小学奥数训练专题 行程问题基础.学生版【推荐】.doc
- 格式:doc
- 大小:469.00 KB
- 文档页数:8
年级三年级学科奥数版本通用版课程标题行程问题基础(一)我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题。
行程问题是数学中一类常见的重要应用题,在历次数学竞赛中经常出现。
行程问题包含很多方面,但基础在于路程、速度和时间三个基本量之间的关系,在这三个量中,已知两个量,即可求出第三个量,掌握这三个数量间的关系式,是解决行程问题的关键。
在解答行程问题时,经常采取画图分析的方法,即根据题意画出线段图,来帮助我们分析、理解题意,从而解决问题。
一、行程问题三要素之间的关系:(1)速度×时间=路程,可简记为:s=vt(2)路程÷速度=时间,可简记为:t=s÷v(3)路程÷时间=速度,可简记为:v=s÷t显然,知道其中的两个量就可以求出第三个量。
二、速度是描述物体运动快慢的量,时间是事件从开始到结束的时刻间隔,有些行程问题是多段路程、不同速度的叠加,解题时要区分各段路程对应的速度。
例1小黑上山用2小时,每小时行2千米,下山用1小时,求小黑下山的速度。
分析与解:小黑上山和下山的路程是一样的,即路程=2×2=4(千米),下山的速度=4÷1=4(千米/小时)。
例2小白从家骑车去学校,每小时行15千米,用时2小时,回来时以每小时10千米的速度行驶,问:需要多少时间?分析与解:小白家到学校的距离是固定的,即从家到学校的路程=15×2=30(千米),回来时所用的时间=30÷10=3(小时)。
例3甲、乙两车同时从A、B两城相对开出,甲车的速度是54千米/时,乙车的速度是53千米/时,经5小时两车相遇,A、B两城间距离多少千米?分析与解:甲、乙两车从开始出发到相遇所用的时间相同,都为5小时。
如图,A、B两城间距离=甲车所走的路程+乙车所走的路程=甲车的速度×甲车所用的时间+乙车的速度×乙车所用的时间=54×5+53×5=535(千米)。
1. 理解行程问题中的各种比例关系.2. 掌握寻找比例关系的方法来解行程问题.比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。
比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比。
知识精讲教学目标比例解行程问题模块一:比例初步——利用简单倍比关系进行解题【例 1】甲、乙两车从相距330千米的A、B两城相向而行,甲车先从A城出发,过一段时间后,乙车才从B城出发,并且甲车的速度是乙车。
当两车相遇时,甲车比乙车多行驶了30千米,则甲车开速度的56出千米,乙车才出发。
【例 2】甲乙两地相距12千米,上午10:45一位乘客乘出租车从甲地出发前往乙地,途中,乘客问司机距乙地还有多远,司机看了计程表后告诉乘客:已走路程的1加上未走路程的2倍,恰好等于已走的路3程,又知出租车的速度是30千米/小时,那么现在的时间是。
1、会熟练解决基本的火车过桥问题.2、掌握人和火车、火车与火车的相遇追及问题与火车过桥的区别与联系.3、掌握火车与多人多次相遇与追及问题火车过桥常见题型及解题方法 (一)、行程问题基本公式:路程=速度⨯时间总路程=平均速度⨯总时间;(二)、相遇、追及问题:速度和⨯相遇时间=相遇路程速度差⨯追及时间=追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程) =(火车速度±人的速度) ×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程) = (快车速度+慢车速度) ×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程) = (快车速度—慢车速度) ×错车时间;老师提醒学生注意:对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。
知识精讲教学目标火车问题模块一、火车过桥(隧道、树)问题【例1】一列火车长200米,以60米每秒的速度前进,它通过一座220米长的大桥用时多少?【巩固】一列火车长360米,每秒钟行驶16米,全车通过一条隧道需要90秒钟,求这条隧道长多少米?【巩固】一列火车经过南京长江大桥,大桥长6700米,这列火车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?【巩固】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【巩固】一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【巩固】一列火车长160米,全车通过一座桥需要30秒钟,这列火车每秒行20米,求这座桥的长度.【例2】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长米.【巩固】一个车队以6米/秒的速度缓缓通过一座长250 米的大桥,共用152秒.已知每辆车长6米,两车间隔10米.问:这个车队共有多少辆车?【巩固】一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
小学生奥数行程问题知识点及应用题1.小学生奥数行程问题知识点篇一常用公式:1、速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2、速度和×时间=路程和;3、速度差×时间=路程差。
2.小学生奥数行程问题知识点篇二行程问题中的公式:1、顺水速度=静水速度+水流速度;2、逆水速度=静水速度-水流速度。
3、静水速度=(顺水速度+逆水速度)/24、水流速度=(顺水速度–逆水速度)/23.小学生奥数行程问题应用题篇三1、姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,求姐姐甲地去乙地用了多少时间?2、小张爬山,下山按原路返回,往返共用了1.5小时。
上山时间是下山时间的1.5倍,上山速度比下山速度每分钟慢50米。
小张上下山共行了多少米?3、一辆汽车往返于甲、乙两地。
去时的速度是返回速度的3/4,去时比返回时多用了1小时,已知返回速度是每小时60千米,求甲、乙两地相距多少千米?4、一个自行车选手在相距950千米的甲、乙两地之间训练。
从甲地出发,去时每90千米休息一次;到达乙地并休息一天后再沿原路返回,每100千米休息一次;他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有多少千米?5、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。
这两只蚂蚁每秒分别爬5.5厘米和3.5厘米。
它们每爬行1秒,3秒、5秒……(连续的奇数),就调头爬行。
那么,它们相遇时,已爬行的时间是多少秒?4.小学生奥数行程问题应用题篇四1、一列快客和一列普客从甲乙两个城同时相对开出,快客每小时行90千米,普客每小时行48千米,经过2.5小时后,两列客车在途中相遇。
求甲乙两城市间的道路长多少千米?解:要知道甲、乙两城之间的道路长多少千米,就必须知道两车的速度和所行的时间。
因为两车是相对而行,所以速度应是两车速度和,时间是两车的相遇时间,这样就可以求出甲、乙两地的距离了。
学科培优 数学 “行程综合二” 学生姓名授课日期 教师姓名授课时长 知识定位 通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响.重难点在于1.流水行船中的相遇与追击2.火车问题知识梳理知识点:行程综合(二)流水问题:顺水速度=船速+水速, 逆水速度=船速-水速. ( 其中为船在静水中的速度,为水流的速度)由上可得:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2.流水行船中的相遇与追击:水船顺V V V +=水船逆V V V -=船V 水V(1)两只船在河流中相遇问题.当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和.这是因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速.这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系.(2)同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关.这是因为:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速.也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.这说明水中追及问题与在静水中追及问题一样.由上述讨论知,解流水行船问题,更多地是把它转化为已学过的相遇和追及问题来解答火车问题⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.例题精讲【试题来源】【题目】两港相距 120 千米,甲船往返两港需 60 小时,逆流航行比顺流航行多用了 20 小时.乙船的静水速度是甲船的静水速度的 3 倍,那么乙船往返两港需要多少小时?【试题来源】【题目】一艘轮船顺流航行 120 千米,逆流航行 80 千米共用 16 时;顺流航行 60 千米,逆流航行 120 千米也用 16 时。
1、 掌握如下两个关系:(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次 (2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次 2、遇见多人多次相遇、追及能够借助线段图进行分析 3、用比例解、数论等知识解环形跑道问题本讲中的行程问题是特殊场地行程问题之一。
是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。
一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和 路程差=追及时间×速度差 二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。
模块一、常规的环形跑道问题【例 1】 一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【巩固】 周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。
已知林荫道周长是480米,他们从同一地点同时背向而行。
在他们第10次相遇后,王老师再走知识精讲教学目标环形跑道问题米就回到出发点。
【例2】上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?【巩固】小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.⑴小张和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小张的速度是多少米/分?⑵小张和小王同时从同一点出发,同一方向跑步,小张跑多少圈后才能第一次追上小王?【巩固】一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?【巩固】小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟?【巩固】幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?【巩固】小明和小刚清晨来到学校操场练习跑步,学校操场是400米的环形跑道,小刚对小明说:“咱们比比看谁跑的快”,于是两人同时同向起跑,结果10分钟后小明第一次从背后追上小刚,同学们一定知道谁跑得快了,小明的速度是每分钟跑140米,那么如果小明第3次从背后追上小刚时,小刚一共跑了米.【巩固】如图1,有一条长方形跑道,甲从A点出发,乙从C点同时出发,都按顺时针方向奔跑,甲每秒跑5米,乙每秒跑4.5米。
小学六年级数学思维训练奥数题—行程问题专练1.小天和爸爸同时分别从天安门和正阳门出发(天安门广场北起天安门,南至正阳门),相向而行。
小天每分钟走50米,爸爸的速度是小天的120%,相遇后,小天继续向前走9.6分钟到达正阳门。
天安门广场南北长多少米?2.一家人靠窗坐在速度为72千米/时的火车里,一列有30节车厢的货运火车迎面驶来,当货车车头经过窗口时开始计时,直到最后一节车厢驶过窗口共用时18秒。
已知货运火车每节车厢长16米,每两节车厢(包括车头)间距1.2米。
如果货运火车车头长24头,货车的速度是多少?3.从火车站坐公交车去泰山风景区,途中与同时从风景区开往火车站的某两出租车相遇,相遇点离火车站5千米。
相遇后两车继续以原速前进。
到达风景区后,我们发现有东西丢在火车站,又立即乘公交车返回。
在途中与返回的那辆出租车第二次相遇,相遇点在离风景区2.5千米处。
火车站与风景区之间相距多少千米呢?4.甲、乙两人沿着同一条路同时从山脚和山顶相向出发,甲上山行完全程要4小时,乙下山行完全程要6小时,两人在距中点150千米处相遇。
泰山山顶到山脚路程长多少米?5.甲船逆水航行600米需要3分钟,返回原地需要2分钟;乙船逆水航行同一段水路,需要4分钟。
(1)水流速度是多少?(2)乙船静水速度是多少?(3)乙船返回原地需要多少分钟?6.火车通过450米的大桥用时32秒,通过2200米的隧道时,火车的速度提高了一倍,所以通过隧道只用了51秒,火车的车长为多少米?7.一列火车长200米,它以每秒10米的速度穿过一座大桥,从车头上桥到车尾离开大桥共需80秒,这座桥长为()米。
8.一辆卡车、一辆摩托车同时从A、B两地相对开出,两车在途中距A地80千米处第一次相遇,然后两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在距B地20千米处第二次相遇,A、B两地间的路程是多少千米?9.甲、乙两车分别从A、B两地同时发出相向而行,相遇时距中5,求A、B两地的路程。
1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?板块二、运用倍比关系解多次相遇问题【例 3】 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?知识精讲教学目标3-1-4多次相遇和追及问题|初一·数学·基础-提高-精英·学生版| 第1讲 第页2【例 4】 甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?【例 5】 如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】 A 、B 是圆的直径的两端,甲在A 点,乙在B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇.已知C 离A 有75米,D 离B 有55米,求这个圆的周长是多少米?【巩固】 如右图,A ,B 是圆的直径的两端,甲在A 点,乙在B 点同时出发反向而行,两人在C 点第一次相遇,在D 点第二次相遇。
行程综合问题教学目标1.运用各种方法解决行程内综合问题。
2.发现一些综合问题中,行程与其它模块的联系,并解决奥数综合问题。
知识精讲行程问题是奥数中的一个难点,内容多而杂。
而在行程问题中,还有一些尤其复杂的综合问题。
它们大致可以分为两类:一、行程内综合,把行程问题中的一些零散的知识点综合在一道题目中,这就是一道行程内综合题目。
例如把环形跑道和猎狗追兔结合在一起,把流水行船和发车间隔结合起来等等。
二、学科内综合,这种问题就不只是行程问题了,把行程问题和其它知识模块里的思想方法结合在一起,这种综合性题目的难度也很大,比如行程与策略综合等等。
本讲内容主要就是针对这种综合性题目。
虽然题目难度偏大,但是这种题目在杯赛和小升初试题中是很受“偏爱”的。
所以很重要。
模块一、行程内综合【例 1】邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。
他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【例 2】小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【例 3】已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?【例 4】甲、乙两人沿400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用24 秒同时回到原地。
求甲原来的速度。
【例 5】环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发。
甲每分跑120米,乙每分跑100米,两人都是每跑200米停下休息1分。
1. 行程的基本概念,会解一些简单的行程题.2. 掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、“设单位1法”3. 利用对比分析法解终(中)点问题一、s 、v 、t 探源 我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。
表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。
velocity 表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示速度。
二、关于s 、v 、t 三者的基本关系速度×时间=路程 可简记为:s vt =路程÷速度=时间 可简记为:t s v =÷路程÷时间=速度 可简记为:v s t =÷三、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。
板块一、简单行程公式解题【例 1】 韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【巩固】 小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?【例 2】 甲、乙两地相距100千米。
下午3点,一辆马车从甲地出发前往乙地,每小时走10千米;晚上9点,一辆汽车从甲地出发驶向乙地,为了使汽车不比马车晚到达乙地,汽车每小时最少要行驶多少千米?.知识精讲教学目标行程问题基础|初一·数学·基础-提高-精英·学生版| 第1讲 第页2【巩固】 两辆汽车都从北京出发到某地,货车每小时行60千米,15小时可到达。
客车每小时行50千米,如果客车想与货车同时到达某地,它要比货车提前开出几小时?【例 3】 一天,梨和桃约好在天安门见面,梨每小时走200千米,桃每小时走150千米,他们同时出发2小时后还相距500千米,则梨和桃之间的距离是多少千米?【巩固】 两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?【例 4】 甲、乙两辆汽车分别从 A 、B 两地出发相向而行,甲车先行三小时后乙车从 B 地出发,乙车出发5 小时后两车还相距15千米.甲车每小时行 48千米,乙车每小时行 50千米.求 A 、 B 两地间相距多少千米?【例 5】 小燕上学时骑车,回家时步行,路上共用50分。
如果往返都步行,则全程需要70分。
求往返都骑车所需的时间。
【例 6】 骑自行车从甲地到乙地,以10千米/时的速度行进,下午1时到;以 15千米/时的速度行进,上午11时到。
如果希望中午12时到,那么应以怎样的速度行进?【例 7】 从家里骑摩托车到火车站赶乘火车。
若每时行30千米,则早到15分;若每时行20千米,则迟到5分。
如果打算提前5分到,那么摩托车的速度应是多少?【巩固】小红从家到火车站赶乘火车,如果每时行4千米,那么火车开时她还离车站1千米;如果每时行5千米,那么她就早到车站12分。
小红家离火车站多少千米?【例8】一艘轮船在离港口 20海里处船底破损,每分进水1.4吨,这艘轮船进水70吨后就会沉没。
问:这艘轮船要在沉没前返回港口,它的时速至少达到多少海里?【例9】解放军某部开往边境,原计划需要行军18天,实际平均每天比原计划多行12千米,结果提前3天到达,这次共行军多少千米?【巩固】某人要到60千米外的农场去,开始他以6千米/时的速度步行,后来有辆速度为18千米/时的拖拉机把他送到了农场,总共用了6小时.问:他步行了多远?【巩固】(第六届《小数报》数学竞赛初赛题第1题)小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。
如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。
问:小明家到学校多远?模块二、平均速度问题【例10】甲、乙两地相距60千米,自行车队8点整从甲地出发到乙地去,前一半时间平均每分钟行1千米,后一半时间平均每分钟行0.8千米。
自行车队到达乙地的时间是几点几分几秒?|初一·数学·基础-提高-精英·学生版| 第1讲 第页4【例 11】 如图,从A 到B 是12千米下坡路,从B 到C 是8千米平路,从C 到D 是4千米上坡路.小张步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问小张从A 到D 的平均速度是多少?DCB A【巩固】 如图,从A 到B 是6千米下坡路,从B 到C 是4千米平路,从C 到D 是4千米上坡路.小张步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.问从A 到D 的平均速度是多少?D CB A【巩固】 一个运动员进行爬山训练.从A 地出发,上山路长30千米,每小时行3千米.爬到山顶后,沿原路下山,下山每小时行6千米.求这位运动员上山、下山的平均速度.【例 12】 摩托车驾驶员以每小时30千米的速度行驶了90千米到达某地,返回时每小时行驶45千米,求摩托车驾驶员往返全程的平均速度.【巩固】 甲乙两地相距200千米,小强去时的速度是10千米/小时,回来的速度是40千米/小时,求小强往返的平均速度.【例13】飞机以720千米/时的速度从甲地到乙地,到达后立即以480千米/时的速度返回甲地.求该车的平均速度.【巩固】一个人从甲地去乙地,骑自行车走完全程的一半时,自行车坏了,又无法修理,只好推车步行到乙地. 骑车时每小时行12千米,步行时每小时4千米,这个人走完全程的平均速度是多少?【巩固】从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上山以30千米/时的速度,到达山顶后以60千米/时的速度下山.求该车的平均速度.【巩固】某人上山速度为每小时8千米,下山的速度为每小时12千米,问此人上下山的平均速度是多少?【例14】一辆汽车从甲地出发到300千米外的乙地去,前120千米的平均速度为40千米/时,要想使这辆汽车从甲地到乙地的平均速度为50千米/时,剩下的路程应以什么速度行驶?|初一·数学·基础-提高-精英·学生版| 第1讲 第页6【巩固】 汽车往返于A ,B 两地,去时速度为40千米/时,要想来回的平均速度为48千米/时,回来时的速度应为多少?【巩固】 王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?【巩固】 王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时55千米.如果他想按时返回甲地,他应以多大的速度往回开?【例 15】 小明去爬山,上山时每时行2.5千米,下山时每时行4千米,往返共用3.9时。
小明往返一趟共行了多少千米?【巩固】 小明上午九点上山,每小时3千米,在山顶休息1小时候开始下山,每小时4千米,下午一点半到达山下,问他共走了多少千米.【巩固】 小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了5小时.小明去时用了多长时间?【巩固】小明从甲地到乙地,去时每时走2千米,回来时每时走3千米,来回共用了15小时.小明去时用了多长时间?【例16】小王每天用每小时15千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每小时10千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同【例17】有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。
某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。
【巩固】有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度.【巩固】一只蚂蚁沿等边三角形的三条边由A点开始爬行一周. 在三条边上它每分钟分别爬行50cm,20cm,40cm(如右图).它爬行一周平均每分钟爬行多少厘米?|初一·数学·基础-提高-精英·学生版| 第1讲 第页8【例 18】 赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?【例 19】 张师傅开汽车从A 到B 为平地(见下图),车速是36千米/时;从B 到C 为上山路,车速是28千米/时;从C 到D 为下山路,车速是42千米/时. 已知下山路是上山路的2倍,从A 到D 全程为72千米,张师傅开车从A 到D 共需要多少时间?【巩固】 老王开汽车从A 到B 为平地(见右图),车速是30千米/时;从B 到C 为上山路,车速是22.5千米/时;从C 到D 为下山路,车速是36千米/时. 已知下山路是上山路的2倍,从A 到D 全程为72千米,老王开车从A 到D 共需要多少时间?【例 20】 小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路.小明上学走两条路所用的时间一样多.已知下坡的速度是平路的2倍,那么平路的速度是上坡的多少倍?。