2.4.3《数列应用》
- 格式:ppt
- 大小:340.00 KB
- 文档页数:15
《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。
3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。
二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。
2. 等比数列的应用举例:例如计算复利、人口增长等问题。
3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。
4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。
5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。
三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。
2. 教学难点:数列的通项公式的理解和应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。
2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。
3. 组织小组讨论,培养学生的合作能力和思维能力。
五、教学安排:1. 第一课时:等差数列的应用举例。
2. 第二课时:等比数列的应用举例。
3. 第三课时:数列的求和公式及应用。
4. 第四课时:数列的通项公式的应用。
5. 第五课时:数列在函数中的应用。
6. 剩余课时:进行课堂练习和课后作业的辅导。
六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。
2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。
3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。
七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。
2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。
3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。
八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。
生活中大量使用的中国古代数列知识-概述说明以及解释1.引言1.1 概述概述部分的内容可以从以下角度展开:数列是一种重要的数学概念,在中国古代的数学研究中也占据了重要地位。
中国古代的数学发展源远流长,其中包括了许多与数列相关的数学知识。
这些古代数列知识不仅仅是数学理论的一部分,更是融入到人们的生活中,成为了日常生活中的重要元素。
中国古代数列知识的应用范围非常广泛。
从古代天文学、农业、医学到宇宙观的构建,数列都发挥着重要的作用。
比如,在天文学中,古代中国人就利用数列来研究天体运动的周期性规律,推算节气的时间点,以及预测日食和月食等天文现象。
在农业方面,中国古代农民运用数列知识来研究农作物的生长规律,选择适合的种植和收割时间,提高农作物产量。
在医学领域,古代医师也运用数列知识来分析人体生理、病理等方面的规律,推断疾病的发展趋势,制定治疗方案。
另外,数列还有助于古代中国人形成整体的宇宙观,例如五行八卦等理论,这些都离不开数列的应用。
这些古代数列知识在今天的生活中仍然有着重要的意义。
通过对中国古代数列知识的研究和运用,我们能够更好地理解和应用现代数学理论。
同时,古代数列知识也能够激发我们对数学的兴趣,并拓宽我们对数学的认识。
古代数列知识所体现的思维方式和求知精神也对我们现代人的人文素养和思维习惯有着积极的影响。
本文将介绍中国古代数列的起源与发展,以及生活中常见的古代数列知识。
同时,我们还将探讨古代数列在现代生活中的应用,并总结中国古代数列知识的重要性。
最后,我们将展望古代数列知识在未来的发展,并给出文章的结论。
通过本文的阐述,希望能够引起读者对中国古代数列知识的关注和兴趣,以及对数学的思考和探究。
1.2 文章结构文章结构部分的内容:本文主要分为引言、正文和结论三个部分。
引言部分首先对文章进行概述,介绍了中国古代数列知识在生活中的广泛应用。
同时,为了使读者能够更好地理解文章内容,还对整篇文章的结构进行了简要说明。
数列的实际应用一.课题:数列的实际应用二.教学目标:1.理解“复利”的概念,能解决分期付款的有关计算方法;2.能够把实际问题转化成数列问题.三.教学重点:建立数列模型解决数列实际应用问题.四.教学过程:(一)主要知识:1.解应用问题的核心是建立数学模型;2.一般步骤:审题、抓住数量关系、建立数学模型;3.注意问题是求什么(,,n nn a S).(二)主要方法:1.解答数列应用题要注意步骤的规范性:设数列,判断数列,解题完毕要作答;2.在归纳或求通项公式时,一定要将项数n计算准确;3.在数列类型不易分辨时,要注意归纳递推关系;4.在近似计算时,要注意应用对数方法和二项式定理,且要看清题中对近似程度的要求.(三)例题分析:例1.某地区森林原有木材存量为a,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b,设na为n年后该地区森林木材的存量,(1)求na的表达式;(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不少于79a,如果1972ab=,那么该地区今后会发生水土流失吗?若会,需要经过几年?(参考数据:lg20.3=)例2.轻纺城的一家私营企业主,一月初向银行贷款一万元作开店资金,每月月底获得的利润是该月月初投入资金的20%,每月月底需要交纳房租和所得税为该月所得金额(包括利润)的10%,每月的生活费开支300元,余款作为资金全部投入再经营,如此继续,问该年年底,该私营企业主有现款多少元?如果银行贷款的年利率为5%,问私营企业主还清银行贷款后纯收入还有多少元?例3.银行按规定每经过一定的时间结算存(贷)款的利息一次,结算后即将利息并入本金,这种计算利息的方法叫做复利.现在有某企业进行技术改造,有两种方案:甲方案:一次性贷款10万元,第一年便可获得利润1万元,以后每年比上年增加30%的利润;乙方案:每年贷款1万元,第一年可获得利润1万元,以后每年比前一年多获利5000元.两种方案的期限都是10年,到期一次行归还本息.若银行贷款利息均以年息10%的复利计算,试比较两个方案哪个获得存利润更多?(计算精确到千元,参考数据:10101.1 2.594,1.313.796==)例4.某工厂在1999年的“减员增效”中对部分人员实行分流,规定分流人员第一年可以到原单位领取工资的100%,从第二年起,以后每年只能在原单位按上一年的23领取工资,该厂根据分流人员的技术特长,计划创办新的经济实体,该经济实体预计第一年属投资阶段,第二年每人可获得b 元收入,从第三年起每人每年的收入可在上一年的基础上递增50%,如果某人分流前工资的收入每年a 元,分流后进入新经济实体,第n 年的收入为n a 元,(1)求{}n a 的通项公式;(2)当827a b =时,这个人哪一年的收入最少?最少为多少? (3)当38a b ≥时,是否一定可以保证这个人分流一年后的收入永远超过分流前的年收入?(四)巩固练习:某工厂生产总值月平均增长率为p ,则年平均增长率为( )()A p ()B 12p ()C 12(1)p + ()D 12(1)1p +-。
《数列的应用》知识点
一、数列的定义
数列是由一系列的数字组成的有序集合,也可以说是以一定的规律组
成的一系列数字。
一般来说,数列的基本要素有三个:第一是每一项的值,第二是其相邻项之间的关系,第三是数列的递推关系。
二、数列的应用
1、统计经济学:统计经济学中经常使用数列法来分析和研究经济现
象或经济发展趋势。
在这种情况下,一个数列可以用来分析经济变量的变
化情况,比如GDP,通货膨胀率,就业率等等。
2、基础数学:在基础数学中,数列是数学中的一个重要概念,常用
于抽象数学、统计学和计算机科学中。
在抽象数学中,通常有算术数列,
等比数列,斐波那契数列,阶乘数列等,其中算术数列和等比数列是最常
见的。
3、金融学:在金融学中,数列也有重要的应用。
例如,投资分析过
程中,经常用数列法来分析股票价格、汇率变化等,从而判断投资状况并
做出判断和决策。
4、计算机科学:在计算机科学中,数列也有着重要的应用。
常见的
有查找表以及相似性判断算法,都是基于数列的数学思想。
算法的本质是
通过数列的累加,比较,等操作,来实现一些过程的计算。
数列综合应用教案【篇一:《数列的综合应用》教案】个性化教案授课时间年级高三备课时间学生姓名教师姓名课题数列的进一步认识教学目标(1)熟练掌握等差数列、等比数列的前n项和公式,以及非等差数列、等比数列求和的几种常见方法。
教学重点教学设计教学内容(2)理解与掌握“等价转化”、“变量代换”思想(3)能在具体的问题情境中识别数列的相应关系,并能用相关知识解决相应的问题1、数列求和的几种常见方法2、识别数列的相关关系,并能利用“等价转化”、“变量代换”思想解决相关数列问题一、检查并点评学生的作业。
检查过程中,要特别注意反映在学生作业中的知识漏洞,并当场给学生再次讲解该知识点,也可出题让学生做,检查效果。
二、检查学生上节课或在校一周内的知识点掌握情况,帮助学生再次梳理知识。
三、讲授新内容数列求和数列求和的常用方法 1、公式法(1)直接利用等差数列、等比数列的前n项公式求和;(2)一些常见的数列的前n项和:n∑k=n(n+1)k=12n∑k2=16n(n+1)(2n+1)k=1nk3=14n2(n+1)2k=12、倒序相加法如果一个数列{an},首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法。
等差数列的前n项和即是用此法推导的。
3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的;例:sn=1*2+2*4+3*8+??+n*2n①2sn=1*4+2*8+3*16+??+(n-1)*2n+n*2n+1②①-②得 -sn=2-(4+8+16+??+2n)-n*2n+1 即:sn=(n-1)2n+1-64、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。
《数列综合应用举例》教案第一章:数列的概念与性质1.1 数列的定义引导学生理解数列的概念,理解数列是一种特殊的函数。
通过实例让学生了解数列的基本形式,如等差数列、等比数列等。
1.2 数列的性质引导学生学习数列的基本性质,如数列的项数、首项、末项、公差、公比等。
通过实例让学生掌握数列的性质,并能够运用性质解决实际问题。
第二章:数列的求和2.1 等差数列的求和引导学生学习等差数列的求和公式,理解公差、首项、末项与求和的关系。
通过实例让学生掌握等差数列的求和方法,并能够运用求和公式解决实际问题。
2.2 等比数列的求和引导学生学习等比数列的求和公式,理解公比、首项、末项与求和的关系。
通过实例让学生掌握等比数列的求和方法,并能够运用求和公式解决实际问题。
第三章:数列的极限3.1 数列极限的概念引导学生理解数列极限的概念,理解数列极限与数列收敛的关系。
通过实例让学生了解数列极限的性质,如保号性、单调性等。
3.2 数列极限的计算引导学生学习数列极限的计算方法,如夹逼定理、单调有界定理等。
通过实例让学生掌握数列极限的计算方法,并能够运用极限的概念解决实际问题。
第四章:数列的应用4.1 数列在数学分析中的应用引导学生学习数列在数学分析中的应用,如级数、积分等。
通过实例让学生了解数列在数学分析中的重要性,并能够运用数列解决实际问题。
4.2 数列在其他学科中的应用引导学生学习数列在其他学科中的应用,如物理学、经济学等。
通过实例让学生了解数列在不同学科中的作用,并能够运用数列解决实际问题。
第五章:数列的综合应用5.1 数列在经济管理中的应用引导学生学习数列在经济管理中的应用,如库存管理、成本分析等。
通过实例让学生了解数列在经济管理中的重要性,并能够运用数列解决实际问题。
5.2 数列在工程科技中的应用引导学生学习数列在工程科技中的应用,如信号处理、结构分析等。
通过实例让学生了解数列在工程科技中的作用,并能够运用数列解决实际问题。