一种框架形铸件的铸造工艺设计
- 格式:pdf
- 大小:2.13 MB
- 文档页数:4
支架零件铸造工艺设计一、零件的生产条件、结构及技术要求1、生产性质:大批量生产2、材料:HT2003、零件加工方法:零件上有多个孔,除中间的大孔需要铸造以外,其他孔在考虑加工余量后不宜铸造成型,采用机械方法加工,均不铸出。
造型方法:机器造型;造芯方法:机器制芯4、主要技术要求:满足HT200的机械性能要求,去毛刺及锐边,铸件表面不允取有缺陷。
二、零件图及立体图结构分析1、零件图如下:零件主视图零件俯视图2、立体图如下:三、工艺设计过程1、铸造工艺设计方法及分析(1)铸件壁厚为了避免浇不到、冷隔等缺陷,铸件不应太薄。
铸件的最小允许壁厚与铸造的流动性密切相关。
在普通砂型铸造的条件下,铸件最小允许壁厚见表1。
表1. 铸件最小允许壁厚查得灰铁铸件在100~200mm的轮廓尺寸下,最小允许壁厚为5~6mm。
由零件图可知,零件中不存在壁厚小于设计要求的结构,在设计过程中,也没有出现壁厚小于最小壁厚要求的情况。
(2)造型、制芯方法造型方法:该零件需批量生产,为中小型铸件,因此,采用湿型粘土砂机器造型,模样采用金属模,采用技术先进的机器造型。
制芯方法:在造芯用料及方法选择中,如用粘土砂制作砂芯原料成本较低,但是烘干后容易产生裂纹,容易变形。
在大批量生产的条件下,由于需要提高造芯效率,且常要求砂芯具有高的尺寸精度,此工艺所需的砂芯采用热芯盒法生产砂芯,以增加其强度及保证铸件质量。
选择使用射芯工艺生产砂芯。
采用热芯盒制芯工艺热芯盒法制芯,是用液态固性树脂粘结剂和催化剂制成的一种芯砂,填入加热到一定的芯盒内,贴近芯盒表面的砂芯受热,其粘结剂在很短的时间内硬化。
而且只要砂芯表层有数毫米的硬壳即可自芯取出,中心部分的砂芯利用余热可自行硬化。
(3)砂箱中铸件数目的确定及排布初步确定一箱中放几个铸件,作为进行浇冒口设计的依据。
一箱中的铸件数目,应该是在保证铸件质量的前提下越多越好。
本铸件在一砂箱中高约130mm,长约200mm,宽约110mm,体积约99.7cm^3,密度7.2g/cm^3,重约0.8Kg。
铸造工艺设计说明书一、引言铸造工艺设计是针对特定铸件的生产过程进行规划和安排的过程。
本文旨在详细介绍铸造工艺设计的内容,确保读者能够全面理解并掌握该过程的要点。
二、铸造工艺设计的目标铸造工艺设计的目标是实现高质量的铸件生产。
具体而言,主要包括以下几个方面:1. 确定适宜的材料:根据铸件的要求和使用环境,选择合适的铸造材料,确保其具备良好的机械性能和耐腐蚀性能。
2. 设计合理的结构:在铸造工艺设计中,需要考虑到铸件的结构特点,合理设计铸件的形状和尺寸,以确保在铸造过程中易于铸造和冷却。
3. 确定适宜的工艺参数:通过合理选择浇注温度、保温时间、浇注速度等工艺参数,以确保铸件的成形质量。
4. 确保铸件的表面质量:通过采用适当的除砂、除气和清洁工艺,确保铸件表面的光洁度和平整度符合要求。
三、铸造工艺设计的步骤铸造工艺设计的步骤可以分为以下几个阶段:1. 铸件设计分析:在铸造工艺设计之前,需要对铸件的结构和形状进行分析。
通过对铸件进行结构强度分析、模具结构分析以及热力学分析等,确定铸造工艺的基本要求和技术指标。
2. 模具设计:根据铸件的形状和尺寸要求,进行模具设计。
包括模具的整体结构设计、分型面设计、模腔和冷却系统的设计等。
3. 工艺参数确定:根据铸件的特点和模具设计,确定适宜的浇注温度、浇注速度、保温时间等工艺参数。
这些参数对于保证铸件成形质量和提高生产效率具有重要作用。
4. 检验和调整:在铸造工艺设计结束后,需要进行试验验证和工艺调整。
通过对铸件进行质量检验,查找潜在问题并进行相应的调整,以确保最终生产的铸件质量达到要求。
四、铸造工艺设计的注意事项在铸造工艺设计的过程中,需要特别注意以下几个方面:1. 材料特性:铸造工艺设计需要充分了解所选材料的特性和性能,确保其适用于特定的铸件要求。
同时,需要根据材料的熔化温度和流动性,合理选择浇注温度和浇注系统。
2. 模具设计:模具设计需要兼顾铸件的结构特点和生产效率。
典型铸铁件铸造工艺设计铸造工艺是制造铸铁件的关键环节之一,其设计直接影响到铸件的质量和性能。
本文将以典型铸铁件的铸造工艺设计为主题,对铸造工艺的设计要点和流程进行详细介绍,以期能够为相关从业人员提供一定的参考和指导。
一、典型铸铁件的特点铸铁件是一种常见的铸造件,其主要特点是具有良好的铸造性能、低成本和高强度。
铸铁件通常被广泛应用于机械制造、汽车工业、农机具等领域,如汽车发动机缸体、机床床身等。
二、铸造工艺设计的要点铸造工艺设计的关键是确定合适的铸造工艺参数,以实现铸件的准确成型和优良性能。
以下是铸造工艺设计的要点:1.铸型设计:根据铸件的形状和尺寸,确定合适的铸型结构和尺寸。
铸型的设计应考虑到铸件的收缩和变形,以避免出现缺陷和不合格品。
2.熔炼工艺:根据铸件的材料要求,确定合适的熔炼工艺参数,包括炉温、熔化时间、炉中温度等。
同时,还需要考虑铁水的质量和成分控制,以保证铸件的化学成分符合要求。
3.浇注系统设计:根据铸件的形状和尺寸,确定合适的浇注系统,包括浇杯、导流冒、浇口等。
浇注系统的设计应考虑到浇注过程中的液态金属流动和气体排出,以避免铸件内部的气孔和夹杂物。
4.冷却系统设计:根据铸件的形状和尺寸,确定合适的冷却系统,包括冷却水道、冷却器等。
冷却系统的设计应考虑到铸件的冷却速度和收缩形变,以避免出现裂纹和变形。
5.铸造工艺参数设计:根据铸件的形状和尺寸,确定合适的铸造工艺参数,包括浇注温度、浇注速度、浇注压力等。
铸造工艺参数的设计应考虑到铸件的凝固过程和收缩变形,以保证铸件的准确成型和良好性能。
三、铸造工艺设计流程铸造工艺设计的流程一般包括以下几个步骤:1.确定铸件的形状和尺寸,以及材料要求。
2.根据铸件的形状和尺寸,设计合适的铸型结构和尺寸。
3.根据铸件的材料要求,确定合适的熔炼工艺参数。
4.根据铸件的形状和尺寸,设计合适的浇注系统和冷却系统。
5.根据铸件的形状和尺寸,确定合适的铸造工艺参数。
铸造工艺设计一、什么是铸造工艺设计铸造车间的任务是生产合格铸件。
一般情况下,生产一个铸件,要经过很多道工序才能完成。
这些是互相关联的,又涉及到铸件材料、性质、形状及尺寸等工作过程,称为铸造生产工艺过程。
对某一个铸件,编制出铸造生产工艺过程的技术文件,就是铸造工艺设计。
这些技术文件,使用文字,表格或图形表示工艺过程,作为生产的依据和经验的总结,也是技术准备工作和生产进度计划的依据。
因此,这样的铸造工艺设计文件,也叫做工艺规程。
二、设计依据在编制工艺规程之前,必须周密调查工厂和车间的生产条件,了解生产任务和要求,这些是设计的出发点,也是设计依据。
(一)生产任务和要求方面(1)审查铸造零件图纸。
零件图必须清晰无误,有完整尺寸和各种标记。
认为有你需要进行修改时,必须与设计单位或订货单位共同研究,已修改后的图纸作为设计依据。
(2)零件的技术要求。
例如金属材料牌号、金相组织要求,机械性能要求,铸件大小、重量及允许的偏差,以及是否做水压试验,零件在机械上的工作条件等。
在以后的工艺设计中必须采取相应措施,满足技术要求。
(3)产品数量及生产期限。
产品数量的多少,是工艺设计的重要依据。
可分为三种类型:1、大量生产这一类型的特点是,使用专用设备和装备。
2、成批生产这一类型的特点是,使用较多的通用设备和装备。
3、单件生产:制造一个或数个一般产品,在单件生产情况下,使用的设备和装备可以简单些。
了解铸件生产期限,生产期限是指交付日期,对临时急需件,则要考虑工艺装备制造时间的长短是否能满足要求,这种情况下,应尽可能简化工艺过程和工艺装备。
(二)车间生产条件方面(1)车间设备情况:车间运输起重设备能力,熔化炉每小时生产量,造型和造芯机种类及机械化程度,作业面积大小,厂房高度和大门尺寸等。
(2)车间现有原材料应用情况。
(3)车间工人师傅技术水平和生产经验。
(4)模样等工艺装备制造车间的加工能力和生产经验。
三、铸造工艺设计内容在不同的生产条件下,工艺设计的内容是不相同的。
上倾倒框铸铝件铸造工艺设计及模拟优化王嘉诚;曲元哲;沈楚伦;杨弋涛【摘要】目的 c消除ZL114A铝合金上倾倒框铸件的铸造缺陷,获得优质铸件,对该铸件的铸造工艺进行优化设计.方法使用Unigraphics NX软件进行三维建模,利用ADSTEFAN软件对铸造过程进行模拟.对模拟的充型过程、凝固过程及相关缺陷进行分析.结果将铸件倒放不利于实现铸件顺序凝固,4个顶冒口的补缩效果不理想,故调整了浇注系统的位置及比例、冒口的位置及大小.最终选取了正放底注式的浇注系统,双侧冒口与单个顶冒口的补缩系统,可获得理想的充型及凝固顺序,有望基本消除铸造缺陷.结论所采用的计算机模拟方法可以为铸造工艺设计及优化提供指导,为尽可能减少铸造缺陷,保证铸件质量和工艺性奠定了良好的技术基础.【期刊名称】《精密成形工程》【年(卷),期】2018(010)006【总页数】7页(P88-94)【关键词】上倾倒框;铸铝件;计算机模拟;方案优化【作者】王嘉诚;曲元哲;沈楚伦;杨弋涛【作者单位】上海大学材料科学与工程学院,上海200444;上海大学材料科学与工程学院,上海200444;上海大学材料科学与工程学院,上海200444;上海大学材料科学与工程学院,上海200444【正文语种】中文【中图分类】TG242.3上倾倒框是倾倒机构的重要组成部分,一般安装在基座上,并由轴带动其工作,是机构中主要的受力零件,其结构设计和制造对整个倾倒机构的承载能力有很大影响,所以要求上倾倒框的重量轻、强度高,同时铸件整体无裂纹、冷隔及浇不足等穿透类缺陷,缩松及针孔缺陷不得超过4级。
铸件的壁厚小、尺寸大,金属液的充型阻力大;铸件结构复杂,为框架结构,浇注时金属液流程长,热量散失快;铸件浇注成形存在一定难度[1—3]。
数值模拟技术是一种有效节约试制成本、缩短试制周期的工具,可避免传统的依靠经验进行试错的盲目性[4—6]。
文中借助计算机模拟技术,对上倾倒框铸件的铸造工艺方案进行优化设计,以确保铸件具有良好的质量与工艺性。
铸造成形技术及铸造工艺设计摘要铸造是一种常见的金属加工技术,它可以通过将金属加热至熔点并倒入模具中来制造金属零件。
本文将介绍铸造成形技术的基本过程和常用的铸造工艺设计。
1. 引言铸造是一种历史悠久的工艺,可以追溯到几千年前。
随着时间的推移,铸造成形技术得到了不断的改进和完善,成为现代制造业中不可或缺的一部分。
铸造技术广泛应用于汽车、航空航天、机械等领域,为各行各业提供了各种复杂形状的零件。
2. 铸造成形技术铸造成形技术主要包括以下几个步骤:2.1. 模具准备在铸造过程中,首先需要准备一个模具。
模具可以由金属、陶瓷或砂型制成。
模具的设计必须考虑到所要铸造的零件的形状和尺寸。
2.2. 熔炼金属接下来,需要将金属加热至熔点。
在工业生产中常用的熔炼金属包括铁、铝、铜等。
2.3. 倒模当金属达到熔点时,将其倒入准备好的模具中。
这一步骤需要谨慎操作,以避免金属流动不均或产生气泡。
2.4. 冷却金属在模具中冷却并固化。
冷却时间的长短取决于所使用的金属和零件的尺寸。
2.5. 敲击模具一旦金属冷却并固化,就可以将模具敲击开来,取出所铸造的零件。
3. 铸造工艺设计铸造工艺设计是铸造过程中非常重要的一环,它直接影响到零件的质量和生产效率。
以下是一些常见的铸造工艺设计方法:3.1. 模具设计模具设计是铸造工艺设计的基础。
模具的设计必须考虑到所要铸造的零件的形状、尺寸和复杂度。
合理的模具设计可以提高铸件的精度和表面质量。
3.2. 浇注系统设计浇注系统是指铸造过程中金属倒入模具的路径。
合理设计的浇注系统可以保证金属充满整个模具,防止金属流动不均或产生气泡。
3.3. 温度控制铸造过程中的温度控制非常重要。
适当的温度可以提高金属的流动性和润湿性,有助于铸造零件的充填和凝固。
3.4. 模具材料选择合适的模具材料可以提高模具的耐磨性和寿命,减少模具的磨损和变形。
3.5. 缺陷控制在铸造过程中,可能会出现一些常见的缺陷,如气孔、砂眼等。
铸造工艺铸造生产要根据铸件的结构特征、技术要求、生产批量、生产条件等因素,确定铸造工艺方案。
其主要内容包括浇注位置、分型面、铸造工艺参数(机械加工余量、起模斜度、铸造圆角、收缩率、芯头等)的确定,然后用规定的工艺符号或文字绘制成铸造工艺图一、浇注位置的确定(1)铸件的重要工作面或主要加工面朝下或位于侧面。
浇注时金属液中的气体、熔渣及铸型中的砂粒会上浮,有可能使铸件的上部出现气孔、夹渣、砂眼等缺陷,而铸件下部出现缺陷的可性小,组织较致密。
(2)铸件的大平面朝下或倾斜浇注。
由于浇注时炽热的金属液对铸型的上部有强烈的热辐射,引起顶面型砂膨胀拱起甚至开裂,使大平面出现夹砂、砂眼等缺陷。
大平面朝下或采用倾斜浇注的方法可避免大平面产生铸造缺陷。
(3)铸件的薄壁朝下、侧立或倾斜。
为防止铸件的薄壁部位产生冷隔、浇不到缺陷,应将面积较大的薄壁置于铸件的下部,或使其处于侧壁或倾斜位置,如图所示。
(4)铸件的厚大部分应放在顶部或在分型面的侧面。
主要目的是便于在厚处安放冒口进行补缩,二、分型面的选择(1)分型面应选择在模样最大截面处,以便于起模。
(2)尽量减少分型面。
分型面少则容易保证铸件的精度,并可简化造型工艺。
对机器造型来说,一般只能有一个分型面,下图所示的绳轮铸件,大批量生产时,为便于机器造型,可按a分型方案,采用环状型芯,将二个分型面减少为一个分型面。
当然在单件生产时,采用手工造型时,为减少工装的制造,采用b方案,三箱造型,二个分型面也是合理的。
(3)尽量使分型面平直。
为了使模样制造和造型工艺简便,(4)尽量使铸件的全部或大部分位于同一砂箱中。
铸件处于同一砂箱中,既便于合型,又可避免错型,以保证铸件的精度。
(5)尽量使型芯位于下箱,并注意减低砂箱的高度。
这样可简化造型工艺、方便下芯和合型、便于起模和修型。
如图缩示机床立柱的分型方案,采用Ⅱ方案比较合理,可使型腔和型芯大部分处于下箱中,便于起模、下芯、合型。
三、工艺参数的选定机械加工余量和公差起模斜度收缩率铸造圆角芯头四、浇注系统(1)浇注系统的组成与作用通常有浇口杯、直浇道、横浇道、内浇道和冒口等组成。
盖铸造工艺设计说明书1铸件构造工艺性分析1.1铸件根本情况:铸件材料为ZG310—570,铸件属半圆环厚壁零件,最大直径780mm,最小直径490mm,加工后最大壁厚210mm,最小145mm,加工后净重238Kg,铸件尺寸精度CT14,质量需符合GB/T6414—1999标准,允许深度不大的短小裂纹补焊,加工面不允许有肉眼看见的缩孔、缩松和裂纹等缺陷。
铸件属于中型铸件,属单件小批量生产性质类型。
根据零件三视图,画出铸件三维图如图1-1所示。
图1-1 铸件三维图1.2铸件构造工艺性分析铸件壁厚的适宜性分析铸件壁过薄,铸件将产生浇缺乏、冷隔、浇注流痕等铸造缺陷,铸件壁过厚,将使铸件由于冷却过慢晶粒粗大,也影响铸件的机械性能,因此对于一个具体的铸件,根据其材料与铸造方法,必须有一个最小临界壁厚才能保证其铸造工艺的实施。
由于零件属单件小批量生产类型,因此适宜的铸造方法为砂型铸造,根据材料的类型与铸件最大尺寸,查阅资料[1],从铸件尺寸来看,临界壁厚必须小于39mm,而本铸件最小壁厚为145mm,远远大于临界壁厚,所以本铸件属厚壁件,因此在铸造过程中应想法使金属液快速冷却。
铸件壁的连接过渡圆角铸件的过渡圆角过小,将使连接处产生较大的铸造应力,并有可能造成铸件开裂,对于本铸件来说,铸件尺寸大,铸件收缩亦大,从而铸造应力更大,铸件壁连接转角更易开裂,因此对铸造圆角的大小进展分析具有重要意义。
从图1-2可知,其过渡圆角查阅资料[2]可知,铸造适宜的圆角应在R50较为适宜,本铸件的过渡圆角在图中为R20,此处圆角过小,易在此处产生较大的铸造应力,导致铸件在此处开裂,因此,与厂家协商后,铸造工艺设计中按铸造圆角R50进展设计模样与芯盒。
1.3铸件可能产生的铸造缺陷本铸件属于中型半圆环厚壁铸件,对于此类铸件,铸件由于壁太厚,铸造完成后容易使晶粒粗大,以至于达不到厂家所要求的力学性能,为消除与防止这些缺陷的产生,铸件除快速浇注外,还需采用加冷铁等方法方法。
块范法铸造工艺流程一、前期准备在进行块范法铸造工艺前,需要进行一系列的前期准备工作。
首先是确定铸件的设计要求和技术要求,包括铸件的形状、尺寸、材质等。
其次是制定铸造工艺方案,确定铸造工艺的具体步骤和操作方法。
然后是准备生产所需的原材料,包括铸造合金、模具材料等。
最后是准备所需的设备和工具,如块范、熔炉、浇注设备等。
二、模具制造1. 制作块范:首先根据铸件的形状和尺寸,制作模具的块范。
块范是用于制作铸件模具的重要工具,它可以根据铸件的形状和尺寸来确定模具的几何形状和尺寸。
2. 制作芯子:根据铸件的内部空腔形状,制作芯子。
芯子是铸件内部空腔的一部分,用于形成铸件的内部空间。
制作芯子的材料可以是石膏、砂芯等。
3. 组装模具:将块范和芯子组装成完整的模具,确保模具的密封性和稳定性。
三、熔炼合金1. 配料:根据铸件的材质和成分要求,准确称取所需的原材料,并按照一定的比例进行混合。
2. 熔炼:将配料好的原材料放入熔炉中加热,使其熔化成液态合金。
熔炼过程需要控制熔炉的温度和加热时间,以保证合金的质量和成分符合要求。
3. 净化:对熔炼好的合金进行净化处理,去除其中的杂质和氧化物。
四、铸造工艺1. 预热模具:将制作好的模具进行预热处理,提高模具的温度,以防止热应力和温度梯度对模具的影响。
2. 浇注:将熔融的合金倒入预热好的模具中,使其充满整个模腔。
在浇注过程中,需要控制浇注的速度和温度,以避免气泡和缩孔的产生。
3. 冷却:待铸件充分凝固后,将模具打开,取出铸件。
然后将铸件进行冷却处理,使其达到稳定的室温状态。
4. 清理:将铸件表面的残留物和氧化皮清理干净,使其表面光滑、整洁。
5. 后处理:根据铸件的要求,进行后续的加工和处理,如修整、尺寸检测、热处理等。
五、检验和质量控制在块范法铸造工艺中,需要对铸件进行严格的检验和质量控制,以确保铸件的质量符合要求。
常用的检验方法包括外观检查、尺寸检测、材料成分分析、力学性能测试等。