方程论与近世代数
- 格式:pdf
- 大小:89.35 KB
- 文档页数:40
近世代数发展简史近世代数是数学中的一个重要分支,它的起源可以追溯到16世纪。
在这个时期,欧洲的数学家们开始对代数进行系统的研究和发展。
本文将介绍近世代数发展的一些重要里程碑和相关概念。
1. 符号代数的起源近代代数的发展离不开符号代数的引入。
16世纪的意大利数学家卡尔达诺(Cardano)是符号代数的先驱者之一。
他在《代数学大全》一书中首次使用了符号来表示未知数,并研究了一元三次方程的解法。
这标志着代数从几何学中独立出来,成为一门独立的数学学科。
2. 方程论的发展方程论是近世代数的重要分支,它研究的是方程的性质和解法。
16世纪的法国数学家维埃塔(Viète)是方程论的奠基人之一。
他提出了用字母表示未知数的概念,并发展了一种新的符号代数方法来解决方程。
维埃塔的工作为后来的代数学家们提供了重要的启示。
3. 代数学的建立17世纪的法国数学家笛卡尔(Descartes)是近世代数学的奠基人之一。
他在《几何学》一书中提出了坐标系的概念,将代数与几何学相结合,从而建立了解析几何学。
这一创新为代数学的发展提供了新的方法和思路。
4. 群论的兴起19世纪的英国数学家凯莱(Cayley)是群论的奠基人之一。
他研究了代数方程的根与置换群之间的关系,并提出了群的概念。
群论成为近世代数的一个重要分支,它研究的是代数结构的对称性和变换规律。
5. 现代代数的发展20世纪的数学家们进一步发展了代数学的各个分支。
法国数学家居尔庞(Galois)在19世纪提出了群论的基本概念,并研究了方程的可解性与群的结构之间的关系。
这一工作为现代代数学的发展奠定了基础。
总结:近世代数的发展经历了符号代数的引入、方程论的发展、代数学的建立、群论的兴起以及现代代数的发展等阶段。
这些里程碑的贡献使代数学从一个辅助工具逐渐发展成为一门独立的数学学科。
近世代数的研究不仅推动了数学的发展,也为其他科学领域的研究提供了重要的数学工具和方法。
近世代数笔记世代数,也称为代数学,是数学中的一个重要分支,研究代数结构及其上的操作。
在近代数学发展中,代数学作为数学的基础学科,发挥着重要作用。
以下是一些关于近世代数的笔记:一、代数结构代数结构是代数学中的一个重要概念,指具有某种代数运算的数学结构。
常见的代数结构包括群、环、域等。
群是一种具有封闭性、结合律、单位元和逆元的代数结构;环是一种具有加法和乘法运算的代数结构;域是一种具有加法、乘法、单位元和逆元的代数结构。
研究代数结构可以帮助我们更深入地理解数学中的抽象概念和结构。
二、线性代数线性代数是代数学的一个重要分支,研究向量空间及其上的线性变换和矩阵。
线性代数在科学和工程领域有着广泛的应用,如解线性方程组、求特征值和特征向量、研究线性映射等。
掌握线性代数知识可以帮助我们更好地理解和应用代数学中的相关概念。
三、代数方程代数方程是代数学中的一个重要内容,研究方程及其根的性质和解法。
在代数方程中,常见的问题包括一元多项式方程的解法、代数方程组的求解、代数方程的根与系数之间的关系等。
通过学习代数方程,我们可以更好地理解和应用代数学中的代数概念和方法。
四、代数拓扑代数拓扑是代数学和拓扑学的交叉领域,研究代数结构与拓扑结构的关系。
代数拓扑在数学中有着重要的地位,如同调理论、同伦论、拓扑群等都是代数拓扑的经典应用。
通过学习代数拓扑,我们可以更深入地理解代数学和拓扑学的交叉点,为数学研究提供新的视角和方法。
总之,代数学作为数学的基础学科,对于数学的发展和应用具有重要意义。
通过学习代数学,我们可以更好地理解和应用数学中的抽象概念和方法,为数学研究和实际应用提供新的思路和途径。
希望以上的笔记内容可以帮助大家更好地理解近世代数的相关知识。
近世代数发展简史根据课程教学安排,通过查阅近世代数发展历史的相关资料,了解了相关的知识,并对近世代数的知识结构和发展脉络有了更清楚的认识和理解,以下是我将对近世代数及其发展历史的认识。
一、近世代数的定义代数学是以数、多项式、矩阵、变换和它们的运算,以及群、环、域、模等为研究对象的学科,而近世代数(又称抽象代数)是代数学研究的一个重要分支,主要研究群、环、域、模这四种抽象的代数结构,并深入研究了具有一定特性的群、环、域、模及其子结构、商结构、同态和同构、以及作为它们支柱的具体例子,它不仅在代数学中,而且在现代数学的理论与应用中都具有基本的重要性。
二、近世代数的发展代数学的起源较早,在挪威数学家阿贝尔(Abel,N.H.)证明五次以上方程不能用根式求解的进程中就孕育着群的概念;1830年,年仅19岁的伽罗瓦(Galois,E.)彻底解决了代数方程的根式求解问题,从而引进数域的扩张、置换群、可解群等概念;后来,凯莱(Cayley,A.)在1854年的文章中给出有限抽象群;戴德金(Dedekind,J.W.R.)于1858年在代数数域中又引入有限交换群和有限群;克莱因(Klein,C.F.)于1872年建立了埃尔朗根纲领,这些都是抽象群产生的主要源泉。
然而抽象群的公理系统直到1882年凯莱与韦伯(Weber,H.)在Math.Annalen的同一期分别给出有限群的公理定义,1893年韦伯又给出无限抽象群的定义。
由于李(Lie,M.S.)对连续群和弗罗贝尼乌斯(Frobenius,F.G.)对群表示的系统研究,对群论发展产生了深刻的影响。
同时,李在研究偏微分方程组解的分类时引入李代数的概念,然而,它的发展却是19世纪末和20世纪初,由基灵(Killing,W.K.J.)、外尔(Weyl,(C.H.)H.)和嘉当(Cartan)等人的卓越工作才建立了系统理论。
域这个名词虽是戴德金较早引入的,但域的公理系统却是迪克森(Dickson,L.E.)与亨廷顿(Huntington,E.V.)于19世纪初才独立给出。
近世代数的应用1. 幻方一变八----正方形的对称群我在抽象代数考试中考过这样的题:将如下的3阶幻方通过旋转和轴对称变出尽可能多的不同的幻方。
90o,180o,270o得到3个新的幻方,关于第2行、第2列、两条对角线做轴对称得到4个新的幻方,包括原来的幻方在内一共可以得到8个。
为什么只能得到8个而不能得到更多? 通过旋转和轴对称只能将左上角的2变到4个不同的位置(正方形的4个角)。
将2固定在每个角不动,只能通过轴对称得到2个不同的幻方,4组总共2×4=8 个。
这实际上是说:将正方形变到与自己重合,有8个不同的动作。
这8个动作组成的集合对乘法(复合)与求逆运算封闭,组成一个群。
其中保持2不动的动作组成一个2阶子群,将2变到同一个位置的动作组成一个陪集。
非交换群、子群与陪集、子群的元素个数2是整个群的元素个数8的因子。
这些概念和知识都自然而然引入了。
类似地,可以计算正方体的对称群或者旋转群的元素个数,或者任意正多边形和正多面体的对称群的元素个数。
特别,正三角形的对称群由三个顶点的所有置换组成,就是元素最少的非交换群S3。
2.0与1的算术----二元域许多人说有限域是抽象代数最后一节课讲的,最难,没学好情有可原,考试也不应当考。
其实有限域最容易讲,最有趣,最有用,最有抽象代数味道,可以在抽象代数课第一节课第一分钟讲。
我的抽象代数考试每次必考有限域。
小学生都懂得奇偶数的运算规律:偶+偶=偶,偶+奇=奇,奇+奇=偶; 偶×整数=偶,奇×奇=奇。
将偶数用0表示,奇数用1表示,就得到:0+0=0, 0+1=1, 1+1=0; 0×a=0 (a=0或1),1×1=1。
按这样的运算公式,两个元素0,1组成的集合Z2就对加、减、乘、除封闭,Z2就是二元域,最简单的有限域。
我的导师曾肯成教授出过一个题:求随机整数组成的n阶行列式为奇数和偶数的概率。
貌似概率题,其实是代数题。
近世代数发展简史近世代数是数学中的一个重要分支,它研究的是数与符号之间的关系。
代数的发展可以追溯到古代,但近世代数的起源可以追溯到16世纪。
以下是近世代数发展的简史。
1. 文艺复兴时期(16世纪)在文艺复兴时期,代数开始浮现了一些重要的发展。
意大利数学家Cardano首次提出了解三次方程的方法,并发表了《代数学大全》。
同时,法国数学家Viète 提出了代数中的符号表示法,开创了代数符号的使用。
2. 方程论的发展(17世纪)17世纪,方程论成为代数中的重要研究领域。
法国数学家Fermat和英国数学家Descartes分别独立地发展了代数几何学,将代数与几何相结合。
Fermat提出了著名的“费马大定理”,并在边注中提到了他的证明思路,这成为了代数中的一个重要问题。
3. 群论的兴起(19世纪)19世纪,代数的发展进入了一个新的阶段。
法国数学家Galois提出了群论的概念,并建立了现代代数的基础。
他研究了方程的可解性,并提出了著名的“Galois理论”,解决了费马大定理中的一些特殊情况。
Galois的工作对代数的发展产生了深远的影响。
4. 现代代数的建立(20世纪)20世纪,代数的发展进入了一个全新的阶段。
德国数学家Hilbert提出了代数基础的问题,并提出了一系列的公理化方法。
同时,抽象代数成为了代数中的重要分支,研究了各种代数结构的性质。
在这一时期,代数的研究范围得到了极大的扩展。
5. 应用领域的发展近世代数的发展不仅仅局限于理论研究,还涉及到了许多实际应用领域。
代数在密码学、编码理论、计算机科学等领域都有广泛的应用。
代数的发展为这些领域提供了强大的工具和方法。
总结:近世代数的发展经历了多个阶段,从文艺复兴时期的代数基础研究,到方程论的发展,再到群论和现代代数的建立,代数的研究范围不断扩展。
近世代数的发展不仅仅是理论上的突破,还涉及到了许多实际应用领域。
代数的发展为数学和其他学科的发展做出了巨大贡献。
近世代数发展简史近世代数是数学中的一个重要分支,它研究的是数和运算规则的结构。
在近世代数的发展历程中,有许多重要的里程碑和贡献,下面将为您详细介绍。
1. 代数的起源代数的起源可以追溯到古希腊时期,当时的数学家们开始研究方程和未知数的关系。
例如,毕达哥拉斯学派提出了著名的毕达哥拉斯定理,它可以用一个方程来表示:a² + b² = c²。
这标志着代数的起步。
2. 文艺复兴时期的代数在文艺复兴时期,代数得到了进一步的发展。
数学家们开始研究多项式和方程的解法。
其中最重要的贡献来自意大利数学家Cardano和Ferrari。
他们发现了普通三次方程和四次方程的解法,这被称为Cardano-Ferrari公式。
3. 齐次坐标和复数17世纪,法国数学家笛卡尔引入了齐次坐标系统,这使得几何和代数之间的联系更加密切。
同时,复数的概念也在这个时期被引入。
复数是由实数和虚数构成,它们的运算规则被完善并广泛应用于代数的研究中。
4. 群论的发展19世纪末,德国数学家Galois提出了群论的概念,这是近世代数中的一个重要分支。
群论研究的是代数结构的对称性和变换规则。
Galois的工作为代数的发展奠定了坚实的基础,他的理论对于解方程、数论和几何等领域都有重要的应用。
5. 现代代数的发展20世纪,代数学经历了一次革命性的发展。
抽象代数的概念被引入,数学家们开始研究更普通的代数结构,如环、域和向量空间等。
同时,线性代数和矩阵论的发展也为现代代数的研究提供了重要的工具和方法。
总结:近世代数的发展可以追溯到古希腊时期的方程研究,经历了文艺复兴时期的解方程方法的发展,齐次坐标和复数的引入,群论的提出以及现代抽象代数的发展。
这些重要里程碑的贡献使得近世代数成为了数学中一个重要且独立的分支,为解决实际问题和推动数学发展做出了巨大贡献。
近世代数教学大纲一、引言近世代数是数学中一个重要的分支,涉及到代数方程、群论、域论、线性代数等内容。
近世代数的研究对于推动数学的发展以及应用于其他学科具有重要的意义。
近年来,随着科学技术的快速发展,近世代数的应用也越来越广泛。
为了培养学生对近世代数的深入理解,本文将从教学的目标、基本内容、教学方法和评估方式等方面,制定一份近世代数教学大纲。
二、教学目标通过近世代数的学习和教学,学生应具备以下知识和能力:1. 掌握近世代数的基本概念、基本理论和基本技巧;2. 理解和运用近世代数的基本原理和定理;3. 能够应用近世代数的知识解决实际问题;4. 培养学生的逻辑思维能力和数学建模能力。
三、基本内容1.1 代数方程的定义和基本概念 1.2 一元高次方程的解法1.3 多项式方程的解法2. 群论2.1 群的定义和基本性质2.2 群的子群和正规子群2.3 群的同态、同构和陪集2.4 群的分类和应用3. 域论3.1 域的定义和基本性质3.2 域的子域和扩域3.3 域的代数闭包和超越数3.4 域的分类和应用4.1 线性方程组的解法4.2 矩阵的基本运算和性质4.3 矩阵的特征值和特征向量4.4 线性变换和线性空间的基本概念四、教学方法1. 讲授法:通过课堂讲授,系统地介绍近世代数的基本理论和技巧,帮助学生理解和掌握相关知识。
2. 实例法:通过举例分析,引导学生运用近世代数的知识解决实际问题,培养学生的应用能力。
3. 探究法:组织学生进行小组讨论、探究性实验等,激发学生的求知欲和创造力,培养学生的问题解决能力和团队合作精神。
4. 演示法:运用多媒体教学手段,展示近世代数的相关应用场景,增加学生的学习兴趣和动力。
五、评估方式1. 课堂小测:定期进行课堂小测,检测学生对知识点的掌握情况。
2. 作业评估:批改学生的作业,评估学生的应用能力和逻辑思维能力。
3. 期中期末考试:进行期中和期末考试,全面检测学生对近世代数的理解和应用能力。