等比数列的性质_课件-课件ppt
- 格式:ppt
- 大小:543.00 KB
- 文档页数:31
等比数列课件一、等比数列定义等比数列是一种特殊的数列,它的每一项(从第二项开始)都是前一项乘以一个常数。
这个常数被称为公比。
定义一个等比数列需要给出它的首项和公比,通常用符号表示为{an},其中a1是首项,q是公比。
二、等比数列通项公式等比数列的通项公式是:an = a1 * q^(n-1),其中n是项数,a1是首项,q是公比。
这个公式表明,等比数列的任意一项都是首项乘以公比的n-1次方。
三、等比数列的性质1. 等比数列的任意两项之积等于这两项之和,即a(n+2)/a(n+1) = a(n+1)/a(n)。
2. 等比数列的各项之和等于首项乘以公比减去1,即Σan = a1 * q - 1。
3. 等比数列的各项之积等于首项乘以公比的n次方减去1,即Πan = a1 * q^n - 1。
四、等比数列的图像表示等比数列的图像是一条递减或递增的曲线,它的图像可以用来直观地了解等比数列的性质和特点。
在图像中,公比q的大小决定了曲线的陡峭程度,而首项a1的大小决定了曲线在y轴上的位置。
五、等比数列的应用等比数列在实际生活中有着广泛的应用,例如在金融、经济、工程等领域都可以找到它的踪迹。
例如,在银行利率计算中,等比数列可以用来计算复利;在股票价格计算中,等比数列可以用来计算股息等等。
六、等比数列的例题讲解例题1:一个等比数列的首项为2,公比为3,求该数列的前5项之和。
解:根据等比数列的性质,该数列的前5项之和为Σan = a1 * q - 1 = 2 * 3^5 - 1 = 242。
例题2:一个等比数列的各项之和为10,前三项之积为91,求该数列的公比。
解:根据等比数列的性质,该数列的公比q满足方程:Σan = a1 * q - 1 = 10 和Πan = a1 * q^3 - 1 = 91。
解得q = 3或-3/2。
七、课后练习与答案1. 计算下列等比数列的前5项之和:a) 首项为4,公比为2;b) 首项为-3,公比为-4。