC⃗⃗⃗⃗⃗ = a -b .理解记忆 思考 辨析 思考 归纳引导启发 学生 思考 仔细 分析 关键 词语 “首尾 相接“ 进一步 理解 加深 记忆第2课时教学过程教学活动学生活动设计思路三、典型例题巩固知识例 1如图4-22(1) , 已知向量a,b,求作向量a-b,并指出其几何意义.解:如图 4-22(2)所示,以平面上任一点A为起点,作AB= a,AD=b,BC=-b,由向量减法的定义可知 ,AC=a+(-b)=a-b .连接AC,则向量AC即为所求的差向量.又因为AD+DB=AB,即b+DB=a ,所以DB=a-b .因此,向量减法的几何意义是:a-b表示把a与b平移到同一起点后 , 向量b 的终点指向向量a 的终点的向量.例2填空:(1)AB AD-=_____________ ;(2)BC BA-=_____________ ;(3)OD OA-=_____________ .解:根据向量减法的定义,减一个向量等于加上它观察思考主动求解小组讨论交流通过例题领会帮助学生更好理解掌握知识点通过例题进一步领会的相反向量,可知, (1)AB AD -=+AB AD -()=+AB DA DA AB DB =+=;(2)BC BA -=+BC BA -()=+BC AB AB BC AC =+=;(3)OD OA -=+OD OA -()=+OD AO AO OD AD +==.思考:当向量a 与b 不共线时,把和向量a+b 与差向量 a -b 作在一个图上,可以得出什么结论?方法提炼:向量减法作图的两种常用方法: 1. 定义法.向量 a 与 b 的差,即是向量 a 加上向量 b 的相反向量,即 a -b = a +(-b ).此时向量a 与向量-b 依然遵循“首尾相接,由始至终”的向量加法口诀.作法如图4-23所示:2. 几何意义法.如图 4-24,把向量a 与向量b 平移到同一起点后,向量b 的终点指向向量a 的终点的向量就是 a -b .即“同一起点,减指被减”.(减向量指向被减向量)思考 归纳 理解 记忆观察 思考 主动 求解 归纳 领会 掌握观察 学生 是否 理解 知识 点 及时 了解 学生 知识 掌握 的情 况 强化 思想 及时 练习 巩固 所学 知识四、随堂练习 强化运用 1.填空.(1)AB AD -=_____________;(2)BA BC -=_____________; (3)BC BA -=_____________;(4)OA OB -=_____________; (5)OD OA -=_____________.2.已知下列各组向量a ,b ,求作 a +b 和 a -b .3.根据图形填空.(1)OA OB -=_____________; (2)OC OA -=_____________ . 五、 课堂小结 归纳提高1. 向量减法的定义及几何意义.2. 向量减法的运算法则:三角形法则.3. 向量减法作图的两种常用方法. 六、布置作业 拓展延伸1.分层作业:(必做)习题4.2.2水平一;(选做)水平二2.读书部分:教材观察 思考领会 掌握 主动 求解 归纳 总结记录检验 学生 学习 效果 关注 学生 练习 中的 错误 使得 学生 在总 结中 提高 分层次 要求教学反思根据教师上课实际情况,课后填写:学生知识、技能的掌握情况、情感态度、思维情况、学生合作交流的情况,及时总结反思。
高中数学必修4《平面向量的线性运算》教案一、教学目标1.理解向量的加、减、数乘运算及其物理意义。
2.掌握平面向量的线性运算方法。
3.能够应用向量的线性运算解决实际问题。
二、教学重点平面向量的线性运算。
三、教学难点向量线性运算一个实际问题的解决。
四、教学方法讲授法,示范法,练习法,问题解决法。
五、教学工具黑板、多媒体投影仪等。
六、教学过程1.引入教师引导学生回忆已学过的向量概念以及向量的模、方向和共面等概念。
2.新课讲解(1)向量加法。
如果 $\vec {AB}$ 和 $\vec {BC}$ 表示两个向量,那么它们的和为 $\vec {AB} + \vec {BC} = \vec {AC}$,如图所示:向量和的性质:①结合律:$(\vec a+\vec b)+\vec c=\vec a+(\vec b+\vec c)$②交换律:$\vec a+\vec b=\vec b+\vec a$③零向量的性质:$\vec a+\vec 0=\vec a$(2)向量减法。
如果 $\vec {AB}$ 和 $\vec {AC}$ 表示两个向量,那么它们的差为 $\vec {AB}-\vec {AC} = \vec {CB}$,如图所示:向量差的性质:$\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$(3)向量数乘。
如果 $\vec a$ 表示一个向量,$\lambda$ 表示一个标量,那么$\vec a$ 与 $\lambda$ 的积为 $\lambda \vec a$,如图所示:向量数乘的性质:①交换律:$\lambda \vec a=\vec a \lambda$②系数倍数的分配律:$(k+l)\vec a=k\vec a+l\vec a$③数乘的分配律:$k(\vec a+\vec b)=k\vec a+k\vec b$(4)向量共线和平行。
向量 $\vec a$ 和 $\vec b$ 共线的充要条件是 $\vec a = \lambda \vec b (\lambda \in R)$;向量 $\vec a$ 和 $\vec b$ 平行的充要条件是 $\vec a \times \vec b =\vec 0$(叉乘得到的是一个向量,如果结果为 $\vec 0$ 说明它们是平行的),或者 $\vec a\cdot\vec b=|\vec a|\cdot|\vec b|$。
中职数学平面向量教案第一章:向量的概念1.1 向量的定义介绍向量的概念,向量的表示方法(字母表示和箭头表示)通过实际例子解释向量的方向和大小1.2 向量的几何表示介绍向量的几何表示方法,箭头表示向量的方向和长度绘制向量图,让学生理解向量的直观表示1.3 向量的坐标表示介绍向量的坐标表示方法,二维和三维空间中的向量坐标表示解释坐标轴上的向量表示,以及坐标系中的向量表示第二章:向量的运算2.1 向量的加法介绍向量的加法运算,同一直线上的向量加法,不同直线上的向量加法利用图形和坐标表示向量的加法运算2.2 向量的减法介绍向量的减法运算,通过加上相反向量实现向量的减法利用图形和坐标表示向量的减法运算2.3 向量的数乘介绍向量的数乘运算,即向量与实数的乘积解释数乘运算的性质和运算规律,利用图形和坐标表示向量的数乘运算第三章:向量的数量积3.1 向量的数量积定义介绍向量的数量积概念,即向量的点积解释数量积的性质和运算规律3.2 数量积的计算公式介绍数量积的计算公式,即两个向量的数量积等于它们的模长的乘积与夹角的余弦值的乘积利用图形和坐标表示数量积的计算3.3 数量积的应用介绍数量积的应用,如判断两个向量的垂直关系,计算向量的模长和夹角利用实际例子展示数量积的应用第四章:向量的叉积4.1 向量的叉积定义介绍向量的叉积概念,即向量的叉积结果为一个向量,其方向垂直于原来的两个向量解释叉积的性质和运算规律4.2 叉积的计算公式介绍叉积的计算公式,即两个向量的叉积结果的模长等于它们的模长的乘积与夹角的正弦值的乘积,方向垂直于原来的两个向量利用图形和坐标表示叉积的计算4.3 叉积的应用介绍叉积的应用,如计算平行四边形的面积,求解两个向量的夹角利用实际例子展示叉积的应用第五章:向量的线性相关性5.1 向量的线性相关性定义介绍向量的线性相关性概念,即一组向量中存在至少一个向量可以由其他向量通过线性组合表示解释线性相关性的性质和判定条件5.2 向量的线性组合介绍向量的线性组合,即一组向量的加权和利用图形和坐标表示向量的线性组合5.3 向量的线性无关性介绍向量的线性无关性,即一组向量中没有任何一个向量可以由其他向量通过线性组合表示利用判定条件判断一组向量是否线性无关第六章:向量的应用6.1 物理中的应用介绍向量在物理学中的应用,如速度、加速度、力等物理量的向量表示通过实际例子解释向量在物理学中的作用6.2 几何中的应用介绍向量在几何中的应用,如计算线段的长度、夹角的大小、平行四边形的面积等通过实际例子解释向量在几何中的作用第七章:向量的分解7.1 向量的分解概念介绍向量的分解概念,即将一个向量分解为两个或多个向量的和解释向量分解的意义和作用7.2 向量的正交分解介绍向量的正交分解,即将一个向量分解为两个垂直向量的和利用正交基底进行向量分解,解释正交分解的性质和运算规律7.3 向量的坐标分解介绍向量的坐标分解,即将一个向量分解为坐标轴上的分量之和利用坐标表示向量的分解,解释坐标分解的性质和运算规律第八章:向量的方程8.1 向量的方程概念介绍向量的方程概念,即用向量的运算表达式描述向量之间的关系解释向量方程的意义和作用8.2 向量的线性方程组介绍向量的线性方程组,即由多个线性方程组成的方程组解向量的线性方程组,解释解的性质和判定条件8.3 向量的非线性方程介绍向量的非线性方程,即方程中包含向量的非线性运算通过实际例子解释向量非线性方程的解法和应用第九章:向量的空间9.1 向量的空间概念介绍向量的空间概念,即由向量组成的几何空间解释向量空间的意义和性质9.2 向量空间的基本性质介绍向量空间的基本性质,如向量加法、数乘运算的封闭性,线性组合的性质等解释向量空间的公理体系和判定条件9.3 向量空间的子空间介绍向量空间的子空间,即由原向量空间中的一部分向量组成的子集解释子空间的性质和运算规律,以及子空间之间的关系第十章:向量的进一步应用10.1 向量在工程中的应用介绍向量在工程技术中的应用,如力学、电路、控制等领域的向量表示和方法通过实际例子解释向量在工程中的应用和作用10.2 向量在计算机科学中的应用介绍向量在计算机科学中的应用,如图形学、计算机图形处理、机器学习等领域的向量表示和方法通过实际例子解释向量在计算机科学中的应用和作用10.3 向量在其他领域的应用介绍向量在其他领域中的应用,如经济学、生物学、环境科学等领域的向量表示和方法通过实际例子解释向量在其他领域的应用和作用重点和难点解析1. 向量的概念与几何表示:重点关注向量的定义和几何表示方法,理解向量的方向和大小。
平面向量的运算【第一课时】向量的加法运算【教学重难点】【教学目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则和三角形法则掌握向量加法的平行四边形法则和三角形法则,会用它们解决实际问题数学抽象、直观想象平面向量加法的运算律掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【教学过程】一、问题导入预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA →=a ,接着作向量AB →=c ,则得向量OB →=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ;(2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD →=c ;(4)作平行四边形CODE ,则OE→=OC →+c =a +b +c .OE →即为所求.规律方法:(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合;②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤①平移两个不共线的向量使之共起点;②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和.探究点2:平面向量的加法运算例2:化简:(1)BC→+AB →;(2)DB →+CD →+BC →;(3)AB →+DF →+CD →+BC →+FA →.解:(1)BC →+AB →=AB →+BC →=AC →.(2)DB →+CD →+BC →=BC →+CD →+DB→=(BC→+CD →)+DB →=BD →+DB →=0.(3)AB →+DF →+CD →+BC →+FA →=AB→+BC →+CD →+DF →+FA →=AC →+CD →+DF →+FA →=AD →+DF →+FA →=AF →+FA →=0.规律方法:向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简.探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB →,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC →|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.规律方法:应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.三、课堂总结1.向量加法的定义及运算法则定义求两个向量和的运算,叫做向量的加法法则三角形法则前提已知非零向量a ,b作法在平面内任取一点A ,作AB →=a ,BC →=b ,再作向量AC→结论向量AC →叫做a 与b 的和,记作a +b ,即a +b =AB →+BC →=AC→图形法则平行四边形法则前提已知不共线的两个向量a ,b作法在平面内任取一点O ,以同一点O 为起点的两个已知向量a ,b 为邻边作▱OACB结论对角线OC →就是a 与b 的和图形规定对于零向量与任一向量a ,我们规定a +0=0+a =a2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立.3.向量加法的运算律交换律a +b =b +a结合律(a +b )+c =a +(b +c )四、课堂检测1.化简OP→+PQ →+PS →+SP →的结果等于()A .QP →B .OQ→C .SP→D .SQ→解析:选B .OP →+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有()A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD 的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______.解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13.答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO →+AC →;(2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF →为所求.(2)在AB 上取点G ,使AG =13AB ,则向量BG →为所求.【第二课时】向量的减法运算【教学重难点】【教学目标】【核心素养】相反向量理解相反向量的概念数学抽象向量的减法掌握向量减法的运算法则及其几何意义数学抽象、直观想象【教学过程】一、问题导入预习教材内容,思考以下问题:1.a 的相反向量是什么?2.向量减法的几何意义是什么?二、新知探究探究点1:向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →);(2)AB →-AD →-DC →.解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB →.法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0=AB →.(2)法一:原式=DB →-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →.规律方法:向量减法运算的常用方法探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB →=b -c .过点A 作AD 綊BC ,连接OD ,则AD →=b -c ,所以OD →=OA →+AD →=a +b -c .法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作CB →=c ,连接OC ,则OC →=a +b -c .规律方法:求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可.(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量.探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB→=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.解:因为四边形ACDE 是平行四边形,所以CD→=AE →=c ,BC →=AC →-AB →=b -a ,故BD →=BC →+CD →=b -a +c .规律方法:用已知向量表示其他向量的三个关注点(1)搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道.(2)注意综合应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题.(3)注意在封闭图形中利用向量加法的多边形法则.例如,在四边形ABCD 中,AB →+BC →+CD →+DA →=0.三、课堂总结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量.四、课堂检测1.在△ABC 中,D 是BC 边上的一点,则AD→-AC →等于()A .CB →B .BC →C .CD →D .DC→解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC →=CD →.2.化简:AB →-AC →+BD →-CD →+AD →=________.解析:原式=CB→+BD →+DC →+AD →=CD →+DC →+AD →=0+AD →=AD →.答案:AD→3.已知错误!=10,|AC →|=7,则|CB →|的取值范围为______.解析:因为CB →=AB →-AC →,所以|CB→|=|AB →-AC →|.又||AC →||≤|AB →-AC →|≤|AB →|+|AC →|,3≤|AB →-AC →|≤17,所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.解:因为OB →-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →.又|OB →-OC →|=|OB →-OA →+OC →-OA →|,所以|AB →+AC →|=|AB →-AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】向量的数乘运算【教学重难点】【教学目标】【核心素养】向量数乘运算的定义及运算律理解向量数乘的定义及几何意义,掌握向量数乘的运算律数学抽象、直观想象向量共线定理掌握向量共线定理,会判断或证明两个向量共线逻辑推理【教学过程】一、问题导入预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算?二、新知探究探究点1:向量的线性运算例1:(1)计算:①4(a+b)-3(a-b)-8a;②(5a-4b+c)-2(3a-2b+c);③23(4a-3b)+13b-14(6a-7b).(2)设向量a=3i+2j,b=2i-j--23b2b-a).解:(1)①原式=4a+4b-3a+3b-8a =-7a+7b.②原式=5a-4b+c-6a+4b-2c=-a-c.a-3b+13b-32a +74b-11 12b=53a-1118b.(2)原式=13a-b-a+23b+2b-a1-1+23+=-53a+5b=-5(3i+2j)+53(2i -j)5-103-=-53i-5j.规律方法:向量线性运算的基本方法(1)类比方法:向量的数乘运算可类似于代数多项式的运算.例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)方程方法:向量也可以通过列方程来解,把所求向量当作未知数,利用代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB →.所以AB →,BD →共线,且有公共点B ,所以A 、B 、D 三点共线.(2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2),则(k -λ)e 1=(λk -1)e 2由于e 1与e 2-λ=0,-1=0,所以k =±1.规律方法:向量共线定理的应用(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行.(2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若AB →=λAC →,则AB →与AC →共线,又AB →与AC →有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法.探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB →∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB →=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC →=________;(2)MN →=________.解析:因为AB →∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →.(1)AC →=AD →+DC →=e 2+12e 1.(2)MN →=MD →+DA →+AN→=-12DC →-AD →+12AB→=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2互动探究变条件:在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN →=MD →+DA →+AN →,MN→=MC →+CB →+BN →,所以2MN →=(MD →+MC →)+DA →+CB →+(AN →+BN →).又因为M ,N 分别是DC ,AB 的中点,所以MD→+MC →=0,AN →+BN →=0.所以2MN →=DA →+CB →,所以MN →=12(-AD →-BC →)=-12e 2-12e 1.规律方法:用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.三、课堂总结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律设λ,μ为实数,那么:(1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa .(3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .四、课堂检测1.1312(2a +8b )-(4a -2b )等于()A .2a -bB .2b -aC .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b .2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=()A .BO →B .AO→C .CO →D .DO→解析:选A .BD →=AD →-AB →=BC →-AB →=3e 2-2e 1,BO →=12BD →=32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB →=e 1+3e 2,CD →=2e 1-e 2,所以BD →=CD →-CB →=e 1-4e 2.又AB →=2e 1-8e 2=2(e 1-4e 2),所以AB →=2BD →,所以AB →与BD →共线.因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】向量的数量积【教学重难点】【教学目标】【核心素养】向量的夹角理解平面向量夹角的定义,并会求已知两个非零向量的夹角直观想象、数学运算向量数量积的含义理解平面向量数量积的含义并会计算数学抽象、数学运算投影向量理解a 在b 上的投影向量的概念数学抽象向量数量积的性质和运算律掌握平面向量数量积的性质及其运算律,并会应用数学运算、逻辑推理【教学过程】一、问题导入预习教材内容,思考以下问题:1.什么是向量的夹角?2.数量积的定义是什么?3.投影向量的定义是什么?4.向量数量积有哪些性质?5.向量数量积的运算有哪些运算律?二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD →·BC →;②AB →·DA →.解:(1)(a +2b )·(a +3b )=a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos60°+6|b |2=62+5×6×4×cos60°+6×42=192.(2)①因为AD →∥BC →,且方向相同,所以AD →与BC →的夹角是0°,所以AD →·BC →=|AD →||BC →|·cos0°=3×3×1=9.②因为AB →与AD →的夹角为60°,所以AB→与DA →的夹角为120°,所以AB →→=|AB →||DA →|·cos120°=6.互动探究:变问法:若本例(2)的条件不变,求AC→·BD →.解:因为AC →=AB →+AD →,BD →=AD →-AB →,所以AC →·BD →=(AB →+AD →)·(AD →-AB →)=AD →2-AB →2=9-16=-7.规律方法:向量数量积的求法(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法运算.探究点2:向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=()A .3B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=()A .13B .12C .15D .14解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2=|a |2+4|a ||b |cos 60°+4|b |2=4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos60°=34,即1+|b |2-|b |=34,解得|b |=12.答案:(1)B (2)B 规律方法:求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.探究点3:向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a|=6,|b|=4,(a+2b)·(a-3b)=-72,则a与b的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a 与b的夹角为______.解析:(1)设a与b的夹角为θ,(a+2b)·(a-3b)=a·a-3a·b+2b·a-6b·b=|a|2-a·b-6|b|2=|a|2-|a||b|cosθ-6|b|2=62-6×4×cosθ-6×42=-72,所以24cosθ=36+72-96=12,所以cosθ=1 2.又因为θ∈[0,π],所以θ=π3.(2)设a与b的夹角为θ,由(a-b)⊥b,得(a-b)·b=0,所以a·b=b2,所以cosθ=b2|a||b|.又因为|a|=2|b|,所以cosθ=|b|22|b|2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a,b是非零向量,当a+t b(t∈R)的模取最小值时,求证:b⊥(a+t b).证明:因为|a+t b|=(a+t b)2=a2+t2b2+2t a·b=|b|2t2+2a·b t+|a|2,所以当t=-2a·b2|b|2=-a·b|b|2时,|a+t b|有最小值.此时b·(a+t b)=b·a+t b2=a·b b|2=a·b -a·b =0.所以b ⊥(a +t b ).命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为()A .-32B .32C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直,所以(3a +2b )·(k a -b )=0,所以3k a 2+(2k -3)a·b -2b 2=0.因为a ⊥b ,所以a ·b =0,又|a |=2,|b |=3,所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ),即49c 2=9a 2+λ2b 2+6λa ·b ,而a ,b ,c 为单位向量,则a 2=b 2=c 2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.答案:(1)B (2)-8或5规律方法:求向量a 与b 夹角的思路(1)求向量a 与b 夹角的关键是计算a·b 及|a ||b |,在此基础上结合数量积的定义或性质计算cos θ=a·b|a ||b |,最后借助θ∈[0,π],求出θ的值.(2)在个别含有|a |,|b |与a·b 的等量关系中,常利用消元思想计算cos θ的值.三、课堂总结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ;③当θ=π时,向量a 与b 反向.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0.3.投影向量如图(1),设a ,b 是两个非零向量,AB →=a ,CD →=b ,我们考虑如下变换:过AB →的起点A和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project ),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM →=a ,ON →=b ,过点M 作直线ON 的垂线,垂足为M 1,则OM1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θe .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则(1)a ·e =e ·a =|a |cos θ.(2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a .(4)|a·b |≤|a ||b |.5.向量数量积的运算律(1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律).(3)(a+b)·c=a·c+b·c(分配律).四、课堂检测1.已知向量a,b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角θ为()A.π6B.π4C.π3D.π2解析:选C.由题意,知a·b=|a||b|cosθ=4cosθ=2,所以cosθ=12.又0≤θ≤π,所以θ=π3.2.已知|a|=|b|=1,a与b的夹角是90°,c=2a+3b,d=k a-4b,c与d垂直,则k的值为()A.-6B.6C.3D.-3解析:选B.因为c·d=0,所以(2a+3b)·(k a-4b)=0,所以2k a2-8a·b+3k a·b-12b2=0,所以2k=12,所以k=6.3.已知|a|=3,|b|=5,a·b=-12,且e是与b方向相同的单位向量,则a在b上的投影向量为______.解析:设a与b的夹角θ,则cosθ=a·b|a||b|=-123×5=-45,所以a在b上的投影向量为|a|cosθ·e==-125 e.答案:-12 5 e4.已知|a|=1,|b|=2.(1)若a∥b,求a·b;(2)若a,b的夹角为60°,求|a+b|;(3)若a-b与a垂直,求a与b的夹角.解:设向量a与b的夹角为θ.(1)当a,b同向,即θ=0°时,a·b=2;当a,b反向,即θ=180°时,a·b=-2.(2)|a+b|2=|a|2+2a·b+|b|2=3+2,|a+b|=3+2.(3)由(a-b)·a=0,得a2=a·b,cosθ=a·b|a||b|=22,又θ∈[0,180°],故θ=45°.。
高中数学平面向量教案(精选6篇)为大家收集的高中数学平面向量教案,欢迎阅读,希望大家能够喜欢。
高中数学平面向量教案精选篇1教学目标1、了解基底的含义,理解并掌握平面向量基本定理。
会用基底表示平面内任一向量。
2、掌握向量夹角的定义以及两向量垂直的定义。
学情分析前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。
如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备重点难点重点:对平面向量基本定理的探究难点:对平面向量基本定理的理解及其应用教学过程4.1第一学时教学活动活动1【导入】情景设置火箭在升空的某一时刻,速度可以分解成竖直向上和水平向前的两个分速度v=vx+vy=6i+4j。
活动2【活动】探究已知平面中两个不共线向量e1,e2,c是平面内任意向量,求向量c=___e1+___e2(课堂上准备好几张带格子的纸张,上面有三个向量,e1,e2,c)做法:作OA=e1,OB=e2,OC=c,过点C作平行于OB的直线,交直线OA于M;过点C作平行于OA的直线,交OB于N,则有且只有一对实数l1,l2,使得OM=l1e1,ON=l2e2。
因为OC=OM+ON,所以c=6 e1+6e2。
向量c=__6__e1+___6__e2活动3【练习】动手做一做请同学们自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____(做完后,思考一下,这样的一组实数是否是唯一的呢?)(是唯一的)由刚才的几个实例,可以得出结论:如果给定向量e1,e2,平面内的任一向量a,都可以表示成a=入1e1+入2e2。
活动4【活动】思考问题2:如果e1,e2是平面内任意两向量,那么平面内的任一向量a还可以表示成a=入1e1+入2e2的形式吗?生:不行,e1,e2必须是平面内两不共线向量活动5【讲授】平面向量基本定理平面向量基本定理:如果e1,e2是平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数l1,l2,使a=l1e1+l2e2。
高中数学向量减法教案
教学目标:
1. 了解向量减法的定义与性质;
2. 熟练掌握向量减法的运算方法;
3. 能够解决相关的数学问题。
教学重点:
1. 向量减法的定义;
2. 向量减法的运算方法。
教学难点:
1. 理解向量减法的几何意义;
2. 运用向量减法解决实际问题。
教学准备:
1. 教师准备课件、黑板、白板笔等教学工具;
2. 学生准备笔记本、铅笔等学习工具。
教学步骤:
一、导入:通过引导学生回顾前几节课的知识,复习向量的定义和向量的加法,激发学生对本节课内容的学习兴趣。
二、讲解:介绍向量减法的定义和性质,引导学生理解向量减法的几何意义,并演示向量减法的运算方法。
三、练习:让学生进行相关的练习,包括计算向量的减法并求解具体的数学问题。
四、拓展:引导学生思考向量减法在实际生活中的应用,并提出相关问题,让学生运用向量减法解决实际问题。
五、总结:对本节课的内容进行总结,强调向量减法的重点及运用方法,帮助学生加深对向量减法的理解。
六、作业:布置相关的作业,让学生巩固向量减法的知识点,并在下节课前完成作业。
教学反思:
通过本节课的教学,学生应该能够掌握向量减法的定义与性质,熟练运用向量减法的运算方法,并能够解决相关的数学问题。
同时,应该能够加深对向量减法的理解,提高解决实际问题的能力。
《6.2.2 向量的减法运算》教学设计【教材分析】本节课选自《普通高中课程标准数学教科书-必修第一册》(人教A版)第六章《平面向量及其应用》,本节课是第3课时。
向量的减法运算是平面向量线性运算的一种。
在学完向量的加法运算及几何意义后,本节课是对上节课内容的一个转换。
学生在上节课已经学习了平面向量的加法运算及几何意义,会运用三角形法则和平行四边形法则求两个向量的和向量,具备了一定的作图能力。
这为学习向量的减法运算打下了很好的基础。
类比数的减法运算时,应让学生注意对“被减数”的理解。
本节主要学习相反向量,向量的减法的三角形法则。
通过类比数的减法,得到向量的减法及几何意义,培养了学生的化归思想和数形结合思想。
这样,不但能帮助学生加深对向量加法运算及几何意义的理解,也为后面学习向量的数乘运算及几何意义提供了指导性的思想。
【教学目标与核心素养】A.掌握相反向量的概念及其在向量减法中的作用;B.掌握向量的减法,会作两个向量的差向量,并理解其几何意义;C.会求两个向量的差;D.培养学生的类比思想、数形结合思想及划归思想。
【教学重点】:向量减法的运算和几何意义;【教学难点】:减法运算时差向量方向的确定。
【教学过程】注意:各向量“首尾相连”,和向量由第一个向量的起点指向最后一个向量的终点.2.向量加法的平行四边形法则?注意:起点相同.共线向量不适用。
二、探索新知思考1:你还能回想起实数的相反数是怎样定义的吗?【答案】实数a 的相反数记作-a .思考2.两个实数的减法运算可以看成加法运算吗?如何定义向量的减法呢?【答案】如。
1.相反向量的定义:设向量,我们把与长度相同,方向相反的向量叫做的相反向量。
记作:。
规定:的相反向量仍是。
练习:(1) ;(2) ; ; (3)设与互为相反向量,那么 ,= ,= 。
【答案】(1) (2) (3)2. 向量减法的定义:AC BC AB b a =+=+OC OB OA b a =+=+)(,,y x y x R y x -+=-∈设a a a a -00=--)(a =-+)(a a =+-a a )(a b =a b b a +a 00b -a -0向量加上向量的相反向量,叫做与的差,即。