宁夏回族自治区 2020版九年级下学期期中数学试题C卷
- 格式:doc
- 大小:153.00 KB
- 文档页数:5
宁夏回族自治区2020年中考数学试卷说明:1.考试时间120分钟。
满分120分。
2.考生作答时,将答案写在答题卡上,在本试卷上答题无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.计算:的结果是A. 1B.错误!未找到引用源。
C.0D.-1【专题】计算题;实数.【分析】原式利用绝对值的代数意义,算术平方根定义计算即可求出值.【解答】故选:C.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.2.下列运算正确的是A. B. (a2)3=a5 C.a2÷a-2=1 D.(-2a3)2=4a6【专题】计算题.【分析】根据单项式的乘法运算法则,单项式的除法运算法则,对各选项分析判断后利用排除法求解.【解答】解:A、(-a)3=-a3,错误;B、(a2)3=a6,错误;C、a2÷a-2=a4,错误;D、(-2a3)2=4a6,正确;故选:D.【点评】本题考查了整式的除法,单项式的乘法,是基础题,熟记运算法则是解题的关键.3.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是A. 30和 20B. 30和25C. 30和22.5D. 30和17.5【专题】常规题型;统计的应用.【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【解答】解:将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,故选:C.【点评】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.4.若是方程x2-4x+c=0的一个根,则c的值是A.1B.C.D.【专题】方程思想.解得c=1;故选:A.【点评】本题考查的是一元二次方程的根即方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.5.某企业2020年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是A.300(1+x)=507B.300(1+x)2=507C.300(1+x)+300(1+x)2=507D.300+300(1+x)+300(1+x)2=507【专题】方程思想;一元二次方程及应用.【分析】设这两年的年利润平均增长率为x,根据2020年初及2020年初的利润,即可得出关于x的一元二次方程,此题得解.【解答】解:设这两年的年利润平均增长率为x,根据题意得:300(1+x)2=507.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是A.10 B.20 C.10π D.20π【专题】几何图形.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得解得r=10.故小圆锥的底面半径为10.故选:A.【点评】本题考查了圆锥的计算.圆锥的侧面展开图为扇形,计算要体现两个转化:1、圆锥的母线长为扇形的半径,2、圆锥的底面圆周长为扇形的弧长.7.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是A.40°B.50°C.60°D.70°【专题】常规题型.【分析】结合平行线的性质得出:∠1=∠3=∠4=40°,再利用翻折变换的性质得出答案.【解答】解:由题意可得:∠1=∠3=∠4=40°,故选:D.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.8.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是【专题】函数及其图象.【分析】根据实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是长方体的底面积,水面上升的速度较慢进行分析即可.【解答】解:根据题意可知,刚开始时由于实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是长方体的底面积,水面上升的速度较慢,故选:D.【点评】此题考查函数的图象问题,关键是根据容器内水面的高度h(cm)与注水时间t(s)之间的函数关系分析.二、填空题(本题共8小题,每小题3分,共24分)9.不透明的布袋里有1个黄球、4个红球、5个白球,它们除颜色外其他都相同,那么从布袋中任意摸出一球恰好为红球的概率是 .【专题】常规题型;概率及其应用.【分析】由在不透明的袋中装有1个黄球、4个红球、5个白球,它们除颜色外其它都相同,直接利用概率公式求解,即可得到任意摸出一球恰好为红球的概率【解答】解:∵在不透明的袋中装有1个黄球、4个红球、5个白球,共10个球且它们除颜色外其它都相同,【点评】此题考查了概率公式的应用.解题时注意:概率=所求情况数与总情况数之比.10.已知m+n=12,m-n=2,则m2-n2= .【专题】计算题.【分析】根据平方差公式解答即可.【解答】解:∵m+n=12,m-n=2,∴m2-n2=(m+n)(m-n)=2×12=24,故答案为:24【点评】此题考查平方差公式,关键是根据平方差公式的形式解答.11.反比例函数(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而 .(填“增大”或“减小”)【专题】反比例函数及其应用.【分析】利用反比例函数图象上点的坐标特征可求出k值,再利用反比例函数的性质,即可得出:这个函数图象所在的每个象限内,y的值随x值的增大而减小.【解答】∴k=1×4=4,∴这个函数图象所在的每个象限内,y的值随x值的增大而减小.故答案为:减小.【点评】本题考查了反比例函数图象上点的坐标特征以及反比例函数的性质,利用反比例函数图象上点的坐标特征求出k值是解题的关键.12.已知:,则的值是 .专题】计算题.【分析】根据等式的性质,可用a表示b,根据分式的性质,可得答案.13.关于x的方程有两个不相等的实数根,则c的取值范围是 .【专题】方程与不等式.【分析】根据方程的系数结合根的判别式,即可得出关于c的一元一次不等式,解之即可得出结论.【解答】解:∵关于x的方程2x2-3x+c=0有两个不相等的实数根,∴△=(-3)2-4×2c=9-8c>0,【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,反比例函数的图象经过点M,交AC于点N,则MN的长度是 .【专题】反比例函数及其应用;矩形菱形正方形.【分析】根据矩形的性质,可得M点坐标,根据待定系数法,可得函数解析式,根据自变量与函数值的对应关系,可得N点坐标,根据待定系数法,可得答案.【解答】解:由四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,得M(8,3),N点的纵坐标是6.将M点坐标代入函数解析式,得k=8×3=24,故答案为:5.【点评】本题考查了矩形的性质,利用矩形的性质得出M点坐标是解题关键,又利用了待定系数法求函数解析式,自变量与函数值的对应关系求出N点坐标,勾股定理求MN的长.15.一艘货轮以㎞/h的速度在海面上沿正东方向航行,当行驶至A处时,发现它的东南方向有一灯塔B,货轮继续向东航行30分钟后到达C处,发现灯塔B在它的南偏东15°方向,则此时货轮与灯塔B 的距离是 km.【专题】几何图形.【分析】作CE⊥AB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出∠B的度数,根据正弦的定义计算即可.【解答】解:作CE⊥AB于E,∵∠CAB=45°,∴CE=AC•sin45°=9km,∵灯塔B在它的南偏东15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,故答案为:18.【点评】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.16.如图是各大小型号的纸张长宽关系裁剪对比图,可以看出纸张大小的变化规律:A0纸长度方向对折一半后变为A1纸;A1纸长度方向对折一半后变为A2纸;A2纸长度方向对折一半后变为A3纸;A3纸长度方向对折一半后变为A4纸……A 4规格的纸是我们日常生活中最常见的,那么有一张A4的纸可以裁 张A8的纸.【专题】推理填空题.【分析】根据题意可以得到一张A4的纸可以裁2张A5的纸,以此类推,得到答案.【解答】解:由题意得,一张A4的纸可以裁2张A5的纸一张A5的纸可以裁2张A6的纸一张A6的纸可以裁2张A7的纸一张A7的纸可以裁2张A8的纸,∴一张A4的纸可以裁24=16张A8的纸,故答案为:16.【点评】本题考查的是图形的变化规律,根据题意正确找出图形变化过程中存在的规律是解题的关键.三、解答题(本题共有6个小题,每小题6分,共36分) 17.解不等式组:⎪⎩⎪⎨⎧+<--≥--211535)1(3x x x x 【专题】常规题型.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】∵解不等式①得:x≤-1,解不等式②得:x>-7,∴原不等式组的解集为-7<x≤-1.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.18.先化简,再求值:;其中,.【专题】计算题.【分析】根据分式的运算法则即可求出答案.【解答】【点评】本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.19.已知:△ABC三个顶点的坐标分别为A(-2,-2),B(-5,-4),C(-1,-5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2,并写出点B2的坐标.【专题】作图题.【分析】(1)利用关于y轴对称点的性质得出对应点得出即可;(2)利用位似图形的性质得出对应点坐标进而得出答案.【解答】解:(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求;B2(10,8)【点评】此题主要考查了位似变换与轴对称变换,得出对应点位置是解题关键.20.某区规定学生每天户外体育活动时间不少于1小时.为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如下的统计表(不完整).请根据图表中的信息,解答下列问题:(1)表中的a=,将频数分布直方图补全;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.【专题】常规题型;统计与概率.【分析】(1)先根据A组频数及其频率求得总人数,再用总人数乘以B组的频率即可得a的值,从而补全条形图;(2)用总人数乘以A、B组频率之和可得;(3)通过画树状图,根据概率的计算公式,即可得到抽取的两名学生刚好是1名男生和1名女生的概率.【解答】解:(1)∵被调查的学生总人数为20÷0.05=400,∴a=400×0.3=120,补全图形如下:(2)每天户外体育活动的时间不足1小时的学生大约有8000×(0.05+0.3)=2800(名);(3)画树状图为:共有12种等可能的结果数,其中抽到1名男生和1名女生的可能性有6种.【点评】本题主要考查了树状图法或列表法求概率,以及频数分布直方图的运用,解题时注意:当有两个元素时,可用树形图列举,也可以列表列举.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.21.已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.【专题】几何图形.【分析】(1)根据正方形的性质和全等三角形的判定证明即可;(2)根据全等三角形的性质和三角函数解答即可.【解答】(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3∴△ABE≌△BCN(ASA);(2)∵N为AB中点,【点评】此题考查正方形的性质,关键是根据正方形的性质和全等三角形的判定解答.22.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?【专题】方程思想;分式方程及应用;一元一次不等式(组)及应用.【分析】(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据每件产品的成本价不超过34元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据数量=总价÷单价结合用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,即可得出关于a的分式方程,解之经检验后即可得出结论.【解答】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE·DC=20,求⊙O的面积.(π取3.14)【专题】图形的相似.【分析】(1)连接OC,由PC为圆的切线,利用切线的性质得到∠OCP为直角,利用等边对等角及外角性质求出所求即可;(2)连接AD,由D为弧AB的中点,利用等弧所对的圆周角相等,再由公共角相等,得到三角形ACD与三角形EAD相似,由相似得比例求出AD的长,进而求出AB的长,求出OA的长,求出面积即可.【解答】解:(1)连接OC,∵PC为⊙O的切线,∴∠OCP=90°,即∠2+∠P=90°,∵OA=OC,∴∠CAO=∠1,∵AC=CP,∴∠P=∠CAO,又∵∠2是△AOC的一个外角,∴∠2=2∠CAO=2∠P,∴2∠P+∠P=90°,∴∠P=30°;(2)连接AD,∴S⊙O=π•OA2=10π=31.4.【点评】此题考查了相似三角形的判定与性质,垂径定理,圆周角定理,以及切线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.24.抛物线经过点A和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C. (1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.【专题】二次函数图象及其性质.【分析】(1)利用待定系数法求抛物线解析式;(2)利用割补法求ABC的面积.【解答】解:设线段AB所在直线为:y=kx+b解得AB解析式为:∴CD=CE-DE=2【点评】本题为二次函数纯数学问题,考查二次函数待定系数法、用割补法求三角形面积.解答时注意数形结合.25.空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y 轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)如图是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为,组成这个几何体的单位长方体的个数为个;(2)对有序数组性质的理解,下列说法正确的是;(只填序号)①每一个有序数组(x,y,z)表示一种几何体的码放方式.②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.③有序数组不同,所表示几何体的单位长方体个数不同.④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数.(3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)【专题】代数几何综合题.【分析】(1)根据有序数组(x,y,z)的定义即可判断;(2)根据有序数组(x,y,z)的定义,结合图形即可判断;(3)探究观察寻找规律,利用规律即可解决问题;(4)当S1=2,S2=3,S3=4时S(x,y,z)=2(yzS1+xzS2+xyS3)=2(2yz+3xz+4xy),欲使S(x,y,z)的值最小,不难看出x、y、z应满足x≤y≤z(x、y、z为正整数).在由12个单位长方体码放的几何体中,满足条件的有序数组为(1,1,12),(1,2,6),(1,3,4),(2,2,3).求出各个表面积即可判断;【解答】解:(1)这种码放方式的有序数组为(2,3,2),组成这个几何体的单位长方体的个数为2×3×2=2个,故答案为(2,3,2),12;(2)正确的有①②⑤.故答案为①②⑤;(3)S(x,y,z)=2yzS1+2xzS2+2xyS3=2(yzS1+xzS2+xyS3).(4)当S1=2,S2=3,S3=4时S(x,y,z)=2(yzS1+xzS2+xyS3)=2(2yz+3xz+4xy)欲使S(x,y,z)的值最小,不难看出x、y、z应满足x≤y≤z(x、y、z为正整数).在由12个单位长方体码放的几何体中,满足条件的有序数组为(1,1,12),(1,2,6),(1,3,4),(2,2,3).而S(1,1,12)=128,S(1,2,6)=100,S(1,3,4)=96,S(2,2,3)=92所以,由12个单位长方体码放的几何体表面积最小的有序数组为:(2,2,3),最小面积为S(2,2,3)=92.【点评】本题考查几何变换综合题、空间直角坐标系、有序数组(x,y,z)的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会从特殊到一般的探究规律的方法,属于中考创新题目.26.如图:一次函数的图象与坐标轴交于A、B两点,点P是函数(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.【专题】综合题.【分析】(1)先设出点P的坐标,进而得出点P的纵横坐标的关系,进而建立△OPM的面积与点P的横坐标的函数关系式,即可得出结论;(2)分两种情况,利用等腰三角形的两边相等建立方程即可得出结论.【解答】解:(1)令点P的坐标为P(x0,y0)∵PM⊥y轴∵直线AB分别交两坐标轴于点A、B,∴A(0,3),B(4,0),∴OA=3,OB=4,∴AB=5,(2)①在△BOP中,当BO=BP时BP=BO=4,AP=1∵P1M∥OB,∴②在△BOP中,当OP=BP时,如图,过点P作PM⊥OB于点N∵OP=BP,【点评】此题是一次函数综合题,主要考查了三角形的面积公式,等腰三角形的性质,用方程的思想和函数思想解决问题是解本题的关键.。
宁夏回族自治区2020年初中毕业暨高中阶段招生考试数学试题(全卷总分120分,考试时间120分钟)一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各式中正确的是()A.a3•a2=a6B.3ab﹣2ab=1 C.=2a+1 D.a(a﹣3)=a2﹣3a2.小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.53.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.B.C.D.4.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°5.如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=()A.13 B.10 C.12 D.56.如图,等腰直角三角形ABC中,∠C=90°,AC=,以点C为圆心画弧与斜边AB相切于点D,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.1﹣B.C.2﹣D.1+7.如图,函数y1=x+1与函数y2=的图象相交于点M(1,m),N(﹣2,n).若y1>y2,则x的取值范围是()A.x<﹣2或0<x<1 B.x<﹣2或x>1C.﹣2<x<0或0<x<1 D.﹣2<x<0或x>18.如图2是图1长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=()A.a2+a B.2a2C.a2+2a+1 D.2a2+a二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:3a2﹣6a+3=.10.若二次函数y=﹣x2+2x+k的图象与x轴有两个交点,则k的取值范围是.11.有三张大小、形状完全相同的卡片.卡片上分别写有数字4、5、6,从这三张卡片中随机先后不放回地抽取两张,则两次抽出数字之和为奇数的概率是.12.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是寸.13.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△AOB绕点B逆时针旋转90°后得到△A1O1B,则点A1的坐标是.14.如图,在△ABC中,∠C=84°,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧分别交于点M、N,作直线MN交AC点D;以点B为圆心,适当长为半径画弧,分别交BA、BC于点E、F,再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线BP,此时射线BP恰好经过点D,则∠A=度.15.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为.16.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为.三、解答题(本题共有6个小题,每小题6分,共36分)17.(6分)在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1).(1)画出△ABC关于x轴成轴对称的△A1B1C1;(2)画出△ABC以点O为位似中心,位似比为1:2的△A2B2C2.18.(6分)解不等式组:.19.(6分)先化简,再求值:(+)÷,其中a=.20.(6分)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过7000元,那么A种防疫物品最多购买多少件?21.(6分)如图,在▱ABCD中,点E是AD的中点,连接CE并延长,交BA的延长线于点F.求证:FA=AB.22.(6分)某家庭记录了未使用节水龙头20天的日用水量数据(单位:m3)和使用了节水龙头20天的日用水量数据,得到频数分布表如下:未使用节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.1 0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4 0.4≤x<0.5 频数0 4 2 4 10 使用了节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.1 0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4 频数 2 6 8 4 (1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;(2)估计该家庭使用节水龙头后,一年能节省多少立方米水?(一年按365天计算)四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.(8分)如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求.24.(8分)“低碳生活,绿色出行”是一种环保、健康的生活方式,小丽从甲地匀速步行前往乙地,同时,小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离y(m)与步行时间x(min)之间的函数关系式如图中折线段AB﹣BC﹣CD所示.(1)小丽与小明出发min相遇;(2)在步行过程中,若小明先到达甲地.①求小丽和小明步行的速度各是多少?②计算出点C的坐标,并解释点C的实际意义.25.(10分)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:鞋号(正整数)22 23 24 25 26 27 …脚长(毫米)160±2 165±2 170±2 175±2 180±2 185±2 …为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据b n定义为[b n]如表2:序号n 1 2 3 4 5 6 …鞋号a n22 23 24 25 26 27 …脚长b n160±2 165±2 170±2 175±2 180±2 185±2 …脚长[b n] 160 165 170 175 180 185 …定义:对于任意正整数m、n,其中m>2.若[b n]=m,则m﹣2≤b n≤m+2.如:[b4]=175表示175﹣2≤b4≤175+2,即173≤b4≤177.(1)通过观察表2,猜想出a n与序号n之间的关系式,[b n]与序号n之间的关系式;(2)用含a n的代数式表示[b n];计算鞋号为42的鞋适合的脚长范围;(3)若脚长为271毫米,那么应购鞋的鞋号为多大?26.(10分)如图(1)放置两个全等的含有30°角的直角三角板ABC与DEF(∠B=∠E=30°),若将三角板ABC向右以每秒1个单位长度的速度移动(点C与点E重合时移动终止),移动过程中始终保持点B、F、C、E在同一条直线上,如图(2),AB与DF、DE分别交于点P、M,AC 与DE交于点Q,其中AC=DF=,设三角板ABC移动时间为x秒.(1)在移动过程中,试用含x的代数式表示△AMQ的面积;(2)计算x等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?答案与解析一、选择题(本题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一个是符合题目要求的)1.下列各式中正确的是()A.a3•a2=a6B.3ab﹣2ab=1C.=2a+1 D.a(a﹣3)=a2﹣3a【知识考点】合并同类项;同底数幂的乘法;单项式乘多项式.【思路分析】利用整式的计算法则对四个选项一一验证即可得出答案.【解答过程】解:A、a3•a2=a5,所以A错误;B、3ab﹣2ab=ab,所以B错误;C、,所以C错误;D、a(a﹣3)=a2﹣3a,所以D正确;故选:D.【总结归纳】本题考查整式乘除法的简单计算,注意区分同底数幂相乘,底数不变,指数相加,而幂的乘方是底数不变,指数相乘,这两个要区分清楚;合并同类项的时候字母部分不变,系数进行计算,只有当系数计算结果为0时,整体为0.2.小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.5【知识考点】折线统计图;加权平均数;中位数;众数.【思路分析】根据统计图中的数据,求出中位数,平均数,众数,即可做出判断.【解答过程】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,处在中间位置的一个数为2,因此中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;故选:C.【总结归纳】此题考查了平均数,中位数,众数,熟练掌握各自的求法是解本题的关键.3.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.B.C.D.【知识考点】三角形三边关系;列表法与树状图法.【思路分析】画出树状图,找出所有的可能情况数以及能构成三角形的情况数,即可求出所求的概率.【解答过程】解:画树状图如图:共有24个等可能的结果,能组成三角形的结果有12个,∴能构成三角形的概率为=,故选:B.【总结归纳】本题考查了列表法与树状图法以及三角形的三边关系;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°【知识考点】平行线的性质.【思路分析】过点G作HG∥BC∥EF,则有∠HGB=∠B,∠HGE=∠E,又因为△DEF和△ABC 都是特殊直角三角形,∠F=30°,∠C=45°,可以得到∠E=60°,∠B=45°,有∠EGB=∠HGE+∠HGB即可得出答案.【解答过程】解:过点G作HG∥BC,∵EF∥BC,∴GH∥BC∥EF,∴∠HGB=∠B,∠HGE=∠E,∵在Rt△DEF和Rt△ABC中,∠F=30°,∠C=45°∴∠E=60°,∠B=45°∴∠HGB=∠B=45°,∠HGE=∠E=60°∴∠EGB=∠HGE+∠HGB=60°+45°=105°故∠EGB的度数是105°,故选:D.【总结归纳】本题主要考查了平行线的性质和三角形内角和定理,其中平行线的性质为:两直线平行,内错角相等;三角形内角和定理为:三角形的内角和为180°;其中正确作出辅助线是解本题的关键.5.如图,菱形ABCD的边长为13,对角线AC=24,点E、F分别是边CD、BC的中点,连接EF 并延长与AB的延长线相交于点G,则EG=()A.13 B.10 C.12 D.5【知识考点】三角形中位线定理;菱形的性质.【思路分析】连接对角线BD,交AC于点O,证四边形BDEG是平行四边形,得EG=BD,利用勾股定理求出OD的长,BD=2OD,即可求出EG.【解答过程】解:连接BD,交AC于点O,如图:∵菱形ABCD的边长为13,点E、F分别是边CD、BC的中点,∴AB∥CD,AB=BC=CD=DA=13,EF∥BD,∵AC、BD是菱形的对角线,AC=24,∴AC⊥BD,AO=CO=12,OB=OD,又∵AB∥CD,EF∥BD,∴DE∥BG,BD∥EG,∵DE∥BG,BD∥EG,∴四边形BDEG是平行四边形,∴BD=EG,在△COD中,∵OC⊥OD,CD=13,CO=12,∴OB=OD==5,∴BD=2OD=10,∴EG=BD=10;故选:B.【总结归纳】本题主要考查了菱形的性质,平行四边形的判定与性质及勾股定理等知识;熟练掌握菱形、平行四边形的性质和勾股定理是解题的关键.6.如图,等腰直角三角形ABC中,∠C=90°,AC=,以点C为圆心画弧与斜边AB相切于点D,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.1﹣B.C.2﹣D.1+【知识考点】等腰直角三角形;切线的性质;扇形面积的计算.【思路分析】连接CD,利用切线的性质和等腰直角三角形的性质求出CD的值,再分别计算出扇形ECF的面积和等腰三角形ACB的面积,用三角形的面积减去扇形的面积即可得到阴影部分的面积.【解答过程】解:连接CD,如图,∵AB是圆C的切线,∴CD⊥AB,∵△ABC是等腰直角三角形,∴AB=AC=×=2,∴CD=AB=1,∴图中阴影部分的面积=S△ABC﹣S扇形ECF=××﹣=1﹣.故选:A.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了扇形的面积和等腰直角三角形的性质.7.如图,函数y1=x+1与函数y2=的图象相交于点M(1,m),N(﹣2,n).若y1>y2,则x 的取值范围是()A.x<﹣2或0<x<1 B.x<﹣2或x>1C.﹣2<x<0或0<x<1 D.﹣2<x<0或x>1【知识考点】反比例函数与一次函数的交点问题.【思路分析】观察函数y1=x+1与函数的图象,即可得出当y1>y2时,相应的自变量x的取值范围.【解答过程】解:由一次函数和反比例函数的图象可知,当一次函数图象在反比例函数图象之上时,所对应的x的取值范围为﹣2<x<0或x>1,故答案为:﹣2<x<0或x>1.故选:D.【总结归纳】本题主要考查了反比例函数图象与一次函数图象的交点问题,能利用数形结合求出不等式的解集是解答此题的关键.8.如图2是图1长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=()A.a2+a B.2a2C.a2+2a+1 D.2a2+a【知识考点】几何体的表面积;由三视图判断几何体.【思路分析】由主视图和左视图的宽为a,结合两者的面积得出俯视图的长和宽,即可得出结论.【解答过程】解:∵,∴俯视图的长为a+1,宽为a,∴,故选:A.【总结归纳】本题考查了几何体的三视图,熟练掌握三视图与几何体的长、宽、高的关系,进而求得俯视图的长和宽是解答的关键.二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:3a2﹣6a+3=.【知识考点】提公因式法与公式法的综合运用.【思路分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答过程】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【总结归纳】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.10.若二次函数y=﹣x2+2x+k的图象与x轴有两个交点,则k的取值范围是.【知识考点】抛物线与x轴的交点.【思路分析】根据二次函数y=﹣x2+2x+k的图象与x轴有两个交点,可知判别式△>0,列出不等式并解之即可求出k的取值范围.【解答过程】解:∵二次函数y=﹣x2+2x+k的图象与x轴有两个交点,∴△=4﹣4×(﹣1)•k>0,解得:k>﹣1,故答案为:k>﹣1.【总结归纳】本题考查二次函数的判别式、解一元一次不等式,熟记二次函数的图象与判别式的三种对应关系并熟练运用是解答的关键.11.有三张大小、形状完全相同的卡片.卡片上分别写有数字4、5、6,从这三张卡片中随机先后不放回地抽取两张,则两次抽出数字之和为奇数的概率是.【知识考点】列表法与树状图法.【思路分析】列表得出所有情况,看取出的两张卡片上的数字之和为奇数的情况数占所有情况数的多少即可.【解答过程】解:列表得:4 5 64 9 105 9 116 10 11共有6种情况,取出的两张卡片上的数字之和为奇数的情况数为4种,∴两次抽出数字之和为奇数的概率为.故答案为:.【总结归纳】本题考查了列表法与列树状图法以及概率公式;得到取出的两张卡片上的数字之和为奇数的情况数是解决本题的关键;用到的知识点为:概率等于所求情况数与总情况数之比.12.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是寸.【知识考点】数学常识;垂径定理的应用.【思路分析】根据题意可得OE⊥AB,由垂径定理可得尺=5寸,设半径OA=OE=r,则OD=r﹣1,在Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解方程可得出木材半径,即可得出木材直径.【解答过程】解:由题意可知OE⊥AB,∵OE为⊙O半径,∴尺=5寸,设半径OA=OE=r,∵ED=1,∴OD=r﹣1,则Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解得:r=13,∴木材直径为26寸;故答案为:26.【总结归纳】本题考查垂径定理结合勾股定理计算半径长度.如果题干中出现弦的垂线或者弦的中点,则可验证是否满足垂径定理;与圆有关的题目中如果求弦长或者求半径直径,也可以从题中寻找是否有垂径定理,然后构造直角三角形,用勾股定理求解.13.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△AOB绕点B逆时针旋转90°后得到△A1O1B,则点A1的坐标是.【知识考点】一次函数的性质;一次函数图象上点的坐标特征;坐标与图形变化﹣旋转.【思路分析】首先根据直线AB来求出点A和点B的坐标,A1的横坐标等于OB,而纵坐标等于OB﹣OA,即可得出答案.【解答过程】解:在中,令x=0得,y=4,令y=0,得,解得x=,∴A(,0),B(0,4),由旋转可得△AOB≌△A1O1B,∠ABA1=90°,∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90°,OA=O1A1=,OB=O1B=4,∴∠OBO1=90°,∴O1B∥x轴,∴点A1的纵坐标为OB﹣OA的长,即为4=;横坐标为O1B=OB=4,故点A1的坐标是(4,),故答案为:(4,).【总结归纳】本题主要考查了旋转的性质以及一次函数与坐标轴的交点问题,利用基本性质结合图形进行推理是解题的关键.14.如图,在△ABC中,∠C=84°,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧分别交于点M、N,作直线MN交AC点D;以点B为圆心,适当长为半径画弧,分别交BA、BC于点E、F,再分别以点E、F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线BP,此时射线BP恰好经过点D,则∠A=度.【知识考点】线段垂直平分线的性质;作图—复杂作图.【思路分析】由作图可得MN是线段AB的垂直平分线,BD是∠ABC的平分线,根据它们的性质可得∠A=∠ABD=∠CBD,再根据三角形内角和定理即可得解.【解答过程】解:由作图可得,MN是线段AB的垂直平分线,BD是∠ABC的平分线,∴AD=BD,,∴∠A=∠ABD,∴∠A=∠ABD=∠CBD,∵∠A+∠ABC+∠C=180°,且∠C=84°,∴∠A+2∠ABD=180°﹣∠C,即3∠A=180°﹣84°,∴∠A=32°.故答案为:32.【总结归纳】本题考查了作图﹣复杂作图,解决本题的关键是掌握线段垂直平分线的作法和角平分线的作法.15.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为6.【知识考点】一元一次不等式组的应用.【思路分析】设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),根据给定的三个条件,即可得出关于a,b的二元一次不等式组,结合a,b均为整数即可得出b 的取值范围,再取其中最大的整数值即可得出结论.【解答过程】解:设阅读过《西游记》的人数是a,阅读过《水浒传》的人数是b(a,b均为整数),依题意,得:,∵a,b均为整数∴4<b<7,∴b最大可以取6.故答案为:6.【总结归纳】本题考查二元一次不等式组的应用,根据各数量之间的关系,正确列出二元一次不等式组是解题的关键.16.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为.【知识考点】数学常识;全等图形;勾股定理的证明.【思路分析】根据题意得出a2+b2=15,(b﹣a)2=3,图2中大正方形的面积为:(a+b)2,然后利用完全平方公式的变形求出(a+b)2即可.【解答过程】解:由题意可得在图1中:a2+b2=15,(b﹣a)2=3,图2中大正方形的面积为:(a+b)2,∵(b﹣a)2=3a2﹣2ab+b2=3,∴15﹣2ab=32ab=12,∴(a+b)2=a2+2ab+b2=15+12=27,故答案为:27.【总结归纳】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.三、解答题(本题共有6个小题,每小题6分,共36分)17.(6分)在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1).(1)画出△ABC关于x轴成轴对称的△A1B1C1;(2)画出△ABC以点O为位似中心,位似比为1:2的△A2B2C2.【知识考点】作图﹣轴对称变换;作图﹣位似变换.【思路分析】(1)将△ABC的各个点关于x轴的对称点描出,连接即可.(2)在△ABC同侧和对侧分别找到2OA=OA2,2OB=OB2,2OC=OC2所对应的A2,B2,C2的坐标,连接即可.【解答过程】解:(1)由题意知:△ABC的三个顶点的坐标分别是A(1,3),B(4,1),C(1,1),则△ABC关于x轴成轴对称的△A1B1C1的坐标为A1(1,﹣3),B1(4,﹣1),C1(1,﹣1),连接A1C1,A1B1,B1C1得到△A1B1C1.如图所示△A1B1C1为所求;(2)由题意知:位似中心是原点,则分两种情况:第一种,△A2B2C2和△ABC在同一侧则A2(2,6),B2(8,2),C2(2,2),连接各点,得△A2B2C2.第二种,△A2B2C2在△ABC的对侧A2(﹣2,﹣6),B2(﹣8,﹣2),C2(﹣2,﹣2),连接各点,得△A2B2C2.综上所述:如图所示△A2B2C2为所求;【总结归纳】本题主要考查了位似中心、位似比和轴对称相关知识点,正确掌握位似中心、位似比的概念及应用是解题的关键.18.(6分)解不等式组:.【知识考点】解一元一次不等式组.【思路分析】分别解出两个不等式的解集,然后确定解集的公共部分就可以求出不等式的解集.【解答过程】解:由①得:x≤2,由②得:x>﹣1,所以,不等式组的解集是﹣1<x≤2.【总结归纳】本题考查了不等式组的解法,关键是求出两个不等式的解,然后根据口诀求出不等式组的解集.19.(6分)先化简,再求值:(+)÷,其中a=.【知识考点】分式的化简求值.【思路分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,代入计算即可求出值.【解答过程】解:原式===当时,原式=.【总结归纳】本题考查了分式的化简求值,解题的关键是选择正确的计算方法,对通分、分解因式、约分等知识点熟练掌握.20.(6分)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动,学校拟用这笔捐款购买A、B两种防疫物品.如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元.(1)求A、B两种防疫物品每件各多少元;(2)现要购买A、B两种防疫物品共600件,总费用不超过7000元,那么A种防疫物品最多购买多少件?【知识考点】二元一次方程组的应用;一元一次不等式的应用.【思路分析】(1)设A种防疫物品每件x元,B种防疫物品每件y元,根据“如果购买A种物品60件,B种物品45件,共需1140元;如果购买A种物品45件,B种物品30件,共需840元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买A种防疫物品m件,则购买B种防疫物品(600﹣m)件,根据总价=单价×购买数量结合总费用不超过7000元,即可得出关于m的一元一次不等式,解之取其中最大的整数值即可得出结论.【解答过程】解:(1)设A种防疫物品每件x元,B种防疫物品每件y元,依题意,得:,解得:.答:A种防疫物品每件16元,B种防疫物品每件4元.(2)设购买A种防疫物品m件,则购买B种防疫物品(600﹣m)件,依题意,得:16m+4(600﹣m)≤7000,解得:m≤383,又∵m为正整数,∴m的最大值为383.答:A种防疫物品最多购买383件.【总结归纳】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.21.(6分)如图,在▱ABCD中,点E是AD的中点,连接CE并延长,交BA的延长线于点F.求证:FA=AB.【知识考点】全等三角形的判定与性质;平行四边形的性质.【思路分析】在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA,SSS)来证明△AFE≌△DCE,根据全等的性质再证明AF=DC,从而证明AF=AB.【解答过程】证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC.∴∠FEA=∠DEC,∠F=∠ECD.又∵EA=ED,∴△AFE≌△DCE.∴AF=DC.∴AF=AB.【总结归纳】本题考查平行四边形的性质及全等三角形等知识,是比较基础的证明题.22.(6分)某家庭记录了未使用节水龙头20天的日用水量数据(单位:m3)和使用了节水龙头20天的日用水量数据,得到频数分布表如下:未使用节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.1 0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4 0.4≤x<0.5 频数0 4 2 4 10 使用了节水龙头20天的日用水量频数分布表:日用水量/m30≤x<0.1 0.1≤x<0.2 0.2≤x<0.3 0.3≤x<0.4 频数 2 6 8 4 (1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;(2)估计该家庭使用节水龙头后,一年能节省多少立方米水?(一年按365天计算)【知识考点】用样本估计总体;频数(率)分布表;加权平均数.【思路分析】(1)取组中值,运用加权平均数分别计算出未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量即可;(2)先计算平均一天节水量,再乘以365即可得到结果.【解答过程】解:(1)未使用节水龙头20天的日平均用水量为:×(0×0.05+4×0.15+2×0.25+4×0.35+10×0.45)=0.35(m3),使用了节水龙头20天的日平均用水量为:×(2×0.05+6×0.15+8×0.25+4×0.35)=0.22(m3);(2)365×(0.35﹣0.22)=365×0.13=47.45(m3),答:估计该家庭使用节水龙头后,一年能节省47.45m3水.【总结归纳】此题主要考查节水量的估计值的求法,考查加权平均数等基础知识,考查运算求解能力,是基础题.四、解答题(本题共4道题,其中23、24题每题8分,25、26题每题10分,共36分)23.(8分)如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求.【知识考点】圆周角定理;切线的判定与性质.【思路分析】(1)连接OE,证明OE∥BC,得∠AEO=∠B=90°,即可得出结论;(2)连接DE,先证明△DCE∽△ECB,得出=,易证∠ACB=60°,由角平分线定义得∠DCE=∠ACB=×60°=30°,由此可得的值,即可得出结果.【解答过程】(1)证明:连接OE,如图1所示:∵CE平分∠ACB,∴∠ACE=∠BCE,又∵OE=OC,∴∠ACE=∠OEC,∴∠BCE=∠OEC,∴OE∥BC,∴∠AEO=∠B,又∵∠B=90°,∴∠AEO=90°,即OE⊥AE,∵OE为⊙O的半径,∴AE是⊙O的切线;(2)解:连接DE,如图2所示:∵CD是⊙O的直径,∴∠DEC=90°,∴∠DEC=∠B,。
【文库独家】九年级第二学期初三数学期中试卷注意事项:1.全卷共8页,28题,满分150分,考试时间120分钟.2.用蓝色或黑色钢笔、圆珠笔直接答在试卷上.3.答卷前将密封线内的项目填写清楚.4.若是题计算结果没有要求取近似值,则计算接过去精确值(保留根号和π)一、选择题(在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.本大题共8个小题,每小题3分,共24分)1.2)2(-化简的结果是 ( )A .2B .—2C .2或—2D .42.点P (-2,3)关于y 轴对称点的坐标是 ( ) A.(-2,3) B.(2,-3) C.(2,3) D .(-2,-3) 3. 晓明家到学校的路程是3 500米,晓明每天早上7∶30离家步行去上学,在8∶10(含8∶10)至8∶20(含8∶20)之间到达学校。
如果设晓明步行的速度为x 米/分,则晓明步行的速度范围是 ( )A. 70≤x ≤87.5B. x ≤70或x ≥87.5C. x ≤70D. x ≥87.5 4.如图是公园的路线图,⊙O 1,⊙O 2,⊙O 两两相切,点A 、B 、O 分别是切点,甲乙二人骑自行车,同时从点A 出发,以相同的速度,甲按照“圆”形线行驶,乙行驶“8字型”线路行驶到B 再返回.若不考虑其他因素,结果先回到出发点的人是( )A. 甲B. 乙C. 甲乙同时D.无法判定5.不等式组⎩⎨⎧≤>-4,11x x 的解集在数轴上应表示为( )A B C D 6.正方形网格中,AOB ∠如图3放置,则cos AOB ∠的值为( )C.12D.2 7.二次函数y = ax 2 + bx + c的图像如图所示,则关于此二次函数的下列四个结论①a <0 ②a >0 ③b 2– 4ac >0 ④ba<0中,正确的结论有( )A.1个B.2个C.3个D.4个8.如图,在反比例函数y = 2x(0x >)的图象上,有点1234P P P P ,,,,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++=第4题 ABO6题第10题2y x =xOP 1 P 2P 3 P 4 1234第7题0 0( ). A .1 B .1.5 C .2 D .无法确定二、填空题(本大题共10个小题,每小题3分,共30分)9.-5的倒数是10.分解因式:a a a 4423+-= .11.“嫦娥一号”月球探测卫星于2007年10月24日成功发射,11月26日国家航天局正式公布“嫦娥一号”传回的第一幅月面图像.该幅月球表面图,成像区域的面积为128800平方公里.这个数据用科学记数法表示为 平方公里。
2020年九年级数学下期中试卷(带答案) 一、选择题1.如果反比例函数y=kx(k≠0)的图象经过点(﹣3,2),则它一定还经过()A.(﹣12,8)B.(﹣3,﹣2)C.(12,12)D.(1,﹣6)2.如图,用放大镜看△ABC,若边BC的长度变为原来的2倍,那么下列说法中,不正确的是().A.边AB的长度也变为原来的2倍;B.∠BAC的度数也变为原来的2倍;C.△ABC的周长变为原来的2倍;D.△ABC的面积变为原来的4倍;3.如图,河坝横断面迎水坡AB的坡比是1:3(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高3mBC=,则坡面AB的长度是().A.9m B.6m C.63m D.33m4.如图,在△ABC中,DE∥BC ,12ADDB=,DE=4,则BC的长是()A.8 B.10 C.11 D.125.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③AE DEAB BC=,④AD AEAC AB=,⑤AC2=AD•AE,使△ADE与△ACB一定相似的有()A .①②④B .②④⑤C .①②③④D .①②③⑤ 6.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( ) A .1:3B .1:4C .1:6D .1:9 7.如图,在ABC ∆中,//DE BC ,9AD =,3DB =,2CE =,则AC 的长为( )A .6B .7C .8D .98.在△ABC 中,若|sinA-32|+(1-tanB)2=0,则∠C 的度数是( ) A .45° B .60° C .75° D .105° 9.如图,ABC △与ADE 相似,且ADE B ∠=∠,则下列比例式中正确的是( )A .AE AD BE DC =B .AE AB AB AC = C .AD AB AC AE = D .AE DE AC BC= 10.如图,一张矩形纸片ABCD 的长BC =xcm ,宽AB =ycm ,以宽AB 为边剪去一个最大的正方形ABEF ,若剩下的矩形ECDF 与原矩形ABCD 相似,则x y的值为( )A 51-B 51+C 2D .21211.已知点P 是线段AB 的黄金分割点(AP >PB ),AB=4,那么AP 的长是( ) A .252 B .25- C .251 D 5212.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( ) A .360元 B .720元 C .1080元 D .2160元二、填空题13.如图,矩形ABOC 的面积为3,反比例函数y =k x 的图象过点A ,则k =_____.14.在ABC ∆中,若45B ∠=,102AB =,55AC =,则ABC ∆的面积是______.15.如图,矩形ABCD 的顶点,A C 都在曲线k y x= (常数0k ≥,0x >)上,若顶点D 的坐标为()5,3,则直线BD 的函数表达式是_.16.若a b =34,则a b b+=__________. 17.若函数y =(k -2)2k 5x -是反比例函数,则k =______.18.如图,已知AD AE =,请你添加一个条件,使得ADC AEB △≌△,你添加的条件是_____.(不添加任何字母和辅助线)19.近视眼镜的度数(y 度)与镜片焦距(x 米)呈反比例,其函数关系式为120.y x=如果近似眼镜镜片的焦距0.3x =米,那么近视眼镜的度数y 为______. 20.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)三、解答题21.如图,在△ABC 中,BC =6,sin A =35,∠B =30°,求AC 和AB 的长.22.计算:(1)20(3)3cos 30π︒-+(2)214tan 45|5|2-︒⎛⎫-+- ⎪⎝⎭(3)已知α为锐角,()2sin 152α︒-=,计算2cos 3tan 12αα-+-的值. 23.如图,△ABC 内接于⊙O ,AB=AC ,∠BAC=36°,过点A 作AD ∥BC ,与∠ABC 的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数;(2)求证:AE 2=EF•ED ;24.如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P 处再测得点C 的仰角为45°,已知OA =100米,山坡坡度(竖直高度与水平宽度的比)i =1:2,且O 、A 、B 在同一条直线上.求电视塔OC 的高度以及此人所在位置点P 的铅直高度.(测倾器高度忽略不计,结果保留根号形式)25.如图,已知点D是的边AC上的一点,连接,,.求证:∽;求线段CD的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.2.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC ,若边BC 的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB 的长度也变为原来的2倍,故A 正确;∴∠BAC 的度数与原来的角相等,故B 错误;∴△ABC 的周长变为原来的2倍,故C 正确;∴△ABC 的面积变为原来的4倍,故D 正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.3.B解析:B【解析】由图可知,:BC AC =tan BAC ∠=, ∴30BAC ∠=︒, ∴36m 1sin 302BC AB ===︒. 故选B . 4.D解析:D【解析】【分析】 根据AD DB =12,可得AD AB =13,再根据DE ∥BC ,可得DE BC =AD AB ; 接下来根据DE=4,结合上步分析即可求出BC 的长.【详解】 ∵AD DB =12,∴AD AB =13, ∵在△ABC 中,DE ∥BC , ∴DE BC =AD AB =13. ∵DE=4,∴BC=3DE=12.故答案选D.【点睛】 本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.5.A解析:A【解析】①AED B ∠=∠,且DAE CAB ∠=∠,∴ADE ACB ∽,成立.②ADE C ∠=∠且DAE CAB ∠=∠,∴ADE ACB ∽,成立. ③AE DE AB BC =,但AED 比一定与B 相等,故ADE 与ACD 不一定相似. ④AD AE AC AB=且DAE CAB ∠=∠, ∴ADE ACB ∽,成立.⑤由2AC AD AE =⋅,得AC AE AD AC=无法确定出ADE , 故不能证明:ADE 与ABC 相似.故答案为A .点睛:本题考查了相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.A解析:A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.7.C解析:C【解析】【分析】根据平行线分线段成比例定理,由DE ∥BC 得AD AE DB EC =,然后利用比例性质求EC 和AE 的值即可【详解】∵//DE BC , ∴AD AE DB EC =,即932AE =, ∴6AE =,∴628AC AE EC =+=+=.故选:C .【点睛】此题考查平行线分线段成比例,解题关键在于求出AE8.C解析:C【解析】【分析】先根据非负数的性质求出sinA 及tanB 的值,再根据特殊角的三角函数值求出∠A 及∠B 的值,由三角形内角和定理即可得出结论.【详解】∵|sin A −2|+(1−tan B )2=0,∴tanB=1, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C .【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.9.D解析:D【解析】【分析】利用相似三角形性质:对应角相等、对应边成比例,可得结论.【详解】由题意可得,A ABC DE ∽△△,所以AE DE AC BC=, 故选D .【点睛】 在书写两个三角形相似时,注意顶点的位置要对应,即若ABC A B C '''∽△△,则说明点A 的对应点为点'A ,点B 的对应点B ',点C 的对应点为点C '.10.B解析:B【解析】【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD 是矩形,∴AD =BC =xcm ,∵四边形ABEF 是正方形,∴EF =AB =ycm ,∴DF =EC =(x ﹣y )cm ,∵矩形FDCE 与原矩形ADCB 相似,∴DF :AB =CD :AD , 即:x y y y x-=∴x y 故选B .【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.11.A解析:A【解析】根据黄金比的定义得:12AP AB = ,得1422AP =⨯= .故选A. 12.C解析:C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.二、填空题13.-3【解析】【分析】根据比例系数k的几何含义:在反比例函数y=的图象中任取一点过这一个点向x轴和y轴分别作垂线与坐标轴围成的矩形的面积是定值|k|即可解题【详解】解:∵矩形ABOC的面积为3∴|k|解析:-3【解析】【分析】根据比例系数k的几何含义:在反比例函数y=kx的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|即可解题.【详解】解:∵矩形ABOC的面积为3,∴|k|=3.∴k=±3.又∵点A在第二象限,∴k<0,∴k=−3.故答案为:−3.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,属于简单题,熟悉反比例函数的图像和性质是解题关键.14.75或25【解析】【分析】过点作于点通过解直角三角形及勾股定理可求出的长进而可得出的长再利用三角形的面积公式即可求出的面积【详解】解:过点作垂足为如图所示在中;在中∴∴或∴或25故答案为:75或25解析:75或25【解析】【分析】过点A 作AD BC ⊥于点D ,通过解直角三角形及勾股定理可求出AD ,BD ,CD 的长,进而可得出BC 的长,再利用三角形的面积公式即可求出ABC ∆的面积.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ABD ∆中,sin 10AD AB B =⋅=,cos 10BD AB B =⋅=;在Rt ACD ∆中,10AD =,55AC =,∴225CD AC AD =-=,∴15BC BD CD =+=或5BC BD CD =-=, ∴1752ABC S BC AD ∆=⋅=或25. 故答案为:75或25.【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD ,BC 的长度是解题的关键.15.【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3)C (5)所以B ()然后利用待定系数法求直线BD 的解析式【详解】∵D(53)∴A(3)C (5)∴B()设直线BD 的解析式为y=m 解析:35y x =【解析】【分析】利用矩形的性质和反比例函数图象上点的坐标特征得到A (3k ,3),C (5,5k ),所以B (3k ,5k ),然后利用待定系数法求直线BD 的解析式. 【详解】∵D (5,3),∴A (3k ,3),C (5,5k ), ∴B (3k ,5k ),设直线BD 的解析式为y=mx+n ,把D (5,3),B (3k ,5k )代入得 5335m n k k m n ==+⎧⎪⎨+⎪⎩,解得350m n ⎧⎪⎨⎪⎩==, ∴直线BD 的解析式为35y x =. 故答案为35y x =. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.16.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键 解析:74【解析】【分析】由比例的性质即可解答此题.【详解】 ∵34a b =, ∴a=34b , ∴a b b +=3744b b b b b+= , 故答案为74【点睛】 此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.17.-2【解析】【分析】根据反比例函数的定义列出方程解出k 的值即可【详解】解:若函数y =(k -2)是反比例函数则解得k =﹣2故答案为﹣2解析:-2【解析】【分析】根据反比例函数的定义列出方程2k -5=-1k-20⎧⎨≠⎩,解出k 的值即可. 【详解】解:若函数y =(k -2)2k 5x -是反比例函数,则2k -5=-1k-20⎧⎨≠⎩ 解得k =﹣2,故答案为﹣2.18.或或【解析】【分析】根据图形可知证明已经具备了一个公共角和一对相等边因此可以利用ASASASAAS 证明两三角形全等【详解】∵∴可以添加此时满足SAS ;添加条件此时满足ASA ;添加条件此时满足AAS 故解析:AB AC =或ADC AEB ∠=∠或ABE ACD ∠=∠.【解析】【分析】根据图形可知证明ADC AEB ≌已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等.【详解】∵A A ∠∠= ,AD AE =,∴可以添加AB AC = ,此时满足SAS ;添加条件ADC AEB ∠∠= ,此时满足ASA ;添加条件ABE ACD ∠∠=,此时满足AAS ,故答案为:AB AC =或ADC AEB ∠∠=或ABE ACD ∠∠=;【点睛】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.19.400【解析】分析:把代入即可算出y 的值详解:把代入故答案为400点睛:此题主要考查了反比例函数的定义本题实际上是已知自变量的值求函数值的问题比较简单解析:400【解析】分析:把0.3x =代入120y x =,即可算出y 的值. 详解:把0.3x =代入120x, 400y =,故答案为400.点睛:此题主要考查了反比例函数的定义,本题实际上是已知自变量的值求函数值的问题,比较简单.20.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.三、解答题21.AC=5.AB=4+33.【解析】【分析】过点C作CD⊥AB于点D,在Rt△BCD中利用锐角三角函数和勾股定理求出CD、BD,然后在Rt△ACD中,利用锐角三角函数和勾股定理求出AC、AD,即可.【详解】解:如图,过点C作CD⊥AB于点D,在Rt△BCD中,sinB=sin30°=12=CDBC.∴CD=12×6=3,BD3=3,在Rt△ACD中,sinA=CDAC=35,∴AC=53CD=5.∴AD22AC CD-2253-4,∴AB=AD+BD=3【点睛】本题考查了锐角三角函数和勾股定理.构造直角三角形是解决本题的关键.22.(1)72.(2)7;(3)﹣ 【解析】【分析】(1)先计算乘方和三角函数值,再计算加减法即可;(2先计算乘方和三角函数值、绝对值,再计算加减法即可;(3)先由特殊角的三角函数值计算出α,再代入求值即可.【详解】解:(1)原式=3﹣ =2+32 =72. (2)原式=4﹣2×1+5 =4﹣2+5=7.(3)∵α为锐角,()sin 15α︒-=∴α﹣15°=45°.∴α=60°.∴2cos 3tan αα-+=﹣2×12﹣=﹣﹣=﹣.【点睛】本题考查了含特殊角的三角函数值的四则运算,掌握特殊角的三角函数值是解题的关键.23.(1)36°;(2)证明见解析【解析】【分析】(1)求出∠ABC 、∠ABD 、∠CBD 的度数,求出∠D 度数,根据三角形内角和定理求出∠BAF 和∠BAD 度数,即可求出答案;(2)求出△AEF ∽△DEA ,根据相似三角形的性质得出即可.【详解】(1)∵AD ∥BC ,∴∠D=∠CBD ,∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=12×(180°﹣∠BAC)=72°,∴∠AFB=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠CBD=12∠ABC=12×72°=36°,∴∠D=∠CBD=36°,∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;(2)∵∠CBD=36°,∠FAC=∠CBD,∴∠FAC=36°=∠D,∵∠AED=∠AEF,∴△AEF∽△DEA,∴AE ED EF AE=,∴AE2=EF×ED.【点睛】本题考查了圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.24.电视塔OC高为P的铅直高度为)10013(米).【解析】【分析】过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.【详解】过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=(米),过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=x,∴x,即PB【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.25.(1)参见解析;(2)5.【解析】【分析】(1)利用两角法证得两个三角形相似;(2)利用相似三角形的对应线段成比例求得CD长.【详解】(1)∵∠ABD=∠C,∠A=∠A(公共角),∴△ABD∽△ACB;(2)由(1)知:△ABD∽△ACB,∵相似三角形的对应线段成比例,∴=,即=,解得:CD=5.。
BA 'AB 'O第6题图2020-2021学年度第二学期九年级数学期中试卷本试卷分选择题和非选择题两部分,共三大题25小题,共6页,满分150分,考试时间120分钟.可以使用规定型号的计算器。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔填写好自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B 铅笔把准考证号对应的号码标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.4的平方根为( * ). A .2B .±2C .4D .±42. 对于样本数据1,2,3,2,2,以下判断:①平均数为5;②中位数为2;③众数为2;④极差为2.正确的有( * ). A .1个B .2个C .3个D .4个3.如图所示的几何体的主视图是( * ).4.如果代数式1x x有意义,那么x 的取值范围是( * ). A .x ≥0B .x ≠1C .x >0D .x ≥0且x ≠15. 已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为( * ). A .30πcm 2B .50πcm 2C .60πcm 2D .391πcm 26.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A 'OB ',若∠AOB=15°,则∠AOB '的度数是( * ). A .25° B .30° C .35° D .40°A .B .C .D .第3题图第10题图OP第8题图7.一次函数32-=x y 的大致图像为( * ).A .B .C .D .8.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是 小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小 正方形内,则∠APB 等于( * ).A .30°B .45°C .60°D .90°9.关于x 的二次函数2(1)2y x =--+,下列说法正确的是( * ).A .图象的开口向上B .图象与y 轴的交点坐标为(0,2)C .当1x >时,y 随x 的增大而减小D .图象的顶点坐标是(-1,2)10.如图,直角三角形纸片ABC 中,AB=3,AC=4,D 为斜边BC 中点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交与点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于点P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD 交于点P 3;…;如此类推,则AP 6的长为( * ).A .512532⨯B .69352⨯C .614532⨯D .711352⨯第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.点A (0,3)向右平移2个单位长度后所得的点A ’的坐标为 * .12.已知空气的单位体积质量为0.00124克/厘米3,将0.00124用科学记数法表示为* .13.如图,△ABC 与△DEF 是位似图形,相似比为2∶3,已知AB =4,则DE 的长为 * .o yxo y x yxooy x第13题图 C O DE F AB 14.化简:=+-+1112a a a * . 15.如图,防水堤坝的轴截面是等腰梯形ABCD ,DA CB =,DC AB ∥,5=DA ,4=DC ,9=AB ,则斜坡DA 的坡角为 * __ 度.16.已知α ,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足βα11+=﹣1,则m 的值是 * .三、解答题(本大题共9小题,满分102 分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解方程:xx 332=-. 18.(本小题满分9分)如图,已知□ABCD .(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE =BC (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,连结AE ,交CD 于点F , 求证:△AFD ≌ △EFC . 19.(本小题满分10分) 已知1=-b a 且2=ab ,求代数式32232ab b a b a +-的值.20.(本小题满分10分)小强对自己所在班级的48名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题: (1)求m 的值;第18题图 A B C D第15题图(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.21.(本小题满分12分)为支持失学儿童,某中学计划用“义捐义卖”活动中筹集的部分资金用于购买A,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B 两种学习用品各多少件? (2)若购买这批学习用品的钱不超过28000元,则最多能购买B 型学习用品多少件? 22.(本小题满分12分)如图,在菱形ABCD 中,AB =23,∠BAD =60º,AC 交BD 于点O ,以点D 为圆心的⊙D 与边AB 相切于点E . (1)求AC 的长;(2)求证:⊙D 与边BC 也相切.23.(本小题满分12分)如图,四边形ABCD 为正方形.点A 的坐标为(0,2),点B 的坐标为(0,﹣3),反比例函数xky =)0(≠k 的图象经过点C . (1)求反比例函数的解析式;(2)若点P 是反比例函数图象上的一点,△P AD 的面积恰好等于正方形ABCD 的面积,求点P 的坐标.第23题图第20题图 第22题图24.(本小题满分14分)如图1,在半径为2的扇形AOB 中,∠AOB =90°,点C 是 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为点D 、点E . (1)当BC =1时,求线段OD 的长;(2)在点C 的运动过程中,△DOE 中是否存在长度保持不变的边或度数保持不变的角?如果存在,请指出并求其长度或度数(只求一种即可......);如果不存在,请说明理由; (3)作DF ⊥OE 于点F (如图2),当DF 2+EF 取得最大值时,求sin ∠BOD 的值.25.(本小题满分14分)如图,已知直线l :2+-=x y 与y 轴交于点A ,抛物线k x y +-=2)1(经过点A ,其顶点为B ,另一抛物线h h x y -+-=2)(2(h >1)的顶点为D ,两抛物线相交于点C ,(1)求点B 的坐标,并判断点D 是否在直线l 上,请说明理由; (2)设交点C 的横坐标为m .①请探究m 关于h 的函数关系式;②连结AC 、CD ,若∠ACD =90°,求m 的值.九年级数学参考答案与评分标准说明:(一)《答案》中各行右端所注分数表示正确作完该步应得的累加分数,全卷满分150分。
2020-2021学年度第二学期九年级数学期中试卷学校__________班级___________姓名___________成绩___________考生须知1.本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、画图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为A.96.5×107B.9.65×107 C.9.65×108 D.0.965×1092.如图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为A.14B.34C.15D.454.下列图形中,是轴对称图形但不是中心对称图形的是A.B.C.D.5.如图,在ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为A.5 B.4C.3 D.26.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,1=35∠︒,则2∠的度数为A.35︒B.15︒C.10︒D.5︒7.初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:ECDBA则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B.9,8.5 C.8,8 D.8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数(,)表示图中承德的位置,“数对”对”19043︒(,)表示图中保定的位置,则与图中张家口160238︒的位置对应的“数对”为(,)A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:油电混动汽车普通汽车购买价格(万元)17.48 15.98每百公里燃油成本(元)31 46某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000 B.10 000 C.15 000 D.20 00010.小明在暗室做小孔成像实验.如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M'N')于足够长的固定挡板(直线l)上,其中MN// l.已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的运动时间为x,M'N'的长度为y,若y关于x的函数图象大致如图2所示,则点K的运动路径可能为A.A→B→C→D→A B.B→C→D→A→BC.B→C→A→D→B D.D→A→B→C→D图1 图2二、填空题(本题共18分,每小题3分)11. 分解因式:a2b-2ab+b=________________.12. 如图,AB为⊙O的弦,OC⊥AB于点C.若AB=8,OC=3,则⊙O的半径长为________.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x,可列方程为.14.在下列函数①21y x=+;②22y x x=+;③3yx=;④3y x=-中,与众不同的一个是_____(填序号),你的理由是________.15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________.16.阅读下面材料:A BCO在数学课上,老师提出如下问题:小云的作法如下:老师说:“小云的作法正确.”请回答:小云的作图依据是________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:)2016tan3012π-⎛⎫--︒++⎪⎝⎭18.解不等式组41)3(2),14,2x xxx-≤+⎧⎪⎨-<-⎪⎩(并写出它的所有整数解....19.已知250x x+-=,求代数式2(1)(3)(2)(2)x x x x x---++-的值.20.如图,在△ABC中,90BAC∠=︒,AD BC⊥于点D,DE为AC边上的中线.求证:BAD EDC∠=∠.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若 每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多 少步.22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.23.在平面直角坐标系xOy 中,直线y x =-与双曲线ky x=(0k ≠)的一个交点为(6,)P m . (1)求k 的值;(2)将直线y x =-向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线ky x =(0k ≠)的一个交点记为Q .若2BQ AB =,求b 的值.24.如图,AB ,AD 是⊙O 的弦,AO 平分BAD ∠.过点B作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO . 延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE . (1)求证:CD 是⊙O 的切线; (2)若3AE DE ==,求AF 的长.O ED ABC25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点, 票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影, 票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3 部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55 亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》 以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的 动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元 票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A 梦之伴我 同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入. 2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元; (2)右图为2015年国产..动画电影票房金字塔,则B =; (3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数(1)(2)(3)y x x x =---的图象与性质.小东对函数(1)(2)(3)y x x x =---的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数(1)(2)(3)y x x x =---的自变量x 的取值范围是全体实数; (2)下表是y 与x 的几组对应值.x … 2-1- 0 1 2 3 4 5 6 … y…m24-6-62460…①m =;②若M (7-,720-),N (n ,720)为该函数图象上的 两点,则n =;(3)在平面直角坐标系xOy 中, A (,A A x y ),B (,B A x y -)为该函数图象上的两点,且A 为23x ≤≤范围内的最低点, A 点的位置如图所示. ①标出点B 的位置;②画出函数(1)(2)(3)y x x x =---(04x ≤≤)的图象.27.在平面直角坐标系xOy 中,抛物线224y mx mx m =-+-(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含 C ,D 两点).若过点A 的直线+(0)y kx b k =≠ 与图象G 有两个交点,结合函数的图象,求k 的取值范围.28.在△ABC 中,AB =AC ,∠BAC =90︒,点D 在射线BC 上(与B 、C 两点不重合),以AD 为边作正方形ADEF ,使点E 与点B 在直线AD 的异侧,射线BA 与射线CF 相交于点G . (1)若点D 在线段BC 上,如图1.①依题意补全图1;②判断BC 与CG 的数量关系与位置关系,并加以证明;(2)若点D 在线段BC 的延长线上,且G 为CF 中点,连接GE ,AB=2,则GE 的长为_______,并简述求GE 长的思路.图1 备用图29.在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C不重合的点,点P 关于⊙C 的限距点的定义如下:若P '为 直线PC 与⊙C 的一个交点,满足2r PP r '≤≤,则称P ' 为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限 距点P '的示意图.(1)当⊙O 的半径为1时.①分别判断点M (3,4),N 5(,0)2,T (1,2)关 于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的 边上.若点P 关于⊙O 的限距点P '存在,求点P '的横坐标的取值范围;(2)保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答. 温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P 关于⊙C 的限距点P '存在,且P '随点P 的运动所形成的路径长为r π,则r 的最小值为__________.若点P 关于⊙C 的限距点P '不存在,则r 的取值范围为________.2020-2021学年度第二学期九年级数学期中试卷参考答案题号 1 2 3 4 5 6 7 8 9 10答案B D C C D C A A B B题号11 12 13答案2)1(-ab 5 33712132=+++xxxx题号14 15 16答案所填写的理由需支持你填写的结论. 如:③,理由是:只有③的自变量取值范围不是全体实数预估理由需包含统计图提供的信息,且支撑预估的数据. 如:6.53 ,理由是:最近三年下降趋势平稳四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式3164313=-⨯++-……………………4分43=-.………………………5分解不等式①,得10≤x.………………………2分解不等式②,得7>x.………………………3分∴原不等式组的解集为107≤<x.………………………4分∴原不等式组的所有整数解为8,9,10.………………………5分19.解:原式4312222-++-+-=xxxxx………………………3分32-+=xx.………………………4分∵250x x+-=,∴52=+xx.∴原式=532-=..………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒.∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC .∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分A23. 解:(1)∵(6,)P m 在直线y x =-上,∴6m =-. ………………………1分∵(6,6)P -在双曲线k y x =上, ∴6(6)6k =⨯-=-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵2BQ AB =,∴3===ABAQ OA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =.∴Q 的坐标为(2,3)b b -.由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2,)b b -.由点Q 在双曲线6y x=-上,可得3b =综上所述,1b =或3b =. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线,∴90CBO ∠=︒.∵AO 平分BAD ∠,∴12∠=∠.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴BOC DOC ∠=∠.∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =,∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠,∴123∠=∠=∠.∵BE 为⊙O 的直径,∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分∴90AFE ∠=︒ .在Rt △AFE 中,∵3AE =,︒=∠303,∴332AF =. ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表电影票房(亿元) 大圣归来9.55 哆啦A 梦之伴我同行5.3 超能陆战队5.26 小黄人大眼萌4.36 熊出没22.88 ………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4=-+-m x x2=--.m x(1)4-.………………………2分∴点A的坐标为(1,4)(2)①由(1)得,抛物线的对称轴为x=1.∵抛物线与x轴交于B,C两点(点B在点C左侧),BC=4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()2,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O 的限距点存在,其横坐标x =1.综上所述,点P关于⊙O的限距点的横坐标x的范围为112x-≤≤-或x=1.……………………6分(2)问题1:39.………………8分问题2:0 < r < 16.………………7分2020-2021学年度第二学期九年级数学期中试卷一、选择题(每小题3分,共24分)1.3的相反数是()A.﹣3 B.3 C.﹣D.2.不等式组的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<23.如图所示,下列几何体中主视图、左视图、俯视图都相同的是()A.B.C.D.4.如图,在四边形ABCD中.AD=BC.E,F,G分别是AB,CD,AC的中点,若∠DAC=36°,∠ACB=84°,则∠FEG等于()A.20°B.24°C.26°D.15°5.下列计算正确的是()A.(﹣2a)2=2a2 B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a26.若一个圆锥的底面积为4πcm2,高为4cm,则该圆锥的侧面展开图中圆心角为()A.40°B.80°C.120°D.150°7.如图是正方形网格,除A,B两点外,在网格的格点上任取一点C,连接AC,BC,能使△ABC为等腰三角形的概率是()A.B.C.D.8.如图,点B,E是反比例函数y=﹣(x<0)图象上的两点,点C在y轴上,点A,D在x轴上,且四边形OABC和四边形ADEF均为正方形,则点D的横坐标是()A.﹣1﹣B.﹣5+C.﹣2D.﹣1﹣2二、填空题(每小题3分,共24分)9.甲型H1N1流感病毒的直径大约是0.000000081米,将0.000000081米用科学记数法表示为米.10.某校九年级(1)班8名学生的体重(单位:kg)分别为39,43,40,43,45,45,46,43,则这组数据的中位数是.11.分解因式:a3﹣4ab2=.12.甲、乙两人5次射击命中的环数如下:甲:7 9 8 6 10;乙:7 8 9 8 8.则这两人5次射击命中的环数的平均数,方差s甲2s乙2.(填“>”“<”或“=”).13.如果是整数,则正整数n的最小值是.14.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC 的度数是.15.如图,已知在等边△ABC中,D、E是BC,AC上的点,AE=CD,AD与BE相交于Q,BP丄AD,则的值是.16.如图,已知直线l的解析式是y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2…,按此作法继续下去,则点A2014的纵坐标为.三、解答题(每小题8分,共16分)17.先化简,再求值:(1﹣)÷,再选一个你喜欢的整数代入求值.18.如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.四、解答下列各题(每小题10分,共20分)19.某中学开展以“我最喜欢的职业”为主题的调査活动,并根据收集的数据绘制了如图不完整的统计图.请你根据图中提供的信息,解答下面的问题:(1)求被调査的学生人数;(2)将折线统计图补充完整;(3)求出扇形统计图中公务员部分对应的圆心角的度数.20.在一个口袋里有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取的摸取方法分别是:小明:随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机摸取一个小球,记下标号.(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小强两次摸球的标号之和等于5的概率.五、解答下列各题(每小题10分,共20分)21.如图是某个园区部分景点(景点A,B,C,D,E)示意图,景点A,D之间是一个荷花池,景点E,D和景点B,D之间正在维修,不能通行.已知AB=400米,BC=l000米,CE=600米,CD⊥AD,∠BDC=45°,∠ABD=15°.请根据以上条件求出荷花池AD的宽度和景点E,D之间的距离.22.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当0B=6cm,OC=8cm时,求⊙O的半径及MN的长.六、解答下列各题(每小题10分,共20分)23.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?24.某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p=﹣0.4m2+2m;试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!七、25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G,一个等腰直角三角尺按如图①所示的位置摆放.该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察,测量BF与CG的长度,猜想BF与CG满足的数量关系是.(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交直线BC于点D,过点D作DE丄BA于点E,此时请你通过观察、测量DE、DF与CG的长度关系,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想.(3)当三角尺在(2)的基础上沿AC方向继续平移(点F在射线AC上,且点F与点A、点C不重合)时,直接写出DE、DF与CG之间满足的数量关系,不用说明理由.八、26.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4.B 为线段OA的中点.直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合).PQ∥y轴与抛物线交于点Q.(1)求经过B、E、C三点的抛物线的解忻式;(2)判断△BDC的形状.并绐出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;(3)若抛物线的顶点为N.连接QN.探究四边形PMNQ能否为菱形?若能,请直接写出点P的坐标;若不能,请说明理由.2020-2021学年度第二学期九年级数学期中试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.3的相反数是()A.﹣3 B.3 C.﹣D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得3的相反数是:﹣3.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.不等式组的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<2【分析】先分别求出两个不等式的解集,再求出解集的公共部分即可.【解答】解:,由①得:x>﹣3,由②得:x>2,所以不等式组的解集是x>2.故选C.【点评】本题考查了解一元一次不等式组,关键是求出两个不等式的解集,找出解集的公共部分.3.如图所示,下列几何体中主视图、左视图、俯视图都相同的是()A.B.C.D.【分析】根据三视图的基本知识,分析各个几何体的三视图然后可解答.【解答】解:A、此半球的三视图分别为半圆弓形,半圆弓形,圆,不符合题意;B、圆柱的三视图分别为长方形,长方形,圆,不符合题意;C、球的三视图都是圆,符合题意;D、六棱柱的三视图分别为长方形,长方形,六边形,不符合题意.故选C.【点评】本题考查了几何体的三种视图,掌握定义是关键.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.如图,在四边形ABCD中.AD=BC.E,F,G分别是AB,CD,AC的中点,若∠DAC=36°,∠ACB=84°,则∠FEG等于()A.20°B.24°C.26°D.15°【分析】根据三角形中位线定理和等腰三角形等边对等角的性质求解即可.【解答】解:∵AD=BC,E,F,G分别是AB,CD,AC的中点,∴GF是△ACD的中位线,GE是△ACB的中位线,∴GF AD,GE BC.又∵AD=BC,∴GF=GE,∠FGC=∠DAC=36°,∠AGE=∠ACB=84°,∴∠EFG=∠FEG,∵∠FGE=∠FGC+∠EGC=36°+(180°﹣84°)=132°,∴∠EFG=(180°﹣∠FGE)=24°.故选:B.【点评】主要考查了三角形中位线定理和等腰三角形的判定与性质.中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.5.下列计算正确的是()A.(﹣2a)2=2a2 B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a2【分析】利用同底数的幂的乘法、除法以及分配律即可求解.【解答】解:A、(﹣2a)2=4a2,选项错误;B、a6÷a3=a3,选项错误;C、正确;D、a•a2=a3,选项错误.故选C.【点评】本题考查同底数幂的除法,分配律,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.6.若一个圆锥的底面积为4πcm2,高为4cm,则该圆锥的侧面展开图中圆心角为()A.40°B.80°C.120°D.150°【分析】根据圆锥底面积求得圆锥的底面半径,然后利用勾股定理求得母线长,根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【解答】解:∵圆锥的底面积为4πcm2,∴圆锥的底面半径为2cm,∴底面周长为4π,∵高为4cm,∴由勾股定理得圆锥的母线长为6cm,设侧面展开图的圆心角是n°,根据题意得:=4π,解得:n=120.故选C.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.如图是正方形网格,除A,B两点外,在网格的格点上任取一点C,连接AC,BC,能使△ABC为等腰三角形的概率是()A.B.C.D.【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【解答】解:解:如图,∵AB==,∴①若AB=BC,则符合要求的有:C1,C2,C3,C4,C5,共5个点;②若AB=AC,则符合要求的有:C6,C7,C8共3个点;若AC=BC,则不存在这样格点.∴这样的C点有8个.∴能使△ABC为等腰三角形的概率是.故选D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.如图,点B,E是反比例函数y=﹣(x<0)图象上的两点,点C在y轴上,点A,D在x轴上,且四边形OABC和四边形ADEF均为正方形,则点D的横坐标是()A.﹣1﹣B.﹣5+C.﹣2D.﹣1﹣2【分析】易得点B的坐标,设点E的纵坐标为y,可表示出点E的横纵坐标,代入所给反比例函数即可求得点E的纵坐标,也就求得了点E的横坐标.【解答】解:∵四边形OABC是正方形,点B在反比例函数y=﹣的图象上,∴点B的坐标为(﹣2,2).设点E的纵坐标为y,∴点E的横坐标为(﹣2+y),∴y×(﹣2+y)=﹣4,即y2﹣2y+4=0,即y=﹣1±,∵y>0,∴y=﹣1+,∴点E的横坐标为﹣1++2=﹣1﹣,则点E的横坐标为﹣1﹣,故选:A.【点评】此题主要考查了反比例函数的综合应用中反比例函数的比例系数的意义,突破点是得到点B的坐标,用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.二、填空题(每小题3分,共24分)9.甲型H1N1流感病毒的直径大约是0.000000081米,将0.000000081米用科学记数法表示为8.1×10﹣8米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 008 1=8.1×10﹣8,故答案为:8.1×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.某校九年级(1)班8名学生的体重(单位:kg)分别为39,43,40,43,45,45,46,43,则这组数据的中位数是43.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将这组数据从小到大的顺序排列:39,40,43,43,43,45,45,46,处于中间位置的那两个数是43,那么由中位数的定义可知,这组数据的中位数是=43.故答案为:43.【点评】本题主要考查了将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错,难度适中.11.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.12.甲、乙两人5次射击命中的环数如下:甲:7 9 8 6 10;乙:7 8 9 8 8.则这两人5次射击命中的环数的平均数,方差s甲2>s乙2.(填“>”“<”或“=”).【分析】分别计算出甲、乙两人的方差,再比较.。
银川市 2019-2020 学年九年级下学期期中数学试题 C 卷姓名:________班级:________成绩:________一、单选题1 . 下列方程中,一元二次方程共有( )个①x2﹣2x﹣1=0;②ax2+bx+c=0;③ +3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1B.2C.3D.42 . 一次函数中变量 与 的部分对应值如下表…-10123……86420…下列结论:① 随 的增大而减小;②点(6,-6)一定在函数的图像上;③当 >3 时, >0;④当 <2时,.其中正确的个数为( )A.4B.3C.2D.13 . 某企业的年收入约为 700000 元,数据“700000”用科学记数法可表示为( )A.B.C.D.4 . 如图,在 Rt△ABC 中,∠ACB=90°,CD⊥AB 于点 D,若 sinB= ,则 tan∠ACD 的值为( )第1页共6页A.B.C.D.5 . 一种药品原价每盒 25 元,经过两次降价后每盒 16 元,设两次降价的百分率都为 x,则 x 满足等式( )A.16(1+2x)=25B.25(1-2x)=16C.25(1-x)²=16D.16(1+x)²=256 . 如图,如果 AB∥CD∥EF,那么下列结论正确的是( )A.B.C.D.7 . 下列式子中,a 取任何实数都有意义的是( )A.B.C.D.8 . 下列各式是最简二次根式的是( )A.B.D.C.9 . 如果二次三项式在实数范围内不能分解因式,那么 的取值范围是( ).B.A.或C.D.且10 . 若两个相似多边形的面积之比为 1:3,则它们的周长之比为( )A.1:3B.3:1C. :3D. :1二、填空题11 . 如图,△ABC 中,∠ACB=90°,AC=6,AB=10,点 D 是 AB 边上一点,将△ACD 沿 CD 翻折 180° 得第2页共6页到△A'CD,当点 落在△ABC 内部时(不包括边),AD 的取值范围是________________.12 . 一元二次方程(x+1)(3x-2)=8 的一般形式是.13 . 要使代数式有意义的 x 的取值范围是_____________.14 . 已知 = ,则=_____.15 . 如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按 照此方法继续下去.已知第一个矩形的面积为 4,则第 n 个矩形的面积为_____.三、解答题16 . 用适当的方法解下列方程.(1);(2);(3)(4)17 . (1);(2);18 . 如图,△ABC 为等边三角形,D 为 BC 延长线上的一点,以 AD 为边向形外作等边△ADE,连接 CE.(1) 求证: △ACE≌△ABD;第3页共6页(2) 在点 D 运动过程中,∠DCE 的度数是否发生变化?若不变化,求它的度数;若变化,说明理由; (3) 若∠BAE=150°,△ABD 的面积为 6,求四边形 ACDE 的面积.备用图 19 . 如图,学校平房的窗外有一路灯 AB,路灯光能通过窗户 CD 照到平房内 EF 处;经过测量得:窗户距地面高,窗户高度,,;求路灯 AB 的高.20 . 先化简 -÷,再求值.其中 a 满足方程 a2-2a-3=0.21 . 如图,直线 l1:y=2x﹣2 与 x 轴交于点 D,直线 l2:y=kx+b 与 x 轴交于点 A,且经过点 B,直线 l1, l2 交于点 C(m,2).(1)求 m 的值;(2)求直线 l2 的解析式;(3)根据图象,直接写出 1<kx+b<2x﹣2 的解集.第4页共6页(4)求△ACD 的面积. 22 . 问题:如图 1,在平行四边形 ABCD 中,点 E 是 BC 边的中点,连结 AE,点 F 是线段 AE 上一点,连结 BF 并延长,交射线 CD 于点 G.若 AF:EF=4:1,求 的值.(1)尝试探究:如图 1,过点 E 作 EH∥AB 交 BG 于点 H,则 AB 和 EH 的数量关系是.CG 和 EH 的数量关系是,因此 =.(2)类比延伸:在原题的条件下,若把“AF:EF=4:1”改为“AF:EF=n:1”(n>0),求 的值.(用含有 n 的式子表示) (3)拓展迁移: 如图 2,在四边形 ABCD 中,CD∥AB,点 E 是 BC 的延长线上的一点,AE 与 BD 相交于点 F.若 AB:CD=a:1(a>0),BC:BE=b:1(b>0),则 =.(直接用含有 a、b 的式子表示,不写解答过程)23 . 某电厂规定:该厂家属区的每户居民一个月用电量不超过 A 千瓦时,•那么这户居民这个月只交 10 元电第5页共6页费,如果超过 A 千瓦时,那么这个月除了交 10•元用电费外超过部分还要按每千瓦时 元收费. (1)若某户 2 月份用电 90 千瓦时,超过规定 A 千瓦时,则超过部分电费为多少元?(•用 A 表示) (2)下表是这户居民 3 月、4 月的用电情况和交费情况月份用电量(千瓦时)交电费总金额(元)3802544510根据上表数据,求电厂规定的 A 值为多少?第6页共6页。
宁夏九年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·萧山模拟) 下列各式中,值最小的是()A . ﹣5+3B . ﹣(﹣2)3C .D . 3÷(﹣)2. (2分) (2018八上·海淀期末) 叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A .B .C .D .3. (2分)(2019·开江模拟) 如图所示的几何体是由6个大小相同的小立方块搭成,它的俯视图是()A .B .C .D .4. (2分)(2017·岳池模拟) 下列各式计算正确的是()A . (a﹣b)2=a2﹣b2B . a8÷a4=a2(a≠0)C . 2a3•3a2=6a5D . (﹣a2)3=a65. (2分)(2020·武侯模拟) 学校组织知识竞赛,满分10分,学生得分均为整数,赛后举办方选取了部分同学的成绩进行统计,并绘制出如图所示的统计图.下列关于这10名同学成绩的说话正确的是()A . 平均数是6B . 中位数是6C . 方差约为4.6D . 众数是66. (2分)(2020·海门模拟) 勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC=8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为()A . 40B . 44C . 84D . 887. (2分)(2020·陕西模拟) 已知抛物线,其顶点为A,与轴交于点B,将抛物线E 绕原点旋转得到抛物线,点的对应点分别为,若四边形为矩形,则的值为()A .B .C .D .8. (2分) (2021八上·滨海期末) 如图,在△ABC中,AB=AC,∠A=42°,DE垂直平分AC,则∠BCD的度数为()A . 23°B . 25°C . 27°D . 29°9. (2分) (2019九上·南岸期末) 如图,菱形ABCD的顶点A在x轴的正半轴上,边CD所在直线过点O,对角线BD∥x轴交AC于点M,双曲线y= 过点B且与AC交于点N,如果AN=3CN,S△NBC= ,那么k的值为()A . 8B . 9C . 10D . 1210. (2分) (2019九上·海曙期末) 如图,是半圆的直径,为弧中点,点、分别在弦、上,且 .若设,,则关于的函数图像大致是()A .B .C .D .二、填空题 (共5题;共6分)11. (1分) (2019九上·栾城期中) ________。
宁夏石嘴山市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列运算正确的是()A . (2x3y)2=4x6y2B . =×C . a6÷a3=a2D . a4+a2=a62. (2分)下列汉字中,属于中心对称图形的是()A .B .C .D .3. (2分)(2017·盐城模拟) 如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则下列三个结论:①sin∠C>sin∠D;②cos∠C>cos∠D;③tan∠C>tan∠D中,正确的结论为()A . ①②B . ②③C . ①②③D . ①③4. (2分)某公司准备与汽车租凭公司签订租车合同,以每月用车路程xkm计算,甲汽车租凭公司每月收取的租赁费为y1元,乙汽车租凭公司每月收取的租赁费为y2元,若y1、y2与x之间的函数关系如图3所示,其中x=0对应的函数值为月固定租赁费,则下列判断错误的是()A . 当月用车路程为2000km时,两家汽车租赁公司租赁费用相同B . 当月用车路程为2300km时,租赁乙汽车租赁公车比较合算C . 除去月固定租赁费,甲租赁公司每公里收取的费用比乙租赁公司多D . 甲租赁公司平均每公里收到的费用比乙租赁公司少5. (2分)(2018·泰州) 小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为,他明天将参加一场比赛,下面几种说法正确的是()A . 小亮明天的进球率为B . 小亮明天每射球10次必进球1次C . 小亮明天有可能进球D . 小亮明天肯定进球6. (2分) (2011七下·广东竞赛) 将△ABC的各点的横坐标都加上3,纵坐标不变,所得图形与原图形相比()A . 向右平移了3个单位B . 向左平移了3个单位C . 向上平移了3个单位D . 向下平移了3个单位7. (2分)(2017·岱岳模拟) △ABC中,∠ACB=90°,∠A=α,以C为中心将△ABC旋转θ角到△A1B1C(旋转过程中保持△ABC的形状大小不变)B点恰落在A1B1上,如图,则旋转角θ的大小为()A . α+10°B . α+20°C . αD . 2α8. (2分)(2018·温州) 我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若,,则该矩形的面积为()A . 20B . 24C .D .9. (2分) (2018九上·黑龙江月考) 边长为4的等边三角形的面积是()A . 4B . 4C . 4D .10. (2分)(2017·郑州模拟) 在平面直角坐标系中,若干个半径为1的单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,向右沿这条曲线做上下起伏运动(如图),点P在直线上运动的速度为每秒1个单位长度,点P在弧线上运动的速度为每秒个单位长度,则2017秒时,点P的坐标是()A . (,)B . (,﹣)C . (2017,)D . (2017,﹣)11. (2分)下列说法错误的是()A . 的平方根是±3B . (-1)2012是最小的正整数C . 两个无理数的和一定是无理数D . 实数与数轴上的点一一对应12. (2分)如图,△ABC中,AD⊥BC于D,且有下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)=;(4)AB2=BD·BC其中一定能够判定△ABC是直角三角形的共有()A . 3个B . 2个C . 1个D . 0个二、填空题 (共6题;共6分)13. (1分)(2020·郑州模拟) 若x= -1,则x2+2x+1=________.14. (1分) (2015九上·南山期末) 若x=﹣2是关于x的一元二次方程x2+3x+m+1=0的一个解,则m=________.15. (1分)(2019·丹东) 如图,在平面直角坐标系中,OA=1,以OA为一边,在第一象限作菱形OAA1B,并使∠AOB=60°,再以对角线OA1为一边,在如图所示的一侧作相同形状的菱形OA1A2B1 ,再依次作菱形OA2A3B2 , OA3A4B3 ,……,则过点B2018 , B2019 , A2019的圆的圆心坐标为________.16. (1分) (2015八下·武冈期中) 一个多边形的每一个外角都等于36°,它是________边形.17. (1分) (2019八上·宜兴月考) 如图,在等边△ABC中,AB=6,N为线段AB上的任意一点,∠BAC的平分线交BC于点D,M是AD上的动点,连结BM、MN,则BM+MN的最小值是________.18. (1分)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1 ,第二次将点A1向右移动6个单位长度到达点A2 ,第三次将点A2向左移动9个单位长度到达点A3 ,按照这种移动规律移动下去,第n次移动到点An ,如果点An与原点的距离不小于20,那么n的最小值是________.三、解答题 (共7题;共66分)19. (5分)已知a、b、c均为非零的实数,且满足 = = ,求的值.20. (10分)看图回答问题(1)如图1,在△ABC中,BD平分∠ABC,CD平分∠ACB.过D作EF∥BC交AB于E,交AC于F,请说明EF=BE+CF 的理由.(2)如图2,BD平分∠ABC,CD是△ABC中∠ACB的外角平分线,若仍然过点D作EF∥BC交AB于E,交AC 于F,第(1)题的结论还成立吗?如果成立,请说明理由;如果不成立,你能否找到EF与BE、CF之间类似的数量关系?21. (10分)解方程(组),不等式(组),并将解集表示在数轴上.(1);(2);(3)﹣≥﹣1;(4).22. (1分)右表为甲、乙两人比赛投篮球的记录,以命中率(投进球数与投球次数的比值)来比较投球成绩的好坏,得知他们的成绩一样好,下面有四个a , b的关系式:①a-b=5;②a+b=18;③a:b=2:1;④a:18=2:3.其中正确的是(只填序号)________。
宁夏银川市回民中学2020-2021学年九年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2021年某省的粮食总产量为696.8亿斤,其中696.8亿用科学记数法表示为()A.6⨯D.96.96810⨯6.968106.96810⨯B.86.96810⨯C.102.下列运算一定正确的是()A.(a+b)2=a2+b2B.(ab)3=a3b3C.(b3)2=b5D.b·b2=b23.已知三角形两边长分别是3和8,则此三角形第三边的长可能是()A.8 B.1 C.4 D.124.如图,a∥b,∠1=∠2,∠3=20°,则∠4 等于( )A.60°B.50°C.80°D.70°5.由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A.三个视图的面积一样大B.主视图的面积最小C.左视图的面积最小D.俯视图的面积最小6.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,157.点111,)P x y 、点222,)P x y 是一次函数32y x =-+图像上的两个点,且12x x <,则1y 与2y 的大小关系是( )A .12y y >B .120y y >>C .12y y <D .12y y = 8.将两个斜边长相等的三角形纸片按如图1放置,其中∠ACB=∠CFE=90° ,∠A=45°,∠E=30°,把ΔECF 绕点C 顺时针旋转15°得到ΔE 1CF 1,如图2,连接E 1B ,则∠F 1 E 1B 的度数为( )A .30°B .45°C .60°D .15°二、填空题9+(-2)-1 =______.10.△ABC 与△DEF 是位似图形,且△ABC 与△DEF 的位似比是1:3,已知△ABC 的面积是2,则△DEF 的面积是_______.11.计算:m+n=2,mn=1,则()()11m n --=______.12.某商场购进一品服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装的标价是 元. 13.矩形ABCD 中,AB=5,BC=4,将矩形折叠,使得点B 落在线段CD 的点F 处,则线段BE 的长为_____________.14.若关于x 的一元二次方程x 2+2x -b =0的值有两个相等的实数根,则b =______.15.如图,ABCD 的对角线AC 与BD 相交于点O ,AE BC ⊥,垂足为E ,AB =2AC =,4BD =.则AE 的长为_____.16.下列各图形都是由同样大小的圆和正三角形按一定的规律组成.其中,第①个图形由8个圆和1个正三角形组成,第②个图形由16个圆和4个正三角形组成,第③个图形由24个圆和9个正三角形组成,……则第_____个图形中圆和正三角形的个数相等 .三、解答题17.3(2)6543123x x x x . 18.2x 31x 1x 1-=+-. 19.已知:△ABC 三个顶点的坐标分别为A (-1,-1),B(-3,-2),C(-2,-3),(1)画出△ABC 关于原点对称的△A 1B 1C 1;(2)计算出AA 1的长度.20.2021年5月,某校八年级部分同学参加了学校首届“中国诗词大会”活动,根据学生的成绩划分为A 、B 、C 、D 四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)请把条形图补充完整.(2)扇形统计图中,m=______.(3)某班要从B等级中的小明和小刚中选一人参加复赛,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去;否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.21.如图,已知四边形ABCD是菱形,DF⊥AB于点F,BE⊥CD于点E.(1)求证:AF=CE;(2)若DE=2,BE=4,求sin∠DAF的值.22.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于()21A-,、()1B n,两点.(1)求n的值,并写出反比例函数和一次函数的解析式;(2)写出使一次函数的值大于反比例函数的值的x的取值范围.23.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图)则A,B两个村庄间的距离是多少米.(结果保留根号).24.已知,如图,四边形ABCD内接于圆,延长AD、BC相交于点E,点F是BD的延长线上的点,且DE平分∠CDF.(1)求证:AB=AC;(2)若AC=3cm,AD=2cm,求DE的长.25.对于平面直角坐标系xOy中的点P(x,y),若点Q的坐标为(x+ay,ax+y)(其中a为常数,且a≠0),则称Q是点P的“a系联动点”.例如:点P(1,2)的“3系联动点”Q的坐标为(7,5).-,0),(1)点(3,0)的“2系联动点”的坐标为;若点P的“2-系联动点”的坐标是(3则点P的坐标为;-系联动点”均关于x轴对称,则点P分布(2)若点P(x,y)的“a系联动点”与“a在,请证明这个结论;(3)在(2)的条件下,点P不与原点重合,点P的“a系联动点”为点Q,且PQ的长度为OP长度的3倍,求a的值.26.如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c 经过A,B两点,点P在线段OA上,从点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标.参考答案1.C【分析】直接根据题意利用科学计数法进行排除选项即可.【详解】696.8亿=69680000000=10.6.96810故选C.【点睛】本题考查科学记数法,关键是根据科学计数法的表示方法进行求值即可.2.B【分析】由题意根据完全平方和公式和积的乘方以及幂的乘方和同底数幂的乘法对各项进行分析判断即可.【详解】解:A. (a+b)2=a2+2ab+b2,此选项错误;B. (ab)3=a3b3,此选项正确;C. (b3)2=b6,此选项错误;D. b·b2=b3,此选项错误;故选:B.【点睛】本题考查完全平方和公式和积的乘方以及幂的乘方和同底数幂的乘法的运算,熟练掌握相关的运算法则是解题的关键.3.A【分析】根据三角形的第三边大于两边之差,而小于两边之和求得第三边的取值范围,再进一步选择.【详解】解:根据三角形的三边关系,得第三边大于:8﹣3=5,小于:3+8=11.则此三角形的第三边可能是:8.故选:A.本题考查了三角形的三边关系,即三角形的第三边大于两边之差,而小于两边之和,此题基础题,比较简单,熟练掌握三角形三边关系式解决本题的关键.4.C【分析】先根据平行线的性质求出12∠+∠的度数,再由12∠=∠得出2∠的度数,进而可得出结论. 【详解】解://a b ,320, 1218020160,24∠∠=.12∠=∠, 12140802,4280.故选:C .【点睛】本题考查了平行线和角平分线的性质,熟悉相关性质是解题的关键.5.C【分析】首先根据立体图形可得俯视图、主视图、左视图所看到的小正方形的个数,再根据所看到的小正方形的个数可得答案.【详解】根据三视图的意义,可知主视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大,左视图的面积最小.故选C点睛:此题主要考查了组合体的三视图,关键是注意所有的看到的棱都应表现在三视图中. 6.D【分析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.本题考查中位数和众数的概念,熟记概念即可快速解答.7.A【分析】先根据一次函数的解析式判断出函数的增减性,再根据12x x <,得出1y 与2y 的大小关系即可.【详解】 解:一次函数32y x =-+中,30k ,y ∴随x 的增大而减小,12x x <,12y y ∴>,故选:A .【点睛】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.8.D【分析】根据直角三角形两锐角互余求出∠ECF=60°,旋转的性质可得∠BCF 1=15°,然后求出∠BCE 1=45°,从而得到∠BCE 1=∠A ,利用“边角边”证明ABC 和CE 1B 全等,根据全等三角形对应角相等可得∠BE 1C=∠ABC=45°,再根据∠F 1E 1B=∠CE 1B-∠CE 1F 1计算即可得.【详解】解:连接E 1B∵∠CFE=90°,∠E=30°,∴∠FCE=60°, ∵FCE 绕点C 顺时针旋转15°,∴∠BCF1=15°,∴∠BCE1=60°−15°=45°,∴∠BCE1=∠A,在ABC和CE1B中,AC=CB,∠BCE1=∠A,AB=CE1,∴ABC≌CE1B(SAS),∴∠CE1B=∠ABC=45°,∴∠F1E1B=∠CE1B-∠CE1 F1 =45°−30°=15°.故选D.【点睛】本题考查旋转的性质,三角形全等的判定,等腰直角三角形的知识,掌握旋转的性质,三角形全等的判定,等腰直角三角形的判定及性质是解决此题的关键.9.3 2【分析】根据平方根和负指幂的运算法则计算.【详解】+(-2)-1=2-12=32.【点睛】本题考查平方根和负指幂的知识,熟练掌握运算法则是关键.10.18【分析】根据相似三角形中,面积比等于相似比的平方直接进行求解即可.【详解】设所求三角形的面积为S,可以得到212 3S ⎛⎫⎪⎝⎭=解得:S=18.故答案为18.【点睛】本题主要考查相似三角形,关键是根据相似三角形的面积比等于相似比的平方.11.0【分析】先把()()11m n --进行化简,然后用整体代入求值即可.【详解】解:因为()()()111=mn m m n n --++-,m+n=2,mn=1,所以可得:原式=1-2+1=0;故答案为0.【点睛】本题考查整式乘法,关键是对所求代数式进行化简,然后利用整体代入求值即可. 12.400.【解析】试题分析:设该服装的标价为x 元,由题意得,0.6x-200=200×20%,解得:x=400. 考点:1.分式方程的应用;2.一元一次方程的应用.13.2.5【分析】首先根据折叠的性质与矩形的性质,得到AF =AB =5,EF =BE ,AD =BC =4;然后在Rt △ADF 中,利用勾股定理,求得DF 的长,进而得到CF 的长;再设CE =x ,则EF =BE =4-x ,在Rt △CEF 中,利用勾股定理列出关于x 的方程,求得x 的值,最后由BE =BC -CE ,即可得到结果.【详解】解:由题意可得AF =AB =5,AD =BC =4,EF =BE ,在Rt △ADF 中,由勾股定理,得DF 在矩形ABCD 中,DC =AB =5,∴CF =DC -DF =2.设CE =x ,则EF =BE =4-x ,在Rt △CEF 中,CE 2+CF 2=EF 2,即x 2+22=(4-x )2,解得x =1.5,则BE =4-x =2.5.故答案为2.5.点睛:本题考查翻折变换、矩形的性质,找出线段间的关系,利用勾股定理列出等量关系式是解题的关键.14.-1【分析】由于关于x的一元二次方程x2+2x-b=0有两个相等的实数根,可知其判别式为0,据此列出关于b的方程,解答即可.【详解】∵关于x的一元二次方程x2+2x-b=0有两个相等的实数根,∴△=0,∴4+4b=0,∴b=-1,故答案为:-1.【点睛】本题考查一元二次方程根的判别式的知识,熟练掌握有两个相等的实数根时,△=0是关键.15.7【分析】由勾股定理的逆定理可判定△BAO是直角三角形,所以平行四边形ABCD的面积即可求出.【详解】∵四边形ABCD为平行四边形,∴OA = 12AC = 1,OB =12BD = 2.又∵,∴OA2 + AB2 = OB2,∴△BAO为Rt△,且∠BAO = 90°,∴BC2 = AB2 + AC2 = 7,∴.又∵12AB·AC=12BC·AE,AE,∴AE故答案为.7【点睛】本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.16.8【分析】根据前面3个图形的关系可以推出第n个图形由(2n+1)×4-4=8n个圆和2n个正三角形组成,代入可得结果【详解】第①个图形由3×4-4=8个圆和1个正正三角形du组成,第②个图形由5×4-4=16个圆和22 =4个正三角形组成,第③个图形由7×4-4=24个圆和32 =9个正三角形组成,…所以第n个图形由(2n+1)×4-4=8n个圆和2n个正三角形组成,∵圆和正三角形的个数相等,∴8n=2n,解得n=8,或n=0(不合题意,舍去).故答案是8【点睛】本题主要考查规律题型中图形的变化,能够找出图形规律用代数式表示出来是解题关键.x.17.32【分析】分别解出两不等式的解集,再求其解集即.【详解】解:3(2)6543123x x x x ①② 解①得2x ≤,解②得3x >-,所以不等式组的解集是:32x .【点睛】本题考查了解一元一次方程组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.x =-2.【分析】先找最简公分母,再化成整式方程求解.【详解】解:去分母得:2(1)31x x x --=-,去括号,得:22-31x x x -=-,移项,得:22--31x x x =-,合并,得:-2x =,系数化1,得:-2x =,经检验-2x =是原分式方程的根.【点睛】本题考查解分式方程,一般思想是化分式方程为整式方程求得,最后验根也很关键. 19.(1)见解析;(2)1A A = 【分析】(1)根据中心对称图形的性质作出图形即可;(2)根据中心对称图形的性质得出A 1(1,1),根据勾股定理求出AA 1的长度即可【详解】解:(1)如图示,△A 1B 1C 1为所求;(2)如图示:∵△ABC 三个顶点的坐标分别为A (-1,-1),B(-3,-2),C(-2,-3),∴A (-1,-1)关于原点对称点A 1坐标是(1,1),∴2AD =,12A D =, ∴2222112222A AAD A D .【点睛】本题考查中心对称和勾股定理,熟悉相关性质是解题的关键.20.(1)补图见解析;(2)10;(3)游戏不公平,理由见解析.【分析】(1)根据D 等级有12人,所占百分比为30%,求得参加演讲比赛的学生总数,再用学生总数乘以B 等级所占百分比得到B 等级的人数,即可补全条形图;(2)用A 等级的人数除以学生总数乘以100%得到m 的值;(3)根据题意列出树状图,分别求出小明去和小刚去的概率即可判断.【详解】(1)参加演讲比赛的学生共有12÷30%=40(人), B 等级的人数是40×20%=8(人).条形图补充:(2)4100%=10% 40故答案为:10.(3)列树状图得:从树状图可以看出所有可能的结果有12种,数字之和为奇数的有8种,则:P(小明)=812=23,P(小刚)=412=13,2 3≠13,故游戏规则不公平.【点睛】本题考查条形统计图和扇形统计图统计数据,概率的计算,熟练掌握统计图的对应关系以及画出树状图计算概率是解题的关键.21.(1)证明见解析;(2)45.【分析】(1)根据AAS证明△ADF≌△CBE;(2)设BC=x,则CE=x-2,在Rt△BCE中,根据勾股定理得BE2+CE2=BC2列出关系x的方程,求出BC的长;在Rt△BCE中,可求得sin∠C的值,即为sin∠DAF的值.【详解】(1)∵四边形ABCD 是菱形,∴AD=BC ,∠A=∠C .又DF ⊥AB ,BE ⊥CD ,∴∠AFD=∠CEB=90°,在△ADF 和△CBE 中,∠AFD=∠CEB ,∠A=∠C ,AD=CB ,∴△ADF ≌△CBE .∴AF=CE .(2)设BC=x ,则CE=x-2,在Rt △BCE 中,BE 2+CE 2=BC 2,∴42+(x-2)2=x 2,∴x=5,∴sin ∠DAF=sin ∠C=45BE BC =. 22.(1)n=-2;y=2x -;y=−x−1;(2)x<−2或0<x<1. 【分析】(1)先把A 点坐标代入y=m x求出m 的值,从而得到反比例函数解析式,再把()1B n ,代入反比例函数解析式求出n 的值,然后把A 和B 点坐标分别代入y=kx+b 得到a 、b 的方程组,再解方程组求出a 和b 的值,于是可得到一次函数解析式;(2)根据函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【详解】(1)把()21A -,代入y=m x得m=−2×1=−2, 所以反比例函数解析式为y=2x -; 把()1B n ,代入y=−2x 得n=−2, 把()21A -,、()12B -,分别代入y=kx+b 得212k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩, 所以一次函数解析式为y=−x−1;(2)由图像可得:当x<−2或0<x<1时,一次函数的值大于反比例函数的值.【点睛】本题考查反比例函数与一次函数的交点问题,关键是先求出反比例函数解析式,然后再求解一次函数即可.23.A ,B 两个村庄间的距离【分析】 根据两个俯角的度数可知ABP 是等腰三角形,AB =BP ,在直角△PBC 中,根据三角函数就可求得BP 的长.【详解】解:过P 作AB 的垂线,垂足是C ,由题意得:∠A =∠APQ =30°,∠PBC =∠BPQ =60°,∴∠APB =60°﹣30°,∴∠APB =∠A ,∴AB =PB .在Rt BCP 中,∠C =90°,∠PBC =60°,PC =450米,∴PB =450sin60︒=∴AB =PB =答:A ,B 两个村庄间的距离【点睛】此题考查的是解直角三角形的应用,正确理解解直角三角形的条件,熟练运用三角函数是解题关键.24.(1)证明见解析;(2)52. 【分析】(1)由圆内接四边形的性质,可求得∠ABC=∠2;由于∠1=∠2=∠3=∠4,故∠ABC=∠4,由此得证.(2)证△ABD∽△AEB,通过相似三角形的对应成比例线段,求出AE及DE的值.【详解】(1)∵∠ABC=∠2,∠2=∠1=∠3,∠4=∠3,∴∠ABC=∠4,∴AB=AC;(2)∵∠3=∠4=∠ABC,∠DAB=∠BAE,∴△ABD∽△AEB,∴AB AD AE AB=,∵AB=AC=3,AD=2,∴AE=292 ABAD=.∴DE=95222-=(cm).【点睛】本题综合考查了角平分线,相似三角形,圆内接四边形的性质,是中学阶段的常规题目.25.(1)(3,6) ,P(1,2);(2)点P分布在x轴上,证明见解析;(3)a=±3.【分析】(1)根据“a系联动点”的定义进行解答即可;(2)根据“a系联动点”的定义得出点P(x,y)的“a系联动点”和“-a系联动点”的坐标,然后根据这两点关于x轴对称即可求出y=0,即点P在x轴上;(3)由(2)可知点P在x轴上,设P(x,0)(x≠0),根据“a系联动点”的定义表示出Q 点的坐标,然后根据PQ的长度为OP长度的3倍建立方程即可求出a的值.【详解】解:(1)点(3,0)的“2系联动点”的坐标为(3+2×0,2×3+0),即(3,6);设P(x,y),则点P的“-2系联动点”的坐标为(x-2y,-2x+y),∵点P的“2-系联动点”的坐标是(3-,0),∴23 20 x yx y-=-⎧⎨-+=⎩,解得:12 xy=⎧⎨=⎩,∴点P的坐标为.故答案为(3,6),(1,2);(2)点P分布在x轴上.证明:∵点P(x,y)的“a系联动点”的坐标为(x+ay, ax+y)(其中a为常数,且a≠0),点P(x,y)的“-a系联动点”为(x-ay, -ax+y).∵点P的“a系联动点”与“-a系联动点”均关于x轴对称,∴,0.x ay x ay ax y ax y+=-⎧⎨+-+=⎩∵a≠0,∴y=0.∴点P在x轴上;(3)∵在(2)的条件下,点P不与原点重合,∴点P的坐标为(x, 0),x≠0.∵点P的“a系联动点”为点Q,∴点Q的坐标为(x, ax).∵PQ的长度为OP长度的3倍,∴3x ax=.∴=3a.∴a=±3.【点睛】本题主要考查了点的坐标的应用,利用二元一次方程组和一元一次方程解决问题,理解“a 系联动点”定义是解决此题的关键.26.(1)抛物线的解析式为y=﹣x2+2x+3;(2)当t=1或t=32时,△PQA是直角三角形;(3)点F的坐标为(2,3).【分析】(1)先利用直线解析式确定A 点和B 点坐标,然后利用待定系数法求抛物线的解析式;(2)OP=t ,t ,则PA=3-t ,先判断∠QAP=45°,讨论:当∠PQA=90°时,如图①,利用等腰直角三角形的性质得AQ ,即t ;当∠APQ=90°时,如图②,利用等腰直角三角形的性质得AP •(3-t ),然后分别解关于t 的方程即可;(3)如图③,延长FQ 交x 轴于点H ,设点P 的坐标为(t ,0),则点E 的坐标为(t ,-t+3),易得△AQH 为等腰直角三角形,则AH=HQ=2AQ=t ,则可表示出点Q 的坐标为(3-t ,t ),点F 的坐标为[3-t ,-(3-t )2+2(3-t )+3)],所以FQ=-t 2+3t ,再证明四边形PQFE 为平行四边形得到EP=FQ .即3-t=3t-t 2,然后解方程求出t 即可得到点F 的坐标.【详解】解:(1)∵y=﹣x+3与x 轴交于点A ,与y 轴交于点B ,∴当y=0时,x=3,即A 点坐标为(3,0),当x=0时,y=3,即B 点坐标为(0,3). ∵将A (3,0),B (0,3)代入得:9303b c c -++=⎧⎨=⎩,解得23b c =⎧⎨=⎩, ∴抛物线的解析式为y=﹣x 2+2x+3.(2)∵OA=OB=3,∠BOA=90°,∴∠QAP=45°. 如图①所示:∠PQA=90°时.设运动时间为t 秒,则,PA=3﹣t .在Rt △PQA 中,QA PA == 解得:t=1.如图②所示:∠QPA=90°时.设运动时间为t 秒,则,PA=3﹣t .在Rt △PQA 中,2PA AQ =2=. 解得:t=32. 综上所述,当t=1或t=32时,△PQA 是直角三角形. (3)如图③所示:设点P 的坐标为(t ,0),则点E 的坐标为(t ,﹣t+3),则EP=3﹣t .点Q 的坐标为(3﹣t ,t ),点F 的坐标为(3﹣t ,﹣(3﹣t )2+2(3﹣t )+3),即F (3﹣t ,4t ﹣t 2),则FQ=4t ﹣t 2﹣t=3t ﹣t 2.∵EP ∥FQ ,EF ∥PQ ,∴四边形EFQP 为平行四边形.∴EP=FQ ,即3﹣t=3t ﹣t 2.解得:t 1=1,t 2=3(舍去).将t=1代入得点F 的坐标为(2,3).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了一次函数图象上点的坐标与函数解析式之间的关系、待定系数法求二次函数的解析式、等腰三角形的性质和判定、平行四边形的判定,用含t的式子表示EP和FQ的长是解题的关键.。
宁夏回族自治区 2020版九年级下学期期中数学试题C卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 实数的大小关系是()
A.B.C.D.
2 . 据舟山市旅游局统计,2012年舟山市接待境内外游客约2771万人次.数据2771万用科学记数法表示为()
A.2771×107B.2.771×107C.2.771×104D.2.771×105
3 . 在一个古代文献里记录了一个“鸡免同笼”问题,翻译内容如下:在一个笼子里混装有鸡和兔子若干只,已知共有头45个,脚160个,设鸡x只,兔子y只,根据题意可列出方程组()
A.B.
C.D.
4 . 若二次函数的图象经过点P(-3,2),则该图象必经过点()
A.(2,3)B.(-2,-3)C.(3,2)D.(-3,-2)
5 . 方程有两个实数根,则k的取值范围是()
A.B.C.D.
6 . 下列计算正确的是()
A.B.C.D.
7 . 已知反比例函数,下列结论不正确的是
A.图象必经过点(-1,2)B.y随x的增大而增大
C.图象在第二、四象限内D.若x>1,则y>-2
8 . 关于x的分式方程+-=0有解,则k满足()
A.k≠-3;B.k≠5;C.k≠-3且k≠-5;D.k≠-3且k≠5
9 . 将二次函数y=x2的图像向下平移1个单位。
则平移后的二次函数的解析式为()
A.y= (x-1)2B.y=(x+1)2C.y= x2 -1D.y= x2 +1
10 . 如图,四边形ABCD和四边形A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,四边形ABCD的面积等于4,则四边形A′B′C′D′的面积为()
A.3B.4C.6D.9
二、填空题
11 . 分解因式:
12 . 函数的定义域是______.
13 . 不等式组的解集是_______.
14 . 如图,中,交于点,则的长等于____.
15 . 如图,的半径为5,点在上,点在内,且,过点作的垂线交于点、
.设,,则与的函数表达式为_____.
16 . 用不等式表示:x的3倍不大于4__________________________.
三、解答题
17 . 如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,CD与AB的延长线相交于点E,∠ADC=60°.求证:
△ADE是等腰三角形.
18 . 已知:关于的方程.
(1)不解方程,判断方程的根的情况;
(2)若为等腰三角形,腰,另外两条边是方程的两个根,求此三角形的周长.
19 . 计算:
(1)(﹣2a)2•(a﹣1)
(2)
20 . 某中学八年级共有400名学生,学校为了增强学生的环保意识,在本年级进行了一次环保知识测验.为了了解这次测验的成绩状况,学校从中抽取了50名学生的成绩,将所得数据整理后,画出的频数分布直方图如图所示.
(1)在上述问题中,问题的总体是,样本是;
(2)这50名学生中,得分在60-70分的同学有人,得分在90-100分的同学有人;
(3)全校八年级的学生在本次测验中,成绩在70-80分之间的大约有多少人?
21 . 为了保护环境,某开发区综合治理指挥部决定购买A、B两种型号的污水处理设备共10台(注:要求同时有两种型号),买2台A型设备和3台B型设备共需要90万元,其中A型设备单价是B型设备单价的1.5倍;经预算,指挥部购买污水处理设备经费不超过180万元,请解答下列问题
(1)A型设备和B型设备的单价各是多少万元?
(2)指挥部有哪几种购买方案?
(3)若A型设备月处理污水量200吨、B型设各月处理污水量180吨,现要求月处理污水量不低于1840吨,设购买设备需要总费用为y万元,A型设备x台,请写出y与x的函数解析式,并根据函数性质选择更省钱的购买方案?
22 . 已知a、b在数轴上的位置如图所示·,>
(1)=___________.
(2)化简:++.
23 . 阅读下列材料,并完成填空.
你能比较和的大小吗?
为了解决这个问题,先把问题一般化,比较和(,且为整数)的大小.然后从分析,,的简单情形入手,从中发现规律,经过归纳、猜想得出结论.(1)通过计算(可用计算器)比较下列(1)-(7)组两数的大小:(在横线上填上 " "" “或” ")(1);(2);(3)
;(4);(5)
;(6);(7)
;
(2)归纳第(1)问的结果,可以猜想出和的大小关系;
(3)根据以上结论,可以得出和的大小关系.
24 . 如图,直线y=﹣x+4分别交x轴、y轴于A、C两点,抛物线y=﹣x2+mx+4经过点A,且与x轴的另一个交点为点
A.连接BC,过点C作CD∥x轴交抛物线于点D
(1)求抛物线的函数表达式;
(2)若点E是抛物线上的点,求满足∠ECD=∠BCO的点E的坐标;
(3)点M在y轴上且位于点C上方,点N在直线AC上,点P为第一象限内的抛物线上一点,若以点C、M、N、P为顶点的四边形是菱形,求菱形的边长.。